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Iterative Refinement for 𝐴𝑥 = 𝑏

𝐴 is 𝑛 × 𝑛, nonsingular

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖
𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖
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Iterative Refinement for 𝐴𝑥 = 𝑏

𝐴 is 𝑛 × 𝑛, nonsingular

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖
𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)
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Notation/Setting

• Assume standard floating point arithmetic

• 𝑢 denotes unit roundoff

• "Gamma notation": 𝛾𝑘 =
𝑘𝑢

1−𝑘𝑢

• Condition numbers

• 𝐴 = |(𝑎𝑖𝑗)|

• 𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

• cond(𝐴, 𝑥) =
𝐴−1 𝐴 𝑥

∞

𝑥 ∞

• cond(𝐴) = cond(𝐴, 𝑒) = 𝐴−1 𝐴 ∞

• 1 ≤ cond 𝐴, 𝑥 ≤ cond 𝐴 ≤ 𝜅∞(𝐴)

2



Error Bounds ("Traditional" IR)

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖
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Error Bounds ("Traditional" IR)

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

precision 𝑢

precision 𝑢2

precision 𝑢

precision 𝑢

3



Error Bounds ("Traditional" IR)

• Early analyses by Wilkinson (1963), Moler (1967)

• If 𝜅∞ 𝐴 𝑢 < 1, then error contracts (at a rate depending on 
𝜅∞(𝐴)) until 

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

precision 𝑢

precision 𝑢2

precision 𝑢

precision 𝑢

𝑥 − 𝑥𝑖 ∞

𝑥 ∞
≈ 𝑢
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Information in  𝐿 𝑈 ≈ 𝐴
• Empirically observed by Rump (1990) that if  𝐿 and  𝑈 are computed LU 

factors of 𝐴 from GEPP, then 𝜅  𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅 𝐴 𝑢
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Information in  𝐿 𝑈 ≈ 𝐴
• Empirically observed by Rump (1990) that if  𝐿 and  𝑈 are computed LU 

factors of 𝐴 from GEPP, then 𝜅  𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅 𝐴 𝑢

• Even if 𝜅 𝐴 ≫ 𝑢−1
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Information in  𝐿 𝑈 ≈ 𝐴
• Empirically observed by Rump (1990) that if  𝐿 and  𝑈 are computed LU 

factors of 𝐴 from GEPP, then 𝜅  𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅 𝐴 𝑢

• Even if 𝜅 𝐴 ≫ 𝑢−1

A = 

gallery('randsvd',

n,10^(n+5))

A = invhilb(n)

Examples: ill-conditioned problems (1013 ≤ 𝜅∞(𝐴) ≤ 1035), 𝑢 = double



New Analysis Summary

• New rounding error analysis of IR

• Identifies a mechanism by which iterative refinement can work 
when 𝜅∞ 𝐴 > 𝑢−1
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New Analysis Summary

• New rounding error analysis of IR

• Identifies a mechanism by which iterative refinement can work 
when 𝜅∞ 𝐴 > 𝑢−1

• Requires that we can solve the equations for the updates 𝑑𝑖
with some relative accuracy

• Accomplished by using existing LU factors as 
preconditioners in GMRES method ⟹ GMRES-IR
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New Analysis Summary

• New rounding error analysis of IR

• Identifies a mechanism by which iterative refinement can work 
when 𝜅∞ 𝐴 > 𝑢−1

• Requires that we can solve the equations for the updates 𝑑𝑖
with some relative accuracy

• Accomplished by using existing LU factors as 
preconditioners in GMRES method ⟹ GMRES-IR

• Even when 𝜅∞ 𝐴 ≳ 𝑢−1, GMRES-IR produces  𝑥 for which 
𝑥 −  𝑥 ∞

𝑥 ∞
≈ 𝑢
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New Analysis Summary

• New rounding error analysis of IR

• Identifies a mechanism by which iterative refinement can work 
when 𝜅∞ 𝐴 > 𝑢−1

• Requires that we can solve the equations for the updates 𝑑𝑖
with some relative accuracy

• Accomplished by using existing LU factors as 
preconditioners in GMRES method ⟹ GMRES-IR

