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The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

1



Low computation/communication ratio 

⇒ Performance is communication-bound

SpMV

orthogonalize

Cost Per Iteration

2

×

→ Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for 
all communication to finish before proceeding

• Multiple reads/writes to slow memory

×

→ Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring 

processors (nearest neighbor MPI collective)
• Must read A/vector from slow memory



Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of 
computation to communication) in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG 

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points 
to 1 per iteration 

• Modifications also allow decoupling of SpMV and inner products - enables 
overlapping (MPI non-blocking collectives)

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations
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Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖

s-step CG
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s steps of s-step CG:
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Compute “basis” matrix 𝒴 such that   span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖 according to 

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization 

𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates

Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′
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s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be 
computed by independently by each processor without communication: 
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𝐴𝑝𝑖+𝑗

×𝑛

𝑛
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s-step CG

Outer Loop

Compute basis 
O(s) SPMVs

O(𝑠2) Inner 
Products (one 

synchronization)

Inner Loop

Local Vector 
Updates (no 

comm.)

End Inner Loop

Inner Outer Loop

s 
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and 

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1 ] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
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The effects of finite precision

Well-known that roundoff error has two 
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no 
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG
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Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖
𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖
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Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most𝑁 nonzeros per row)

𝐴 ෠𝑉𝑚 = ෠𝑉𝑚 ෠𝑇𝑚 + መ𝛽𝑚+1 ො𝑣𝑚+1𝑒𝑚
𝑇 + 𝛿 ෠𝑉𝑚

෠𝑉𝑚 = ො𝑣1, … , ො𝑣𝑚 ,       𝛿 ෠𝑉𝑚 = 𝛿 ො𝑣1, … , 𝛿 ො𝑣𝑚 ,         ෠𝑇𝑚 =

ො𝛼1 መ𝛽2
መ𝛽2 ⋱ ⋱

⋱ ⋱ መ𝛽𝑚
መ𝛽𝑚 ො𝛼𝑚

Lanczos Convergence Analysis [Paige, 1976]

Classical Lanczos (Paige, 1976): 

for 𝑖 ∈ {1, … ,𝑚},
𝛿 ො𝑣𝑖 2 ≤ 𝜀1𝜎

መ𝛽𝑖+1 ො𝑣𝑖
𝑇 ො𝑣𝑖+1 ≤ 2𝜀0𝜎

ො𝑣𝑖+1
𝑇 ො𝑣𝑖+1 − 1 ≤ Τ𝜀0 2

መ𝛽𝑖+1
2 + ො𝛼𝑖

2 + መ𝛽𝑖
2 − 𝐴ො𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃
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መ𝛽𝑚 ො𝛼𝑚

Lanczos Convergence Analysis [Paige, 1976]

Classical Lanczos (Paige, 1976): 

for 𝑖 ∈ {1, … ,𝑚},
𝛿 ො𝑣𝑖 2 ≤ 𝜀1𝜎

መ𝛽𝑖+1 ො𝑣𝑖
𝑇 ො𝑣𝑖+1 ≤ 2𝜀0𝜎

ො𝑣𝑖+1
𝑇 ො𝑣𝑖+1 − 1 ≤ Τ𝜀0 2

መ𝛽𝑖+1
2 + ො𝛼𝑖

2 + መ𝛽𝑖
2 − 𝐴ො𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

s-step Lanczos (C., 2015):

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃𝚪

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2
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Paige’s Results for Classical Lanczos (1980)

Using bounds on local rounding errors in Lanczos, showed that
1. The computed eigenvalues always lie between the extreme eigenvalues of 

𝐴 to within a small multiple of machine precision.

2. At least one small interval containing an eigenvalue of 𝐴 is found by the 
𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full 
reorthogonalization until a very close eigenvalue approximation is found.

4. The loss of orthogonality among basis vectors follows a rigorous pattern 
and implies that some computed eigenvalues have converged.
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• Only if:

• 𝜀0 ≡ 2𝜀 𝑛+11𝑠+15 Γ2 ≤
1

12

• i.e.,    Γ ≤ 24𝜀 𝑛 + 11𝑠 + 15
− Τ1 2

= 𝑂
1

𝑛𝜀

• The answer is YES!

