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The Conjugate Gradient (CG) Method
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Cost Per lteration

— Sparse matrix-vector multiplication (SpMV) |
* 0(nnz) flops
. . . . R X
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)
* Must read A/vector from slow memory

— Inner products
* O(N) flops
* global synchronization (MPI _Allreduce) —
* all processors must exchange data and wait for a
all communication to finish before proceeding
* Multiple reads/writes to slow memory

SpMV
Low computation/communication ratio
e

orthogonali = Performance is communication-bound




Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

* Early work: CG with a single synchronization point per iteration
* 3-term recurrence CG
» Using modified computation of recurrence coefficients

* Using auxiliary vectors

* Pipelined Krylov subspace methods
* Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration
* Modifications also allow decoupling of SpMV and inner products - enables
overlapping (MPI non-blocking collectives)

* s-step Krylov subspace methods
« Compute iterations in blocks of s using a different Krylov subspace basis

* Enables one synchronization per s iterations
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Key observation: After iteration i, for j € {0,.., s},

Xivj — Xiy Tigjo Divj € HKsp1(A,p)) +HKs(A,17)

s steps of s-step CG:

Expand solution space s dimensions at once

Compute “basis’ matrix Y such that span(Y) = K,.,(4,p;) + K (A, 1;) according to
the recurrence AY =Y B

Compute inner products between basis vectors in one synchronization

G=Y"y

Compute s iterations of vector updates
Perform s iterations of vector updates by updating coordinates in basis Y:

Xivj — X =Yxj, 1y =Yri,  pij=Yp;j



For s iterations of updates, inner products and SpMVs (in basis Y) can be
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For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiyj = AlYp; = Y(Bpj)
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For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:
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For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiyj = AlYp; = Y(Bpj)
n
e
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o =b—Axo,po =1 Outer Loop
for k = 0:nmax/s
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The effects of finite precision

Well-known that roundoff error has two

—— CG (double).

effects:
_ 107
=
1. Delay of convergence @
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* Residuals no longer orthogonal -
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2. Loss of attainable accuracy A: besstk03 from SuiteSparse,

* Rounding errors cause true b: equal components in the eigenbasis of 4,||b|| = 1
residual b — Ax; and updated N =112,k(A) =~ 7e6

residual 7; deviate!

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG
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Lanczos Convergence Analysis [Paige, 1976]

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)

A~

AV, = Vme + ﬁm+1ﬁm+1e‘r77; + 5I7m A
@, f
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Classical Lanczos (Paige, 1976):
g9 = 0(en)
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Lanczos Convergence Analysis [Paige, 1976]

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)
AVm — Vme + .Bm+1ﬁm+1e‘r];1 + 5I7m A
_&1 ﬂZ

b2

fori € {1,..,m},
1671l < €10

2. oD where o = ||A]|,, and
,Bi+1|17i Vi+1 | < 2&0 1All,

AT  ~ Oo = |||A
A |}7;'T+1vi+1 -1 | < &/2 Al
B2 + @7 + B7 — 1AD;113] < 4i(3eo + £1)0?
Classical Lanczos (Paige, 1976): s-step Lanczos (C., 2015):
&9 = 0(en) g = 0(enl?)
g1 = 0(eN0) g, = 0(eNomIN)

' =max [|[U],
na Y 2 - 1Yl



Paige's Results for Classical Lanczos (1980)

Using bounds on local rounding errors in Lanczos, showed that

1.

The computed eigenvalues always lie between the extreme eigenvalues of
A to within a small multiple of machine precision.

At least one small interval containing an eigenvalue of A is found by the
nth iteration.

The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue approximation is found.

The loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some computed eigenvalues have converged.

10



Results for s-step Lanczos

* Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for s-step Lanczos?