• Even when 𝜅∞ 𝐴 ≳ 𝑢−1, GMRES-IR produces  𝑥 for which 
𝑥 −  𝑥 ∞

𝑥 ∞
≈ 𝑢

• Need to define a few quantities...
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The quantity 𝜃𝑖

• Assume computed solution to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies

𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞
= 𝜃𝑖𝑢

• 𝜃𝑖 depends on 𝐴, 𝑟𝑖, 𝑛, 𝑢, and the method of solving 
𝐴𝑑𝑖 = 𝑟𝑖
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The quantity 𝜇𝑖

• Traditional IR analyses use the bound: 𝐴(𝑥 −  𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞
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The quantity 𝜇𝑖

• Traditional IR analyses use the bound: 𝐴(𝑥 −  𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Need a tighter bound; define

𝐴(𝑥 −  𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Note that 𝜅∞ 𝐴 −1 ≤ 𝜇𝑖 ≤ 1
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The quantity 𝜇𝑖

• Traditional IR analyses use the bound: 𝐴(𝑥 −  𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Need a tighter bound; define

𝐴(𝑥 −  𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Note that 𝜅∞ 𝐴 −1 ≤ 𝜇𝑖 ≤ 1

𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞ = 𝐴(𝑥 −  𝑥𝑖) ∞ = 𝑏 − 𝐴 𝑥𝑖 ∞ = 𝑟𝑖 ∞
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The quantity 𝜇𝑖

• Traditional IR analyses use the bound: 𝐴(𝑥 −  𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Need a tighter bound; define

𝐴(𝑥 −  𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Note that 𝜅∞ 𝐴 −1 ≤ 𝜇𝑖 ≤ 1

𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞ = 𝐴(𝑥 −  𝑥𝑖) ∞ = 𝑏 − 𝐴 𝑥𝑖 ∞ = 𝑟𝑖 ∞

• For a stable solver, in early stages we expect

𝑟𝑖
𝐴  𝑥𝑖

≈ 𝑢 ≪
𝑥 −  𝑥𝑖

𝑥
𝜇𝑖 ≪ 1
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The quantity 𝜇𝑖

• Traditional IR analyses use the bound: 𝐴(𝑥 −  𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Need a tighter bound; define

𝐴(𝑥 −  𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

• Note that 𝜅∞ 𝐴 −1 ≤ 𝜇𝑖 ≤ 1

𝜇𝑖 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞ = 𝐴(𝑥 −  𝑥𝑖) ∞ = 𝑏 − 𝐴 𝑥𝑖 ∞ = 𝑟𝑖 ∞

• For a stable solver, in early stages we expect

𝑟𝑖
𝐴  𝑥𝑖

≈ 𝑢 ≪
𝑥 −  𝑥𝑖

𝑥

• But close to convergence, 
𝑟𝑖 ≈ 𝐴 𝑥 −  𝑥𝑖

𝜇𝑖 ≪ 1

𝜇𝑖 ≈ 1
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Theorem (C. & Higham, 2017)

Let IR in precisions 𝑢 and 𝑢2 be applied to a linear system 𝐴𝑥 = 𝑏 with 
nonsingular 𝐴 ∈ ℝ𝑛×𝑛 and a given approximate solution 𝑥0. Assume that the 
solver for the corrective term 𝑑𝑖 satisfies  𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞ = 𝜃𝑖𝑢. Then for 
𝑖 ≥ 0, the computed iterate  𝑥𝑖+1 satisfies

𝑥 −  𝑥𝑖+1 ∞ ≤ 2𝜇𝑖𝜅∞ 𝐴 𝑢 + 𝜃𝑖𝑢 𝑥 −  𝑥𝑖 ∞

+𝑛𝑢2 1 + 𝜃𝑖𝑢 𝐴−1 𝑏 + 𝐴  𝑥𝑖 ∞ + 𝑢  𝑥𝑖+1
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Theorem (C. & Higham, 2017)

Let IR in precisions 𝑢 and 𝑢2 be applied to a linear system 𝐴𝑥 = 𝑏 with 
nonsingular 𝐴 ∈ ℝ𝑛×𝑛 and a given approximate solution 𝑥0. Assume that the 
solver for the corrective term 𝑑𝑖 satisfies  𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞ = 𝜃𝑖𝑢. Then for 
𝑖 ≥ 0, the computed iterate  𝑥𝑖+1 satisfies

