Linear elliptic equations

Let $\Omega \subset \mathbb{R}^{n}$ be Lipschitz.

1. Prove that the bilinear form

$$
(u, v)=\int_{\Omega} \nabla^{2} u: \nabla^{2} v \mathrm{~d} x\left(=\int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \mathrm{~d} x\right), \quad u, v \in W_{0}^{2,2}(\Omega)
$$

is a scalar product on $W_{0}^{2,2}(\Omega)$.
2. Using the above, show that for any ${ }^{1} f \in\left(W_{0}^{2,2}(\Omega)\right)^{*}$ there exists a weak solution $u \in W_{0}^{2,2}(\Omega)$ to the biharmonic equation

$$
\begin{aligned}
& \Delta(\Delta u)=f \\
& u \text { in } \Omega \\
& \frac{\partial u}{\partial n}:=\nabla u \cdot n \text { on } \partial \Omega, \\
& \\
& \text { on } \partial \Omega, \text { where } n \text { is the normal to } \partial \Omega .
\end{aligned}
$$

That is u satisfies

$$
(u, v)=\langle f, v\rangle, \quad v \in W_{0}^{2,2}(\Omega) .
$$

3. Consider $\mathbb{A}=\left(a_{i j}^{k l}\right)_{i, j, k, l} \in L^{\infty}\left(\Omega, \mathbb{R}^{(n \times n) \times(n \times n)}\right)$ which is uniformly elliptic in Ω, that is there exists $\lambda>0$ such that for a.e. $x \in \Omega$

$$
\left.\forall \boldsymbol{\xi} \in \mathbb{R}^{n \times n}: \quad \mathbb{A}(x) \boldsymbol{\xi}: \boldsymbol{\xi} \geq \lambda|\boldsymbol{\xi}|^{2} \quad \text { (i.e. } \quad \sum_{i, j, k, l=1}^{n} a_{i j}^{k l}(x) \xi_{i j} \xi_{k l} \geq \lambda \sum_{i, j=1}^{n}\left|\xi_{i j}\right|^{2}\right)
$$

Show that for any $f \in\left(W_{0}^{2,2}(\Omega)\right)^{*}$ there exists a weak solution $u \in W_{0}^{2,2}(\Omega)$ to the equation

$$
\begin{aligned}
\operatorname{div} \operatorname{div}\left(\mathbb{A} \nabla^{2} u\right) & =f & & \text { in } \Omega, \\
\text { (i.e. } \sum_{k, l=1}^{n} \frac{\partial^{2}}{\partial x_{k} \partial x_{l}} \sum_{i, j=1}^{n} a_{i j}^{k l} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} & =f & & \text { in } \Omega) \\
u & =0 & & \text { on } \partial \Omega, \\
\mathbb{A} \nabla u \cdot n & =0 & & \text { on } \partial \Omega, \text { where } n \text { is the normal to } \partial \Omega .
\end{aligned}
$$

That is, u satisfies

$$
\left(\int_{\Omega} \sum_{i, j, k, l=1}^{n} a_{i j}^{k l} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} v}{\partial x_{k} \partial x_{l}}=\right) \int_{\Omega} \mathbb{A} \nabla^{2} u: \nabla^{2} v \mathrm{~d} x=\langle f, v\rangle, \quad v \in W_{0}^{2,2}(\Omega) .
$$

Hint: Modify problem 1. accordingly. Beware that we do not assume \mathbb{A} to be symmetric!

[^0]
[^0]: ${ }^{1}$ if this confuses you, assume $f \in L^{2}(\Omega)$