* The answer is YES! ...but
* Only if:
e g9 = 2e(n+11s+15)T? < —2

- ie, I'<(24e(n+11s+15)) Ve =0 (\/%)

11
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Results for s-step Lanczos

* Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for s-step Lanczos?

e The answer is YES! ...but

 With the additional caveat:

* Paige's results say: orthogonality is not lost until an eigenvalue
has stabilized to within O(¢) of an eigenvalue of A

* For s-step Lanczos: orthogonality is not lost until an eigenvalue
has stabilized to within 0(cI'?) of an eigenvalue of A
* So the result is weaker: an eigenvalue is considered to be

“stabilized” within a larger radius for the s-step case, and thus
orthogonality is lost sooner

* This explains the worse convergence behavior! ;



The case for extended precision

 The term I" enters the bounds due to computation in the computed s-step
basis

 SpMVs cause I' terms in the bounds

* Inner products (computed using the Gram matrix) cause I'* terms in
the bounds

* ldea: use extended precision in computing and applying the Gram matrix

» Computation only happens once every s iterations (doubles the size of
the Allreduce)

« Applying to vector happens every iteration, but the matrix is very small
(sxs, fits in cache)

12



Mixed Precision Lanczos Analysis

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)

A~
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fori € {1,...,m},
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Classical Lanczos s-step Lanczos
(Paige, 1976): (C., 2015):
_ 2
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Mixed Precision Lanczos Analysis

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)

AVm — Vme + .Bm+1ﬁm+1e‘r];1 + 5I7m

fori € {1,..,m},
16D;ll, < €10
Biva|0f Diva | < 2690
|ﬁ;'r+1ﬁi+1 —1 | < &/2

B + al + B — lAD;113] < 4i(3gy + &)0?

Classical Lanczos s-step Lanczos
(Paige, 1976): (C., 2015):
g0 = 0(en) gy = 0(enl'?)
g, = 0(eN6) g, = 0(eNoT)

' =max [|[U], -
na: Y7 2 - 1Yelll2

_&1 ﬂZ

b2

T = . A

where o = ||4]|,, and
0o = [||Alll,

Mixed precision s-step
Lanczos (C., Gergelits,
Yamazaki, 2021):

gy = 0(elN)
g1 = 0(eNOT)



Mixed precision s-step Lanczos analysis

Classical Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within
O(¢€) of an eigenvalue of A

Uniform precision s-step Lanczos: orthogonality is not lost until an eigenvalue has
stabilized to within O(&l'*) of an eigenvalue of A

Results hold if T < 0 (\/i_)

ne
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Mixed precision s-step Lanczos analysis

Classical Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within
O(¢€) of an eigenvalue of A

Uniform precision s-step Lanczos: orthogonality is not lost until an eigenvalue has
stabilized to within O(&l'*) of an eigenvalue of A

Results hold if T < 0 (\/i_)

ne

Mixed precision s-step Lanczos: orthogonality is not lost until an eigenvalue has
stabilized to within O(€I') of an eigenvalue of A

Results hold if T < 0( )

1
ne

= For mixed precision case, expect orthogonality (and thus convergence behavior) to
be somewhere between classical and (uniform precision) s-step Lanczos

= Expect mixed precision algorithm can handle more ill-conditioned bases versus
uniform precision algorithm

14



Extension to s-step CG

» s-step CG based on underlying s-step Lanczos procedure

» Better Ritz value accuracy and orthogonality in s-step Lanczos — better
convergence behavior of mixed precision s-step CG
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Extension to s-step CG

» s-step CG based on underlying s-step Lanczos procedure

» Better Ritz value accuracy and orthogonality in s-step Lanczos — better
convergence behavior of mixed precision s-step CG

* But: extended precision computations in Gram matrix computations will not
improve attainable accuracy

* determined by precision in matrix-vector products

* Greenbaum (1989): finite precision classical CG behaves like exact CG
applied to a larger matrix whose eigenvalues are in tight clusters around the
eigenvalues of A.

* Can we extend this analysis?

* Prediction: Cluster radius will contain a I'? term for the uniform
precision case, I' term for the mixed precision case

15



Classical Lanczos

O(WellAll)
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Classical Lanczos

O(WellAll)
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Uniform precision s-step Lanczos
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O(WellAllT)

mixed precision s-step Lanczos

Classical Lanczos

O(WellAll)

O (VellAllT*)

Uniform precision s-step Lanczos
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What is the overhead?