𝑥 −  𝑥𝑖+1 ∞ ≤ 2𝜇𝑖𝜅∞ 𝐴 𝑢 + 𝜃𝑖𝑢 𝑥 −  𝑥𝑖 ∞

+𝑛𝑢2 1 + 𝜃𝑖𝑢 𝐴−1 𝑏 + 𝐴  𝑥𝑖 ∞ + 𝑢  𝑥𝑖+1

As long as for all 𝑖,

2𝜇𝑖𝜅∞ 𝐴 𝑢 + 𝜃𝑖𝑢 < 1,

the error will contract until a limiting normwise relative error of order

2𝑛𝑢2 1 + 𝜃𝑢 cond 𝐴, 𝑥 + 𝑢

is achieved, where 𝜃 is an upper bound on the 𝜃𝑖 terms. 
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Theorem (C. & Higham, 2017)

Let IR in precisions 𝑢 and 𝑢2 be applied to a linear system 𝐴𝑥 = 𝑏 with 
nonsingular 𝐴 ∈ ℝ𝑛×𝑛 and a given approximate solution 𝑥0. Assume that the 
solver for the corrective term 𝑑𝑖 satisfies  𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞ = 𝜃𝑖𝑢. Then for 
𝑖 ≥ 0, the computed iterate  𝑥𝑖+1 satisfies

𝑥 −  𝑥𝑖+1 ∞ ≤ 2𝜇𝑖𝜅∞ 𝐴 𝑢 + 𝜃𝑖𝑢 𝑥 −  𝑥𝑖 ∞

+𝑛𝑢2 1 + 𝜃𝑖𝑢 𝐴−1 𝑏 + 𝐴  𝑥𝑖 ∞ + 𝑢  𝑥𝑖+1

As long as for all 𝑖,

2𝜇𝑖𝜅∞ 𝐴 𝑢 + 𝜃𝑖𝑢 < 1,

the error will contract until a limiting normwise relative error of order

2𝑛𝑢2 1 + 𝜃𝑢 cond 𝐴, 𝑥 + 𝑢

is achieved, where 𝜃 is an upper bound on the 𝜃𝑖 terms. 

≈ 𝑢 if 
cond 𝐴, 𝑥 𝑢 ≲ 1
(essentially indep. of 
𝜃 as long as 𝜃𝑢 < 1)



Theorem (C. & Higham, 2017)

Let IR in precisions 𝑢 and 𝑢2 be applied to a linear system 𝐴𝑥 = 𝑏 with 
nonsingular 𝐴 ∈ ℝ𝑛×𝑛 and a given approximate solution 𝑥0. Assume that the 
solver for the corrective term 𝑑𝑖 satisfies  𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞ = 𝜃𝑖𝑢. Then for 
𝑖 ≥ 0, the computed iterate  𝑥𝑖+1 satisfies

𝑥 −  𝑥𝑖+1 ∞ ≤ 2𝜇𝑖𝜅∞ 𝐴 𝑢 + 𝜃𝑖𝑢 𝑥 −  𝑥𝑖 ∞

+𝑛𝑢2 1 + 𝜃𝑖𝑢 𝐴−1 𝑏 + 𝐴  𝑥𝑖 ∞ + 𝑢  𝑥𝑖+1

As long as for all 𝑖,

2𝜇𝑖𝜅∞ 𝐴 𝑢 + 𝜃𝑖𝑢 < 1,

the error will contract until a limiting normwise relative error of order

2𝑛𝑢2 1 + 𝜃𝑢 cond 𝐴, 𝑥 + 𝑢

is achieved, where 𝜃 is an upper bound on the 𝜃𝑖 terms. 

