Homework 8 Deadline: 1.12.2021, 11:30

Poincaré inequalities

In the case of second derivative, the following Poincaré-type inequality holds (you don't need to prove it):

Theorem. Let $\Omega \subset \mathbb{R}^n$ be Lipschitz, $p \in [1, \infty)$ and let $\Gamma \subset \partial \Omega$ be a set with positive (n-1)-dimensional measure such that Γ is not contained in a hyperplane¹. Then there is a constant C > 0 such that

$$\forall u \in W^{2,p}(\Omega) : ||u||_{W^{2,p}(\Omega)} \le C \left(\left\| \nabla^2 u \right\|_{L^p(\Omega)}^p + \int_{\Gamma} |u|^p \, \mathrm{d}S \right)^{\frac{1}{p}}.$$

1. Show by counterexample that the assumption in **bold** cannot be dropped in the above theorem.

2. Consider the functions u_{δ} , $0 < \delta < 1$ defined on the unit ball $B = B(0,1) \subset \mathbb{R}^n$ for $n \geq 2$ by

$$u_{\delta}(x) = \begin{cases} \frac{|x|}{\delta}, & \text{if } |x| < \delta\\ 1, & \text{if } \delta \le |x| < 1. \end{cases}$$
(1)

Verify that $u_{\delta} \in W^{1,1}(B)$ and show that $u \to 1$ in $W^{1,1}(B)$.

Using this, show that "being zero at one point is not enough for Poincaré inequality to hold": that is, there is no C > 0 such that for every $u \in W^{1,1}(B)$ with u(0) = 0, where 0 is a Lebesgue point² of u it holds

$$\|u\|_{L^{1}(B)} \le C \|\nabla u\|_{L^{1}(B)}.$$
(2)

¹A hyperplane is an (n-1)-dimensional affine subspace of \mathbb{R}^n .

²As u is defined only almost everywhere, this is one way to make sense of "u(0) = 0".