« 3D Laplace matrix with n = 1003 [Yamazaki, C., Kelley, 2022]
* 500 iterations of s-step CG with s = 50n an NVIDIA V100 GPU

* Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes C = aATB + BC
* Do not compute multiplication with a (= 1)
* Only compute upper triangular part of C since symmetric
* Input cast to double before being passed in

0al B orthogonalization
' total
035
03r
L past
)
E 021 0.177 0.178
015
01r
D'DE' -
0
Al Al
\é‘*"‘dﬁ ﬁﬂﬁﬁe
o 3@
o f}‘@'\ﬂ
&
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What is the overhead?

« 3D Laplace matrix with n = 1003 [Yamazaki, C., Kelley, 2022]
* 500 iterations of s-step CG with s = 50n an NVIDIA V100 GPU

* Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes C = aATB + BC
* Do not compute multiplication with a (= 1)
* Only compute upper triangular part of C since symmetric
* Input cast to double before being passed in

* Double/double-double: Software ' — | ' '
implementation of double-double 041 -:::gf}gmahzatm | 0.394
(inner products require 17-21.5x more 035 i
flops) 03l |

» SinceKokkos does not support ~ |
double-double arithmetic, our }';D'ZE' i
implementation uses a custom E 0.2 |
reducer for mixed-precision inner 0.15 |
products on a GPU 01 |

* For small double-double i

: : 0.05 !
computations with the Gram |

matrix, we use multiprecision 0
BLAS on the host CPU




Strong Scaling

* Same problem [Yamazaki, C., Kelley, 2022]
* Strong scaling up to 18 GPUs on Summit (6 GPUs per node)
* Using double/double-double

Strong Scaling

0.4 ) Overhead of Mixed Precision
—%—CG ———s=1
G‘f —CG—uniform s-step, s = 1 —H-s=2
! - €3 - mixed s-step, s =1 081 s=5|1
0.3 n }D —H—uniform s-step, s = 2| ]
L -3 - mixed s-step, s =2 -
o uniform s-step, s =5 © 061
~ mixed s-step, s =5 =
@ 0.2 o)
= 2
— (@] 04 L
0.1
02
o—— : : ‘ 0——— ' : :
123 6 12 18 123 6 12 18
# GPUs # GPUs

* Overhead of using software-implemented precision decreases as we scale up
the hardware

* Likely because latency becomes more dominant?

18



Time to Solution for Laplace Problem

||b||2 = 1, equal entries [Yamazaki, C., Kelley, 2022]

3D Laplace with (nx = 100)

10°
—ca |
0 ——s=6, uniform |
E 10 s=6, mixed -
5 13
=
©
3 -1
T 10
2]
o
S
+= 1072
()
2
©
()
oc 10—3
107

0 001 002 003 004 005 0.06 0.07 0.08
Time (s)

6 NVIDIA 100 GPUs, single working precision
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Diagonal test problem, n = 100, k(4) = 10>, clustered eigenvalues

Relatlve Error, s —2 monomlal basis

—CG double
s-step CG, double

s-step CG, double/quad

! I 1 1

200 300 400 500
Iteration
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600
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1
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10°
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10-10

10-15

—CG double
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1 1 1 1 1 -

[=)
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Iteration

10-10 L

10-15 L
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——CG double
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(=)

100 200 300 400 500 600
Iteration
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nos4 from SuiteSparse

Relative Error, s =4, monomial basis

300

10° - - - - .
——CG double
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10°F
10-10 L
107 : : : : :
0 50 100 150 200 250
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10 T T T T T
——CG double
s-step CG, double
s-step CG, double/quad
10°F
10-10 L
10-15 1 1 1 1 L
200 250

150
Tteration
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10°F 1
10—10 L
10715 . . . . .
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Iteration
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10°F 1
10—10 L i
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Iteration
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Maximum attainable accuracy

 Accuracy ||x — X;|| generally not computable, but x — X; = A~1(b — AX;)

* Size of the true residual, ||b — AX;||, used as computable measure of accuracy
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Maximum attainable accuracy