𝜇𝑖𝜅∞ 𝐴 𝑢 < 1 (condition on iteration)
𝜃𝑖𝑢 < 1 (condition on solver, data)

≈ 𝑢 if 
cond 𝐴, 𝑥 𝑢 ≲ 1
(essentially indep. of 
𝜃 as long as 𝜃𝑢 < 1)



Standard (LU-based) iterative refinement 

• If 𝜅∞ 𝐴 > 𝑢−1, 𝜃𝑖𝑢 < 1 can not be guaranteed no matter how 
precision is used in the substitutions
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Standard (LU-based) iterative refinement 

• If 𝜅∞ 𝐴 > 𝑢−1, 𝜃𝑖𝑢 < 1 can not be guaranteed no matter how 
precision is used in the substitutions

• Assume that the solve  𝑑𝑖 =  𝑈−1 𝐿−1  𝑟𝑖 is carried out exactly:

𝐴 + Δ𝐴 =  𝐿 𝑈, Δ𝐴 ≤ 𝛾𝑛| 𝐿|| 𝑈|

 𝑑𝑖 =  𝑈−1 𝐿−1  𝑟𝑖 = 𝐴 + Δ𝐴 −1  𝑟𝑖

𝜃𝑖𝑢 =
 𝑑𝑖 − 𝑑𝑖 ∞

𝑑𝑖 ∞
≈

𝐴−1Δ𝐴𝑑𝑖 ∞

𝑑𝑖 ∞
≤ 𝛾𝑛 𝐴−1  𝐿  𝑈

∞
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Standard (LU-based) iterative refinement 

• If 𝜅∞ 𝐴 > 𝑢−1, 𝜃𝑖𝑢 < 1 can not be guaranteed no matter how 
precision is used in the substitutions

• Assume that the solve  𝑑𝑖 =  𝑈−1 𝐿−1  𝑟𝑖 is carried out exactly:

𝐴 + Δ𝐴 =  𝐿 𝑈, Δ𝐴 ≤ 𝛾𝑛| 𝐿|| 𝑈|

 𝑑𝑖 =  𝑈−1 𝐿−1  𝑟𝑖 = 𝐴 + Δ𝐴 −1  𝑟𝑖

𝜃𝑖𝑢 =
 𝑑𝑖 − 𝑑𝑖 ∞

𝑑𝑖 ∞
≈

𝐴−1Δ𝐴𝑑𝑖 ∞

𝑑𝑖 ∞
≤ 𝛾𝑛 𝐴−1  𝐿  𝑈

∞

at least as large as cond(𝐴), 
usually similar size to 𝜅∞(𝐴)
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GMRES-based iterative refinement

• To compute the updates 𝑑𝑖, apply GMRES to

 𝑈−1 𝐿−1𝐴𝑑𝑖 =  𝑈−1 𝐿−1𝑟𝑖

 𝐴  𝑟𝑖
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GMRES-based iterative refinement

• To compute the updates 𝑑𝑖, apply GMRES to

 𝑈−1 𝐿−1𝐴𝑑𝑖 =  𝑈−1 𝐿−1𝑟𝑖

 𝐴

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖
𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Standard IR:

 𝑟𝑖
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GMRES-based iterative refinement

• To compute the updates 𝑑𝑖, apply GMRES to

 𝑈−1 𝐿−1𝐴𝑑𝑖 =  𝑈−1 𝐿−1𝑟𝑖

 𝐴

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖
𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on  𝐴𝑑𝑖 =  𝑟𝑖

GMRES-IR:

 𝑟𝑖
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Extending GMRES backward stability results

• Backward error results for GMRES of Paige, Rozložník, Strakoš
(2006) can be extended to the left-preconditioned case
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Extending GMRES backward stability results

• Backward error results for GMRES of Paige, Rozložník, Strakoš
(2006) can be extended to the left-preconditioned case

• As long as within GMRES,  𝐴 (not explicitly formed) is applied to 
a vector with sufficient accuracy, 

𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞
= 𝜃𝑖𝑢 ≲ 𝛾𝑛𝜅∞(  𝐴)

see (C. & Higham, 2017)
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Extending GMRES backward stability results

𝜅∞
 𝐴 ≤ 1 + 𝛾𝑛 𝐴−1  𝐿  𝑈

∞

2
≪ 𝜅∞(𝐴)

• Backward error results for GMRES of Paige, Rozložník, Strakoš
(2006) can be extended to the left-preconditioned case

• As long as within GMRES,  𝐴 (not explicitly formed) is applied to 
a vector with sufficient accuracy, 

𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞
= 𝜃𝑖𝑢 ≲ 𝛾𝑛𝜅∞(  𝐴)

see (C. & Higham, 2017)
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Extending GMRES backward stability results

