Sobolev embeddings and applications

1. Let $n \ge 2$ and let $B = B(0,1) \subset \mathbb{R}^n$ be the unit ball. Show that the function $u(x) = \log \log \left(1 + \frac{1}{|x|}\right)$ satisfies $u \in W^{1,n}(B)$ and $u \notin L^{\infty}(B)$.

Remark. From the Sobolev embedding theorem we know that $W^{1,n}(\Omega) \subset L^q(\Omega)$ for every $q \in [1, \infty)$, provided Ω is a Lipschitz domain. It is therefore a natural question to ask whether also $W^{1,n}(\Omega) \subset L^{\infty}(\Omega)$. This exercise shows that the answer is negative for $n \geq 2$.

2. Let $u \in W^{1,2}(\mathbb{R}^3)$. Prove that $u \in L^4(\mathbb{R}^3)$ with

$$\|u\|_{L^4(\mathbb{R}^3)} \le C \|\nabla u\|_{L^2(\mathbb{R}^3)}^{\frac{3}{4}} \|u\|_{L^2(\mathbb{R}^3)}^{\frac{1}{4}},$$

where the constant C > 0 is independent of u. Hint: Gagliardo-Nirenberg-Sobolev inequality and interpolation of L^p spaces.

Remark. This is a special case of the Gagliardo-Nirenberg interpolation inequality.

3. Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain. Suppose that $f_k \rightharpoonup f$ weakly in $L^{\frac{3}{4}}(\Omega)$ and that $u_k \in W_0^{1,2}(\Omega)$ is a weak solution to the problem

$$-\Delta u_k + u_k^3 = f_k \quad \text{in } \Omega$$
$$u_k = 0 \quad \text{on } \partial \Omega_k$$

that is, $\forall \varphi \in W_0^{1,2}(\Omega) : \int_{\Omega} \nabla u_k \cdot \nabla \varphi + u_k^3 \varphi \, \mathrm{d}x = \int_{\Omega} f_k \varphi \, \mathrm{d}x.^1$

- Show that $\int_{\Omega} |\nabla u_k|^2 + |u_k|^4 \leq C$, where the constant C is independent of k.
- Show that $u_k \to u$ strongly in $L^3(\Omega)$ for some $u \in L^3(\Omega)$. Hint: Compact embedding (Rellich-Kondrachov) and interpolation of L^p spaces.
- Show that this *u* is a weak solution to the problem (note how you use the strong convergence)

$$-\Delta u + u^3 = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

¹This is well defined: we know by the previous exercise that $u_k, \varphi \in L^4$, and moreover $4' = \frac{4}{3}$.