 Accuracy ||x — X;|| generally not computable, but x — X; = A~1(b — AX;)
* Size of the true residual, ||b — AX;||, used as computable measure of accuracy

* Rounding errors cause the true residual, b — AX;, and the updated residual,
T;, to deviate

° Writing b —AjC\i = fi + b —AjC\i — fi’

b = A%l < |71l + [Ib — A%; — 7]l

* As ||7;]| = 0, ||b — AX;|| depends on ||b — AX; — 73|

* Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Bjorck, Elfving and Strakos (1998) and Gutknecht
and Strakos (2000). -



Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N

X;=Xi_q+aQ_1Pi-1 —6x;  and fy = i1 — Qj_14p;—1 — OT;
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X; =X;_1+ Qj_1P;_1 — 6x; and r =1_1— &;_1Ap;_1 — Or;

e Let f,=b — A%, — 7

fi =b—AX;_1 + Qj_1P;—1 — 6x;) — (Fi—1 — @;_1AP;—1 — O17)
= fi_1 + Adx; + 67y
= fo + 3L _1(A8x,, + 67)

23



Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N A

Xi = 5C\i a 1Pi-1 — Sxi and i =71i—1 — ai—lApi—l — STi

e Let f,=b — A%, — 7

fi =b—AX;_1 + Qj_1P;—1 — 6x;) — (Fi—1 — @;_1AP;—1 — O17)
= fi_1 + Adx; + 67y
= fo + 3L _1(A8x,, + 67)

Il < 0(e) 3L _o NallAIlNIZ, ]l + lI£,]l  van der Vorst and Ye, 2000
If:ll < 0Ce)All (||X|| + max l.||9?m||) Greenbaum, 1997

AN < OENLNANNAT ZE ol Sleijpen and van der Vorst, 1995 .



Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

ATx = UxBy + Ay

Updating coordinate vectors in the inner loop:

ATl _ Al A

Xkj = Xk j—1 T Qi j—1 + Sk,

Al _ Al AT

Tej = Tkj-1~ Br Qi j-1 t NMk,j

with 6?,'(,]-_1 = ﬂ(@sk+j—1131’<,j—1)

Recovering CG vectors for use in next outer loop:

A _ T 2
Xsi+j = YpXy j + Xsie + Qsic+

Psiewj = Yk + Wsksj
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Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

5 A Error in computing
AYyx = YpBy + AY <

s-step basis

Updating coordinate vectors in the inner loop:

ATl _ ATl A

Xkj = Xk j-1 1T Qj-1 1 gk,j Error in updating
NN, N coefficient vectors
Tiej = Tkj-1~ Br G j—1 T Mk,j

with 6?,'(,]-_1 = ﬂ(@sk+j—1151’<,j—1)

Recovering CG vectors for use in next outer loop:

A _ T 2 .
Xsk+j = 'ykxk,j + X + ¢sk+j Error in

A~ basis change
A _ Al
Tsk+j = yka,j t Yske+j

24



Attainable accuracy of s-step CG

* We can write the gap between the true and updated residuals f in terms
of these errors:

fsk+j = fo
k-1
£=0

J
—AQsiyj — Vsksj — Z[A@kfk,i + Ui — AYplr i1
i=1

S
Apgprs + Wspys + Z[A@efe,i + Yoy — A‘yi’él\i’,i—l]‘
i=1

e Using standard rounding error results, this allows us to obtain an upper
bound on ||f5k+j||.
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Attainable accuracy of s-step CG

* We can write the gap between the true and updated residuals f in terms
of these errors:

fsk+j = fo
k-1
£=0

J
—APsitj — Ysprj — Z[A@kfk,i + Uilrei — DAYy i1
i=1

S
A¢s€+s + 1/)5{’+s + Z[A‘yAff{’,i + yAfnf,i _ A‘yfél\},i—l]‘
i=1

e Using standard rounding error results, this allows us to obtain an upper
bound on ||f5k+j||.
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Attainable accuracy of s-step CG

fi — b—AD/C\i—f'i
For CG:

i
Il < lfoll + € z (1 + M[IAlZm ]l + 17l
m=1
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Attainable accuracy of s-step CG