𝜅∞
 𝐴 ≤ 1 + 𝛾𝑛 𝐴−1  𝐿  𝑈

∞

2
≪ 𝜅∞(𝐴)

• Backward error results for GMRES of Paige, Rozložník, Strakoš
(2006) can be extended to the left-preconditioned case

• As long as within GMRES,  𝐴 (not explicitly formed) is applied to 
a vector with sufficient accuracy, 

𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞
= 𝜃𝑖𝑢 ≲ 𝛾𝑛𝜅∞(  𝐴)

see (C. & Higham, 2017)

(usually 𝜅∞(  𝐴) ≈ 1 + 𝜅∞ 𝐴 𝑢)
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Extending GMRES backward stability results

𝜅∞
 𝐴 ≤ 1 + 𝛾𝑛 𝐴−1  𝐿  𝑈

∞

2
≪ 𝜅∞(𝐴)

• Backward error results for GMRES of Paige, Rozložník, Strakoš
(2006) can be extended to the left-preconditioned case

• As long as within GMRES,  𝐴 (not explicitly formed) is applied to 
a vector with sufficient accuracy, 

𝑑𝑖 −  𝑑𝑖 ∞

𝑑𝑖 ∞
= 𝜃𝑖𝑢 ≲ 𝛾𝑛𝜅∞(  𝐴)

see (C. & Higham, 2017)

(usually 𝜅∞(  𝐴) ≈ 1 + 𝜅∞ 𝐴 𝑢)

⟹ Even if 𝜅∞ 𝐴 > 𝑢−1,  𝜃𝑖𝑢 < 1
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Numerical experiments

𝑢 = 2−53 (double), 𝑢2 = 2−113 (quad)

UFSMC matrix: oscil_dcop_06, 𝑛 = 430

cond 𝐴 = 2 ⋅ 1018, 𝜅∞ 𝐴 = 1 ⋅ 1021, 𝜅  𝐴 = 45

𝑏 = randn 𝑛, 1

Standard IR

GMRES-IR

Standard IR steps GMRES-IR steps GMRES its. 

− 2 7 (3,4)

𝜃𝑖𝑢 = 𝑑𝑖 −  𝑑𝑖 ∞
/ 𝑑𝑖 ∞𝑒𝑖 =  𝑥 −  𝑥𝑖 ∞ 𝑥 ∞ 𝜇𝑖

(∞)
=

𝐴 𝑥−  𝑥𝑖 ∞

𝐴 ∞ 𝑥−  𝑥𝑖 ∞
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Numerical experiments

𝑢 = 2−53 (double), 𝑢2 = 2−113 (quad)

UFSMC matrix: oscil_dcop_43, 𝑛 = 430

cond 𝐴 = 1 ⋅ 1018, 𝜅∞ 𝐴 = 8 ⋅ 1020, 𝜅  𝐴 = 2.1

𝑏 = randn 𝑛, 1

Standard IR

GMRES-IR

Standard IR steps GMRES-IR steps GMRES its. 

− 3 10 (2,4,4)

𝜃𝑖𝑢 = 𝑑𝑖 −  𝑑𝑖 ∞
/ 𝑑𝑖 ∞𝑒𝑖 =  𝑥 −  𝑥𝑖 ∞ 𝑥 ∞ 𝜇𝑖

(∞)
=

𝐴 𝑥−  𝑥𝑖 ∞

𝐴 ∞ 𝑥−  𝑥𝑖 ∞
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Numerical experiments

𝑢 = 2−53 (double), 𝑢2 = 2−113 (quad)

UFSMC matrix: mhda416, 𝑛 = 416

cond 𝐴 = 1 ⋅ 1019, 𝜅∞ 𝐴 = 2 ⋅ 1025, 𝜅  𝐴 = 7 ⋅ 109

𝑏 = randn 𝑛, 1

Standard IR

GMRES-IR

Standard IR steps GMRES-IR steps GMRES its. 

