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Floating Point Formats

2

exponent (11 bits) fraction (52 bits)

IEEE double (FP64)

IEEE single (FP32)

IEEE half (FP16)

exponent (8 bits) fraction (23 bits)

exponent (5 bits) fraction (10 bits)

−1 sign × 2(exponent−offset) × 1. fraction

size range 𝑢

fp64 64 bits 10±308 1 × 10−16

fp32 32 bits 10±38 6 × 10−8

fp16 16 bits 10±5 5 × 10−4

bfloat16 16 bits 10±38 4 × 10−3

exponent (8 bits) fraction (7 bits)

bfloat16



Hardware Support for Multiprecision Computation
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• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017: 

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision; 

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU)

• NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16, 
FP64, Binary, INT4, INT8, bfloat16

• NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores 

• Future exascale supercomputers: (~2021) Expected extensive support for 
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:



Performance of LU factorization on an NVIDIA V100 GPU

4[Haidar, Tomov, Dongarra, Higham, 2018]



“Exascale”: An exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the HPL 
(LINPACK) benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial 
pivoting in double precision (FP64)
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“Exascale”: An exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the HPL 
(LINPACK) benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial 
pivoting in double precision (FP64)

• HPL benchmark is typically a compute-bound problem ("BLAS-3")

• Not a good indication of performance for a large number of applications!

• Lots of remaining work even after exascale performance is achieved

• Has led to incorporation of other benchmarks into the TOP500 ranking

• e.g., HPCG: Solving sparse 𝐴𝑥 = 𝑏 iteratively using the conjugate 
gradient method
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“Exascale”: An exaflop of what?

• HPL doesn’t make use of modern mixed precision hardware

• We can already achieve “exaflop” performance today if we allow for mixed 
precision computations
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https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/



“Exascale”: An exaflop of what?

• HPL doesn’t make use of modern mixed precision hardware

• We can already achieve “exaflop” performance today if we allow for mixed 
precision computations

=>HPL-MxP: A new mixed precision benchmark
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https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/



HPL-MxP Benchmark

• Highlights confluence of HPC+AI workloads

• Like HPL, solves dense Ax=b, results still to double precision accuracy

• Achieves this via mixed-precision iterative refinement

• may be implemented in a way that takes advantage of the current 
and upcoming devices for accelerating AI workloads

7



HPL-MxP Benchmark
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More information: https://icl.bitbucket.io/hpl-ai/
Reference implementation: https://bitbucket.org/icl/hpl-ai/src/

https://icl.bitbucket.io/hpl-ai/
https://bitbucket.org/icl/hpl-ai/src/


HPL-MxP Benchmark
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https://hpl-mxp.org/
https://bitbucket.org/icl/hpl-ai/src/


HPL-MxP Benchmark

8
More information: https://icl.bitbucket.io/hpl-ai/
Reference implementation: https://bitbucket.org/icl/hpl-ai/src/

https://icl.bitbucket.io/hpl-ai/
https://bitbucket.org/icl/hpl-ai/src/


Mixed precision in NLA

• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018] 

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., 
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], 
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015] 

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, 
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, 
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et 
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

9For survey and references, see [Abdelfattah et al., IJHPC, 2021], [Higham, Mary, 2022]



Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]
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• Lose something small when computing: 𝑓𝑙 𝑥 op 𝑦 = 𝑥 op 𝑦 1 + 𝛿 , 𝛿 ≤ 𝑢

Does it matter?
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Inexact computations

• In real computations we have many sources of 
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve 
performance

• Reduced models, Low-rank 
representations, sparsification, 
randomization

11

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈



Inexact computations

• In real computations we have many sources of 
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve 
performance

• Reduced models, Low-rank 
representations, sparsification, 
randomization

• Given that we are already working with so much 
inexactness, does it matter if we use lower 
precision?
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• Analysis of accuracy in techniques that use intentional approximation almost 
always assume that roundoff error is small enough to be ignored

• Is this true? Is it true even if we use low precision?

