Sobolev embeddings and applications

1. Let $n \geq 2$ and let $B=B(0,1) \subset \mathbb{R}^{n}$ be the unit ball.

Show that the function $u(x)=\log \log \left(1+\frac{1}{|x|}\right)$ satisfies $u \in W^{1, n}(B)$ and $u \notin L^{\infty}(B)$.
Remark. From the Sobolev embedding theorem we know that $W^{1, n}(\Omega) \subset L^{q}(\Omega)$ for every $q \in[1, \infty)$, provided Ω is a Lipschitz domain. It is therefore a natural question to ask whether also $W^{1, n}(\Omega) \subset L^{\infty}(\Omega)$. This exercise shows that the answer is negative for $n \geq 2$.
2. Let $u \in W^{1,2}\left(\mathbb{R}^{3}\right)$. Prove that $u \in L^{4}\left(\mathbb{R}^{3}\right)$ with

$$
\|u\|_{L^{4}\left(\mathbb{R}^{3}\right)} \leq C\|\nabla u\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{\frac{3}{4}}\|u\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{\frac{1}{4}},
$$

where the constant $C>0$ is independent of u.
Hint: Gagliardo-Nirenberg-Sobolev inequality and interpolation of L^{p} spaces.
Remark. This is a special case of the Gagliardo-Nirenberg interpolation inequality.
3. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded Lipschitz domain. Suppose that $f_{k} \rightharpoonup f$ weakly in $L^{\frac{3}{4}}(\Omega)$ and that $u_{k} \in W_{0}^{1,2}(\Omega)$ is a weak solution to the problem

$$
\begin{aligned}
-\Delta u_{k}+u_{k}^{3} & =f_{k} \quad \text { in } \Omega \\
u_{k} & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

that is, $\forall \varphi \in W_{0}^{1,2}(\Omega): \int_{\Omega} \nabla u_{k} \cdot \nabla \varphi+u_{k}^{3} \varphi \mathrm{~d} x=\int_{\Omega} f_{k} \varphi \mathrm{~d} x .{ }^{1}$

- Show that $\int_{\Omega}\left|\nabla u_{k}\right|^{2}+\left|u_{k}\right|^{4} \leq C$, where the constant C is independent of k.
- Show that $u_{k} \rightarrow u$ strongly in $L^{3}(\Omega)$ for some $u \in L^{3}(\Omega)$.

Hint: Compact embedding (Rellich-Kondrachov) and interpolation of L^{p} spaces.

- Show that this u is a weak solution to the problem (note how you use the strong convergence)

$$
\begin{array}{rll}
-\Delta u+u^{3}=f & \text { in } \Omega \\
u=0 & & \text { on } \partial \Omega .
\end{array}
$$

[^0]
[^0]: ${ }^{1}$ This is well defined: we know by the previous exercise that $u_{k}, \varphi \in L^{4}$, and moreover $4^{\prime}=\frac{4}{3}$.