fi — b—AD/C\i—f'i
For CG:

i
1< Mfoll + ) L+ MIANIZ + 1]
m=1

For s-step CG: i = sk +j
sk+j
feters| < Ufoll + 2T )" 1+ WA + 1]
m=1

where c is a low-degree polynomial in s, and

T, = T, h r, =g - [||g
e=maxte where  G=IGNGN

26



Residual replacement strategy

* Improve accuracy by replacing computed residual 7#; by the true

residual b — AX; in certain iterations

* Related work for classical CG: van der Vorst and Ye (1999)
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* Choose when to replace 7; with b — AX; to meet two constraints:
1. |fill = l|b — Ax; — 7;]|| is small (relative to eN||A|||| X, +1]])

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)
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Residual replacement strategy

* Improve accuracy by replacing computed residual 7#; by the true

residual b — AX; in certain iterations

* Related work for classical CG: van der Vorst and Ye (1999)

* Choose when to replace 7; with b — AX; to meet two constraints:
1. |fill = l|b — Ax; — 7;]|| is small (relative to eN||A|||| X, +1]])

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)

* Based on derived bound on deviation of residuals, can devise a residual
replacement strategy for s-step CG

* Implementation has negligible cost

27



Residual replacement for s-step CG

» Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error
in computing 1;, in each iteration

* Set threshold é = +/¢, replace whenever d;/||;|| reaches threshold
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Residual replacement for s-step CG

» Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error

in computing 1;, in each iteration

* Set threshold é = +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/J_f di—l < é\”ri—lll and di > §||7‘l|| and di > 1-1dinit
Z=Z+‘ykx;c’j + Xgp

Xi = 0

N = b— Az

dinie = d;= (1 + 2NOAllllzIl + lI:]1)
Pi = YDk

break from inner loop and begin new outer loop

~
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Residual replacement for s-step CG

» Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error

in computing 1;, in each iteration

* Set threshold é = +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/J_f di—l < é\”ri—lll and di > §||7‘l|| and di > 1-1dinit
Z=Z+‘ykx;c’j +X5k<

Xi = 0

N = b— Az

dinie = d;= (1 + 2NOAllllzIl + lI:]1)
Pi = YDk

break from inner loop and begin new outer loop

~

group update of approximate solution
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Residual replacement for s-step CG

» Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error
in computing 1;, in each iteration

* Set threshold é = +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/lf di—l < é\”ri—lll and di > §||7‘l|| and di > 1-1dinit \
_ /
z=2z+Yx Xk, j T Xsk < group update of approximate solution
Xi = 0
rn=b—Az < set residual to true residual
dinie = di= €((1 + 2N Allllz]l + lI7;1l)
Pi = YDk

break from inner loop and begin new outer loop
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Residual replacement for s-step CG

» Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error
in computing 1;, in each iteration

* Set threshold é = +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/lf di—l < é\”ri—lll and di > é\”T'l” and di > 1-1dinit \
_ /
z=2z+Yx Xk, j T Xsk < group update of approximate solution
Xi = 0
rn=b—Az < set residual to true residual
dinie = di= €((1 + 2N Allllz]l + lI7;1l)
Pi = YDk

break from inner loop and [begin new outer loop]

/




A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

dl = di—l
e[ AN AT |G| Zie ]+ 1Tl 1Biel- R 1) + (11|17 1]
co) 1AM Zskrsl+@+2N AN Gl |2 s 1+N N Gic 7l =
0, ow.

where N’ = max(N,2s + 1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

Estimated only once

dl = di—l
e[ AN AN (|G |- Zie ]+ 1T l-1Biel R 1) + (11|17 1]
co) 1AM Zskrsl+@+2NO AN G |2 s 1 +N N Gic 7l =
0, ow.

where N’ = max(N,2s + 1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

0 (ns?) flops per s iterations; <1 reduction per s iterations

to compute (|'yk|T|’!7k|)

dl — di—l
e[ AN AN G| 2 1+ 1Giel1Be 1|2 1) + 1G] 1]
vo) AR s+ @A2N AN G| [Ris 1+8 WG Fes L =
0, ow.