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈



Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘
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Σ 𝑉𝑇
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Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘
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𝐴
Ω

𝑌 𝑄

𝑅 𝐵 ෩𝑈 Σ 𝑉𝑇

𝑈

=
𝑄𝑇

𝐴

=

𝑄

෩𝑈=

=
=

• Randomized SVD:

𝐴 𝑈

Σ 𝑉𝑇

≈

Assuming exact arithmetic:

If 𝑄 satisfies 𝐴 − 𝑄𝑄𝑇𝐴 ≤ 휀, then 𝐴 − 𝑈Σ 𝑉𝑇 ≤ 휀



What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

𝑈, መ𝑆, 𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

𝑈𝑑, መ𝑆𝑑 , 𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

𝑈ℎ, መ𝑆ℎ, 𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision
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Mode 3: Geometrically distributed singular values 

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − 𝑈 መ𝑆 𝑉𝑇
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Example: Low-Rank Approximation

• Block low-rank approximation and 
hierarchical matrix representations arise in a 
variety of applications

14

𝐴 ሚ𝐴

• Work on mixed and low precision in block low-rank computations

• [Higham, Mary, 2019]: block low-rank LU factorization preconditioner that 
exploits numerically low-rank structure of the error for LU computed in low 
precision

• [Higham, Mary, 2019]: Interplay of roundoff error and approximation error in 
solving block low-rank linear systems using LU

• [Buttari, et al., 2020]: block low-rank single precision coarse grid solves in 
multigrid 

• [Amestoy et al., 2021]: Mixed precision low rank approximation and application 
to block low-rank LU factorization



Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation 
of A should also be SPD!

𝐴 ሚ𝐴
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Inverse multiquadratic kernel:
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Positive definiteness lost!
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Example: Iterative Methods
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A = diag(linspace(.001,1,100));

b = ones(n,1);



Example: Iterative Methods
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b = ones(n,1);

𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 1

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 (0.65)𝑛−𝑖 , 𝑖 = 2,… , 𝑛 − 1



Takeaway

• Low precision can have massive performance benefits but must be used 
with caution!

• Many opportunities for using mixed and low precision computation in 
scientific applications

• Need to develop a theoretical understanding of how mixed precision 
algorithms behave; need to revisit analyses of algorithms and techniques 
that ignore finite precision

17



Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

18

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏
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[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision 
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1, 
• relative forward error is 𝑂 𝑢
• relative normwise and componentwise backward errors are 𝑂(𝑢)

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]
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𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1, 
• relative forward error is 𝑂(𝑢)𝐜𝐨𝐧𝐝 𝑨, 𝒙
• relative normwise and componentwise backward errors are 𝑂(𝑢)
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cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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(in precision 𝑢1/2)

(in precision 𝑢)
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[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
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Iterative Refinement for 𝐴𝑥 = 𝑏
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Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝒖−𝟏/𝟐, 
• relative forward error is 𝑂(𝑢)cond 𝐴, 𝑥
• relative normwise and componentwise backward errors are 𝑂(𝑢)

18



Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

𝑢𝑓 = factorization precision, 𝑢 = working precision,   𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

𝒖𝒔 is the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

3-precision iterative refinement [C. and Higham, 2018]
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Key Aspects of Analysis I

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:
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Key Aspects of Analysis I

𝜇𝑖 ≪ 1

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖:   𝐴(𝑥 − ො𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 ො𝑥𝑖

≈ 𝑢 ≪
𝑥 − ො𝑥𝑖
𝑥
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Key Aspects of Analysis I

𝜇𝑖 ≪ 1

𝜇𝑖 ≈ 1

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖:   𝐴(𝑥 − ො𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 ො𝑥𝑖

≈ 𝑢 ≪
𝑥 − ො𝑥𝑖
𝑥

But close to convergence, 
𝑟𝑖 ≈ 𝐴 𝑥 − ො𝑥𝑖
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Key Aspects of Analysis II

21

Allow for general solver:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇



Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:
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example: LU solve: 
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Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve: 
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∞

𝐴 ∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

21𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔
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Allow for general solver:
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by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠
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Key Aspects of Analysis II

Allow for general solver:

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve: 

𝒖𝒔 = 𝒖𝒇

𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 𝐿 𝑈

∞

𝐴 ∞

3.    Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2.   Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐿 𝑈
∞
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a 
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

22



Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

Analogous traditional bounds: 𝜙𝑖 ≡ 3𝑛𝒖𝒇𝜅∞ 𝐴

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a 
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is less than 1, then the residual is reduced on the 𝑖th iteration by a factor 
≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑏 − 𝐴ො𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞ ො𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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IR3: Summary

24

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16



IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

LP fact. 

LP fact. 

