Homework 11 **Deadline**: 5.1.2022, 11:30

Linear parabolic equations II

1. (Energy decay of the heat equation)

Let Ω be a Lipschitz domain and $u_0 \in L^2(\Omega)$. Let u be a weak solution¹ to the problem

$$u_t - \Delta u = 0 \qquad \text{in } (0, \infty) \times \Omega$$
$$u(0) = u_0 \qquad \text{in } \Omega$$
$$u = 0 \qquad \text{on } (0, \infty) \times \partial \Omega.$$

Show that there exists a constant $\lambda_1 > 0$ such that

$$||u(t,\cdot)||_{L^2(\Omega)} \le e^{-\lambda_1 t} ||u_0||_{L^2(\Omega)}$$

for $t \in (0, \infty)$. Show that, in fact, the constant λ_1 is the first eigenvalue of the Laplace operator with respect to the homogeneous Dirichlet boundary conditions. That is λ_1 the smallest λ such that there exists a nonzero weak solution to

$$-\Delta u = \lambda u \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega.$$

_

 $^{^1\}mathrm{in}$ the sense as defined in the lecture