Regularity II

Let us consider the following mixed boundary value problem for given $f \in L^{2}(\Omega)$, (here n denotes the outer unit normal to $\partial \Omega$):

$$
\begin{aligned}
-\Delta u & =f \text { in } \Omega=B(0,1) \cap \mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x, y>0, x^{2}+y^{2}<1\right\}, \\
\frac{\partial u}{\partial n}:=\nabla u \cdot n & =0 \text { on }(0,1) \times\{0\} \cup\{0\} \times(0,1), \\
u & =0 \text { on }\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1, x, y>0\right\} .
\end{aligned}
$$

1. Formulate the problem weakly and show the existence of a unique weak solution u.
2. We extend u to be defined on the unit disk $D:=B(0,1)$ by even reflection, so that

$$
u(x, y)=u(-x, y)=u(x,-y)=u(-x,-y), \quad(x, y) \in \Omega
$$

Show that u solves the reflected equation (formulate it) on D and moreover $u \in W_{\text {loc }}^{2,2}(D)$.
3. Suppose that we have the same problem but with coefficients $A: \Omega \rightarrow \mathbb{R}^{2 \times 2}$:

$$
\begin{aligned}
-\operatorname{div}(A \nabla u) & =f \text { in } \Omega, \\
A \nabla u \cdot n & =0 \text { on }(0,1) \times\{0\} \cup\{0\} \times(0,1), \\
u & =0 \text { on }\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1, x, y>0\right\} .
\end{aligned}
$$

Under what assumptions on A can we reach the same conclusions as in problems 1,2 ?

