Partial differential equations 1 – 2021/2022

Homework 3 Deadline: 20.10.2021, 11:30

Sobolev spaces

1. Prove that the order of weak derivatives can be interchanged.

More precisely: Let $u \in W^{k,p}(\Omega)$ for some $k \in \mathbb{N}$ and $p \in [1,\infty]$. Then for any $i_1, \ldots, i_k \in \{1, \ldots, n\}$ and any permutation $\pi \colon \{1, \ldots, k\} \to \{1, \ldots, k\}$ it holds

$$\frac{\partial^k u}{\partial x_{i_1} \cdots \partial x_{i_k}} = \frac{\partial^k u}{\partial x_{i_{\pi(1)}} \cdots \partial x_{i_{\pi(k)}}}$$

(The order of weak partial derivatives is to be understood in the same way as you're used to, i.e. $\frac{\partial^k u}{\partial x_{i_1} \cdots \partial x_{i_k}} = \frac{\partial}{\partial x_{i_1}} \left(\frac{\partial^{k-1} u}{\partial x_{i_2} \cdots \partial x_{i_k}} \right) \text{ etc. })$

2. (Poincaré inequality in one dimension) Let $p \in [1, \infty)$ and $0 < L < \infty$. Show that there exists $C \in \mathbb{R}$ such that

$$\forall f \in \mathcal{C}_{c}^{1}((0,L)) : ||f||_{p} \leq C ||f'||_{p}.$$

Try to find the constant C as small as possible!¹

Remark. From the density of $C_c^1((0,L))$ in $W_0^{1,p}((0,L))$ it follows that the inequality holds for all $f \in W_0^{1,p}((0,L))$. (Check carefully that you understand this argument.)

¹The smallest possible value of C is sometimes called the *Poincaré constant*.