LP fact. 
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IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)
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IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error
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Backward error
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IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34
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Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower  
precision factorization w/no loss of accuracy! 
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A = gallery('randsvd', 100, 1e3)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 1e4

25

100

Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e7)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 7e7

25

100

Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10
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Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10
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Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

25

100

Standard (LU-based) IR with    𝒖𝒇: double,  𝒖: double,   𝒖𝒓: quad



GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.
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GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖
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ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖
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for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖
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𝒖𝒔 = 𝒖
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• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 
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Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad
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A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞ ሚ𝐴 ≈ 2e4



A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞ ሚ𝐴 ≈ 2e4

27

100

GMRES-IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad

Number of GMRES iterations: (2,3)



GMRES-IR: Summary

Benefits of GMRES-IR:

28

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16
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GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, low precision factorization will work for higher 𝜅∞(𝐴)
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ As long as 𝜅∞ 𝐴 ≤ 1012, can use half precision factorization and still obtain 
double precision accuracy!
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Performance Results (MAGMA)

29

• [Haidar, Tomov, Dongarra, Higham, 2018]
• 2-precision GMRES-IR approach (𝑢 = 𝑢𝑟) on NVIDIA V100
• IR run to FP64 accuracy, max 400 iterations in GMRES
• Tflops/s measured as (2𝑛3/3)/time
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Performance Results

30

[Haidar, Tomov, Dongarra, Higham, 2018]

Performance for Matrices from SuiteSparse

2.8×
2.3×
2.6×
2.7×
4.1×



GMRES-IR in Libraries and Applications

• MAGMA: Dense linear algebra routines for heterogeneous/hybrid 
architectures

• NVIDIA’s cuSOLVER Library

• In production codes: FK6D/ASGarD code (Oak Ridge National Lab, USA) 
for tokomak containment problem

31



Comments and Caveats I

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps
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Comments and Caveats I

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• What about overflow, underflow, subnormal numbers?

• Sophisticated scaling methods can help avoid this

• “Squeezing a Matrix into Half Precision, with an Application to Solving 
Linear Systems” [Higham, Pranesh, Zounon, 2019]

32



Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it 
can be a poor preconditioner

• e.g., if (normal) ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can 
stagnate until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling [C., Oktay, 2022], using 
additional preconditioner

33



Performance Results (MAGMA)

33

• [Haidar, Tomov, Dongarra, Higham, 2018]



Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it 
can be a poor preconditioner

• e.g., if (normal) ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can 
stagnate until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling [C., Oktay, 2022], using 
additional preconditioner

• Depending on conditioning of 𝐴, applying ሚ𝐴 to a vector must be done accurately 
(precision 𝒖2) in each GMRES iteration 

• Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

• For GMRES entirely in precision 𝒖,

33
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Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it 
can be a poor preconditioner

• e.g., if (normal) ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can 
stagnate until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling [C., Oktay, 2022], using 
additional preconditioner

• Depending on conditioning of A, applying ሚ𝐴 to a vector must be done accurately 
(precision 𝒖2) in each GMRES iteration 

• Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

• For GMRES entirely in precision 𝒖,

• Why GMRES? 

• Theoretical purposes: existing analysis and proof of backward stability [Paige, 
Rozložník, Strakoš, 2006]

• In practice, use any solver you want! 
33
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• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Least Squares Iterative Refinement
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=
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Least Squares Iterative Refinement
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Least Squares Iterative Refinement

ሚ𝐴 𝑥 = ෨𝑏
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Least Squares Iterative Refinement

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

ሚ𝐴 𝑥 = ෨𝑏

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖
Results for 3-precision 
IR for linear systems 
also applies to least 
squares problems! 

34See [C., Higham, Pranesh, 2020]



• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use approximate preconditioners (ILU, 
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• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use approximate preconditioners (ILU, 
SPAI, etc.)

• [Amestoy et al., 2022]

• Analysis of block low-rank (BLR) LU within GMRES-IR 

• Analysis of use of static pivoting in LU within GMRES-IR

• [C., Khan, 2023]

• Analysis of sparse approximate inverse (SPAI) 
preconditioners within GMRES-IR

GMRES-IR with Inexact Preconditioners
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Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜺

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜺

break;

Else

add select nonzeros to 𝐽, repeat. 

SPAI Preconditioners
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Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜺

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜺

break;

Else

add select nonzeros to 𝐽, repeat. 

Benefits: Highly parallelizable

But construction can still be costly, esp. for large-scale problems

[Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tůma, 1999], [He, Yin, Gao, 2020]

SPAI Preconditioners



SPAI Preconditioners in Low Precision

What is the effect of using low precision in SPAI construction?