5 2 3 (1,2)

𝜃𝑖𝑢 = 𝑑𝑖 −  𝑑𝑖 ∞
/ 𝑑𝑖 ∞𝑒𝑖 =  𝑥 −  𝑥𝑖 ∞ 𝑥 ∞ 𝜇𝑖

(∞)
=

𝐴 𝑥−  𝑥𝑖 ∞

𝐴 ∞ 𝑥−  𝑥𝑖 ∞
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Two-Stage IR

• Sometimes standard (LU-based) IR converges despite 𝜅∞ 𝐴 > 𝑢−1

• Cheaper than GMRES-IR per refinement step

• But hard to predict 
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• Cheaper than GMRES-IR per refinement step

• But hard to predict 

• Two-Stage IR

• Solve 𝐴𝑥0 = 𝑏 by LU factorization

• Attempt standard IR

• If convergence is slow, or divergence, switch to GMRES-IR 
(making use of existing LU factorization)

• Decision to switch can be based on, e.g., stopping criteria for 
forward error of Demmel et al. (2006)

• Future work...
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Extensions

• Pivoting

• common to use pivoting strategy to minimize fill

• static pivoting, threshold pivoting

• Incomplete LU factorizations

• As long as 𝜅∞
 𝐴 𝑢 < 1, 𝜃𝑖𝑢 < 1, so expect refinement process to 

converge 

• Other solvers

• Left-preconditioned, unrestarted GMRES used here for theoretical 
purposes

• In practice, many potential modifications may improve 
performance while still resulting in IR convergence

• Restarted GMRES

• Right, split preconditioned GMRES, FGMRES

• Other Krylov subspace methods (not necessarily backward 
stable)

16



Extensions II: Iterative refinement in 3 precisions

• Emerging architectures feature built-in support for multiprecision
computation, rising interest in low-precision storage and computation 
(performance and energy savings!)
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computation, rising interest in low-precision storage and computation 
(performance and energy savings!)

• Half precision (FP16) defined as storage format in 2008 IEEE standard

• Intel Ivy bridge, 2012: supports half precision for storage

• NVIDIA Tesla P100, 2016: native hardware ISA support for 16-bit FP 
arithmetic

• TSUBAME3.0 supercomputer, 2017: projected 12.2 double-precision 
petaflops, 64.3 half-precision petaflops

• Intel Xeon Phi (Knights Mill), 2017: will support 16-bit FP

• Google Tensorflow processor (TPU): quantizes 32-bit FP computations 
into 8-bit arithmetic

• Can we use lower precision in the most expensive part of solving 𝐴𝑥 = 𝑏
using IR (the LU factorization) and still obtain accurate solutions?

• Three precisions: 

𝑢𝑓 = factorization precision, 𝑢 = working precision,   𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟 17



Extensions II: Iterative refinement in 3 precisions

• Existing analyses:

• Wilkinson (1963): fixed-point arithmetic.

• Moler (1967): floating-point arithmetic.

• Higham (1997, 2002): more general analysis for arbitrary solver.

• Langou et al. (2006): lower precision LU.

• All the above support at most two precisions and require 𝜅∞ 𝐴 𝑢 < 1.
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• Moler (1967): floating-point arithmetic.

• Higham (1997, 2002): more general analysis for arbitrary solver.

• Langou et al. (2006): lower precision LU.

• All the above support at most two precisions and require 𝜅∞ 𝐴 𝑢 < 1.

SSD
DDQ
HHS

HHD
HHQ
SSQ

SSS
DDD

HHH

SDD
HSS
DQQ

HDD
HQQ
SQQ

HSD
HSQ
HDQ
SDQ

Traditional 
Wilkinson 
(1948)

New analysis generalizes and extends existing types of IR: (𝑢𝑓 , 𝑢, 𝑢𝑟)

70s/80s
Skeel (1980)
Jankowski and 
Wozniakowski
(1977)

2000s
Dongarra, 
Langou et 
al. (2006)

New
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Extensions II: Iterative refinement in 3 precisions

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓, if 

𝜙𝑖 = 2𝒖𝒇 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒇𝜃𝑖

is sufficiently less than 1, then the forward error is reduced on the 𝑖th
iteration by a factor ≈ 𝜙𝑖 until an iterate  𝑥 is produced for which

𝑥 −  𝑥 ∞

𝑥 ∞
≲ 4𝑛𝒖𝒓cond 𝐴, 𝑥 + 𝒖.

