Classical, weak and distributional derivatives

Let us consider the function $f(x)=\left\{\begin{array}{ll}|x|^{a} \sin \left(\frac{1}{|x|^{b}}\right), & x \in(-1,1) \backslash\{0\} \\ 0, & x=0 .\end{array}\right.$.
Find for which values of the parameters $a, b \in \mathbb{R}$ we have

1. $f \in L^{1}((-1,1)),{ }^{1}$
2. $f \in W^{1,1}((-1,1))$,
3. $f \in W^{1,2}((-1,1))$,
4. f is differentiable on $(-1,1)$ (in the classical sense),
5. $f \in \mathcal{C}^{1}((-1,1))$.
6. (Bonus problem, not mandatory) $f \in \mathcal{C}^{\alpha}((-1,1))$, where $\alpha \in(0,1)$, resp. $f \in \mathcal{C}^{0,1}((-1,1))$.
[^0]
[^0]: ${ }^{1}$ Note that this means that f has a distributional derivative.