Notes and assumptions:

• We will assume that the SPAI construction is performed in some precision 𝒖𝒇

• We will denote quantities computed in finite precision with hats

• In our application, we want a left preconditioner, so we will run the algorithm 
on 𝐴𝑇 and set 𝑀 ← 𝑀𝑇.

• We will assume that the QR factorization of the submatrix of 𝐴𝑇 is computed 
fully using HouseholderQR/TSQR
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SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝒖𝒇 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜺, with Ƹ𝑟𝑘 = 𝑓𝑙𝒖𝒇(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?
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1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝒖𝒇 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜺, with Ƹ𝑟𝑘 = 𝑓𝑙𝒖𝒇(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?

2. Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern 

as 𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?
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SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS 
problems, we have

Ƹ𝑟𝑘 2 ≤ 𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜺, we 
need

𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜺.
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Using standard rounding error analysis and perturbation results for LS 
problems, we have

Ƹ𝑟𝑘 2 ≤ 𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜺, we 
need

𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜺.

→ problem must not be so ill-conditioned WRT 𝒖𝒇 that we incur an error 
greater than 𝜺 just computing the residual
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SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜺𝒖𝒇
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.
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such that 
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Confirms intuition: The more approximate the inverse, the lower the 
precision we can use. 
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SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜺𝒖𝒇
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.

Another view: with a given matrix 𝐴 and a given precision 𝒖𝒇, one must set 𝜺
such that 

𝜺 ≥ 𝒖𝒇cond2 𝐴𝑇 .

Confirms intuition: The more approximate the inverse, the lower the 
precision we can use. 

Resulting bounds for 𝑀: 

𝐼 − 𝐴𝑇 𝑀𝑇
𝐹
≤ 2 𝑛𝜺,           𝐼 − 𝑀𝐴

∞
≤ 2𝑛𝜺
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Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in 𝑀?

41
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Second Question

Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern as 

𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?
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Second Question

Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern as 

𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?

In this case, we obtain the bound

𝐼 − 𝑀𝐴
∞
≤ 𝑛 𝜺 + 𝑛 Τ7 2𝒖𝒇𝜅∞ 𝐴 .

→ If 𝜅∞ 𝐴 ≫ 𝜺𝒖𝒇
−1, then computed 𝑀 with same sparsity structure as 𝑀 can 

be of much lower quality. 
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SPAI-GMRES-IR

SPAI-GMRES-IR

To compute the updates 𝑑𝑖, apply GMRES to   𝑀𝐴𝑑𝑖 = 𝑀𝑟𝑖

Solve 𝑀𝐴𝑥0 = 𝑀𝑏

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on 𝑀𝐴𝑑𝑖 = 𝑀𝑟𝑖
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Low Precision SPAI within GMRES-IR

Using 𝑀 computed in precision 𝒖𝒇, for the preconditioned system ሚ𝐴 = 𝑀𝐴,

𝜅∞ ሚ𝐴 ≲ 1 + 2𝑛𝜺 2.

44
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.

If 휀 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.

If 휀 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 

Compared to GMRES-IR with full LU factorization, in general expect slower 
convergence, but much sparser preconditioner. 
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SPAI-GMRES-IR Example

46

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103
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SPAI-GMRES-IR Example

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, double, quad)

nnz(𝑀) = 2,248 46nnz(𝐿 + 𝑈) = 13,765

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



47

Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103

Is there a point in using precision higher than that dictated by 𝒖𝒇cond2 𝐴𝑇 ≤ 𝜺?

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (half, single, double)
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Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (half, single, double)

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.2𝑒 + 02 26801 69 (32, 37)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7529 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, single, double)

Is there a point in using precision higher than that dictated by 𝒖𝒇cond2 𝐴𝑇 ≤ 𝜺?

Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103



Related and Current Work

• Multistage mixed precision iterative refinement 
[Oktay, C., 2021]

If IR not converging, first try changing the solver before increasing precision

• Low-precision randomized preconditioners
[C., Daužickaitė, 2022]

Single-pass Nystrӧm can be run in precision 𝑢𝑝 ≈
𝜆𝑘+1

𝑛𝜆1
without affecting the 

quality of limited memory preconditioner.

• Low-precision in ILU-type preconditioners
What can we prove?
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The rise of multiprecision hardware
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double, quad
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The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single, 
double, quad

• New, non-IEEE compliant floating point formats will appear in 
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

• Lower-precision arithmetic is faster and more energy efficient, but the 
potential for its use depends heavily on the particular problem and 
algorithm

• Critical to determine when and where we can exploit lower-precision 
hardware to improve performance
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Thank you!
carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/