where N’ = max(N,2s + 1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

0(s?) flops per s iterations; no communication

dl — di—l
e[ (AN NN |G |- R 1]+ 1Tl 1Bl R 1) + [11Ge |- 1]
vo) NANZgessl+@+2NONAN Gl Res 1+ WDl sl 5=
0, ow.

where N’ = max(N,2s + 1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

Communication only increased by at most factor of 2

dl — di—l
e[ (AN NN |G |- R 1]+ 1Tl 1Bl R 1) + [11Ge |- 1]
vo) NANZgessl+@+2NONAN Gl [Res 1+ WDl Feslll, 5=
0, ow.

where N’ = max(N,2s + 1).
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Laplace problem with RR (single)

||b||2 = 1, equal entries [Yamazaki, C., Kelley, 2022]

3D Laplace with (nx = 100)

—CG ;
101+ ——s=6, uniform |-
s=6, mixed |
E . o
8 10
©
= .
S 10
1]
o
2107
©
& 40
. ~ 1.2 X speedup
107 . ‘
0 0.02 0.04 0.06 0.08 0.1
Time (s)

6 NVIDIA 100 GPUs, single working precision
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Matrices from SuiteSparse (single)

[Yamazaki, C., Kelley, 2022]

Name Type n  nnz/n
G3_circuit Circuit Design 1,585,473 4.8
af_shell7 Semiconductor Design 504,855 34.8
parabolic_fem CFD 525,825 7.0

N I AN NN ST T

uniform [ 1.72 (4359) |[ 22.59 (66856)

G3 circuit  1.62 (3196)
1.39 (3398)

uniform [ 0.20 (504) 0.19 (503) [0.27 (816)] (0.23 (522) )

0.22 (506)
L J

mixed 1.40 (3329) | 1.71(3515) 2.80 (8155)

af shell7 0.25 (504)

mixed | 0.19 (501) 0.19 (503) 0.20 (504)

uniform  0.20 (552) 0.21 (555) 0.22 (562) (0.45 (1060) )
parabolic_fem  0.28 (554)

mixed  0.22 (500) 0.21 (555) 0.22 (550) | 0.25 (550)
—

3 NVIDIA 100 GPUs, single working precision
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Diagonal Problem with RR (double)

/11 — 10—3, An — 102’ Ai — Al + (i . 1)/(71 . 1)(2% . Al)pn—i [Yamazaki, C., Kelley, 2022]

n = 120,000, p = 0.65 (eigenvalues accumulated to the left)

Ibl], = 1, equal entries

Diagonal matrix(n=120K)

10° -
4!_
W\ \——s=5, uniform
Y 3 s=5, mixed

Relative residual norm
=)
)

~ 1.8 X speedup

0 0.05 0.1 0.15
Time (s)

6 NVIDIA 100 GPUs, double working precision
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Diagonal Problems (double)

. [Yamazaki, C., Kelley, 2022]
In=10% ;=4 + (i —1)/(n— DA, —A)p"™™"

n = 120,000, p = 0.65 (eigenvalues accumulated to the left)

Ib||, = 1, equal entries

I I I I T LT T

uniform | .024 (125) .021 (155) .023 (218) .030 (334)
A =1072 .041 (113)
mixed .023 (111) .022 (136) .026 (174) .028 (194)
—
uniform 058 (257) 057 (341) ( - Y - )
A =1073 .087 (186)
mixed 062 (241) .057 (281) .059 (319) .064 (329)
L V)8 J
uniform -- -- ( -- Y -- h
A, =10"* 121 (336)
mixed .083 (410) .073 (459) .090 (628) .091 (632)
. V. J

3 NVIDIA 100 GPUs, double working precision
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* Mixed precision + residual replacement can make s-step CG
more reliable

 Most beneficial for ill-conditioned matrices

* Depending on the setting, overhead can be minimal

* |s using better polynomial bases enough?

e Can we develop a way to adaptively “turn on” mixed precision
(and/or RR) in s-step CG?

* Mixed precision strategies for other synchronization-reducing
variants (e.g., pipelined CG?)

34



Thank you!

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/ ™ carson