Theorem (C. & Higham, 2017)

• Analogous standard bounds would have 𝜇𝑖 = 1, 𝑢𝑓𝜃𝑖 = 𝜅∞ 𝐴 𝑢
19



Extensions II: Iterative refinement in 3 precisions

Backward error

𝑢𝑓 𝑢 𝑢𝑟 𝜅∞(𝐴) norm comp Forward error

H S S 104 S S cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 S S S

H D D 104 D D cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 D D D

S S S 108 S S cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 S S S

S D D 108 D D cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 D D D

Standard (LU-based) IR in three precisions:
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benefit of three precisions vs. 𝑢𝑓 ≥ 𝑢, 𝑢 = 𝑢𝑟: no cond(A,x) term in forward error
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If 𝜅∞ 𝐴 ≤ 104, can use lower precision factorization with no loss of accuracy! 
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If 𝜅∞ 𝐴 ≤ 1012, can use lower precision factorization with no loss of accuracy! 



Numerical experiments

𝑢𝑓 = 2−11 (half), 𝑢 = 2−24 (single), 𝑢𝑟 = 2−53 (double)

A = gallery('randsvd',100,kappa,2)

b = randn(100,1)

𝜅∞ 𝐴 = 2 ⋅ 102

𝜅∞
 𝐴 = 14

GMRES its: 11 (5,6) 

21



Numerical experiments

𝑢𝑓 = 2−11 (half), 𝑢 = 2−24 (single), 𝑢𝑟 = 2−53 (double)

A = gallery('randsvd',100,kappa,2)

b = randn(100,1)

𝜅∞ 𝐴 = 2 ⋅ 102

𝜅∞
 𝐴 = 14

GMRES its: 11 (5,6) 

𝜅∞ 𝐴 = 2 ⋅ 106

𝜅∞
 𝐴 = 8 ⋅ 106

GMRES its: 40 (7,24,9) 

21



Numerical experiments

𝑢𝑓 = 2−11 (half), 𝑢 = 2−24 (single), 𝑢𝑟 = 2−53 (double)

A = gallery('randsvd',100,kappa,2)

b = randn(100,1)

𝜅∞ 𝐴 = 2 ⋅ 102

𝜅∞
 𝐴 = 14

GMRES its: 11 (5,6) 

𝜅∞ 𝐴 = 2 ⋅ 106

𝜅∞
 𝐴 = 8 ⋅ 106

GMRES its: 40 (7,24,9) 

21



GMRES convergence rate

• If LU factorization is computed in lower precision, can diminish 
effectiveness as a preconditioner

• Theory only guarantees that GMRES will converge to an accurate solution 
within 𝑛 iterations

• If close to 𝑛 iterations, no expected performance benefit
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GMRES convergence rate

• If LU factorization is computed in lower precision, can diminish 
effectiveness as a preconditioner

• Theory only guarantees that GMRES will converge to an accurate solution 
within 𝑛 iterations

• If close to 𝑛 iterations, no expected performance benefit

• If  𝐴 is nonnormal, spectrum of  𝐴 is irrelevant to GMRES convergence rate 
(Greenbaum, Pták, Strakoš, 1996)

• If  𝐴 is normal, spectrum of  𝐴 determines GMRES convergence rate (Liesen
& Tichý, 2004)

• But small 𝜅∞(  𝐴) may not mean fast GMRES convergence 

• e.g., if  𝐴 has a cluster of eigenvalues close to the origin

⇒ Can only make guarantees on fast GMRES convergence in some cases, e.g., 
normality and no eigenvalue cluster near origin 

• Potential fixes for slow GMRES convergence: apply additional 
preconditioner, deflation, other Krylov subspace methods
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Resources:

• E. Carson and N. J. Higham. A new analysis of iterative 
refinement and its application to accurate solution of ill-
conditioned sparse linear systems. MIMS EPrint 2017.12.

• E. Carson and N. J. Higham. Accelerating the solution of linear 
systems by iterative refinement in three precisions. MIMS 
EPrint 2017.24.

• MATLAB code for iterative refinement in 3 precisions: 
https://github.com/eccarson/ir3/

Thank you!
erinc@cims.nyu.edu

http://math.nyu.edu/~erinc/

http://eprints.ma.man.ac.uk/2537/01/covered/MIMS_ep2017_12.pdf
http://eprints.ma.man.ac.uk/2562/01/paper.pdf
https://github.com/eccarson/ir3/