Results for s-step Lanczos

…but

• Do Paige’s results, e.g.,
loss of orthogonality → eigenvalue convergence

hold for s-step Lanczos?
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• With the additional caveat:

• Paige’s results say: orthogonality is not lost until an eigenvalue 
has stabilized to within 𝑂(𝜀) of an eigenvalue of A
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• With the additional caveat:

• Paige’s results say: orthogonality is not lost until an eigenvalue 
has stabilized to within 𝑂(𝜀) of an eigenvalue of A

• For s-step Lanczos: orthogonality is not lost until an eigenvalue 
has stabilized to within 𝑂(𝜀Γ2) of an eigenvalue of A

• So the result is weaker: an eigenvalue is considered to be 
“stabilized” within a larger radius for the s-step case, and thus 
orthogonality is lost sooner

• This explains the worse convergence behavior! 

Results for s-step Lanczos

• Do Paige’s results, e.g.,
loss of orthogonality → eigenvalue convergence

hold for s-step Lanczos?
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• The answer is YES! …but



The case for extended precision

• The term Γ enters the bounds due to computation in the computed s-step 
basis

• SpMVs cause Γ terms in the bounds

• Inner products (computed using the Gram matrix) cause Γ2 terms in 
the bounds

• Idea: use extended precision in computing and applying the Gram matrix

• Computation only happens once every s iterations (doubles the size of 
the Allreduce)

• Applying to vector happens every iteration, but the matrix is very small 
(sxs, fits in cache)
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Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most𝑁 nonzeros per row)
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𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃𝚪

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 13



Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most𝑁 nonzeros per row)

𝐴 ෠𝑉𝑚 = ෠𝑉𝑚 ෠𝑇𝑚 + መ𝛽𝑚+1 ො𝑣𝑚+1𝑒𝑚
𝑇 + 𝛿 ෠𝑉𝑚

෠𝑉𝑚 = ො𝑣1, … , ො𝑣𝑚 ,       𝛿 ෠𝑉𝑚 = 𝛿 ො𝑣1, … , 𝛿 ො𝑣𝑚 ,         ෠𝑇𝑚 =

ො𝛼1 መ𝛽2
መ𝛽2 ⋱ ⋱

⋱ ⋱ መ𝛽𝑚
መ𝛽𝑚 ො𝛼𝑚

Mixed Precision Lanczos Analysis

Classical Lanczos
(Paige, 1976): 

for 𝑖 ∈ {1, … ,𝑚},
𝛿 ො𝑣𝑖 2 ≤ 𝜀1𝜎

መ𝛽𝑖+1 ො𝑣𝑖
𝑇 ො𝑣𝑖+1 ≤ 2𝜀0𝜎

ො𝑣𝑖+1
𝑇 ො𝑣𝑖+1 − 1 ≤ Τ𝜀0 2

መ𝛽𝑖+1
2 + ො𝛼𝑖

2 + መ𝛽𝑖
2 − 𝐴ො𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

s-step Lanczos
(C., 2015):

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃Γ

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2

Mixed precision s-step 
Lanczos (C., Gergelits, 
Yamazaki, 2021):

𝜀0 = 𝑂 𝜀𝚪

𝜀1 = 𝑂 𝜀𝑁𝜃Γ
13



Mixed precision s-step Lanczos analysis

14

Classical Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within 
𝑶(𝜺) of an eigenvalue of A

Uniform precision s-step Lanczos: orthogonality is not lost until an eigenvalue has 
stabilized to within 𝑶(𝜺𝜞𝟐) of an eigenvalue of A

Results hold if 𝚪 ≤ 𝑶
𝟏

𝒏𝜺



Mixed precision s-step Lanczos analysis

14

Classical Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within 
𝑶(𝜺) of an eigenvalue of A

Uniform precision s-step Lanczos: orthogonality is not lost until an eigenvalue has 
stabilized to within 𝑶(𝜺𝜞𝟐) of an eigenvalue of A

Results hold if 𝚪 ≤ 𝑶
𝟏

𝒏𝜺

Mixed precision s-step Lanczos: orthogonality is not lost until an eigenvalue has 
stabilized to within 𝑶(𝛆𝚪) of an eigenvalue of A

Results hold if 𝚪 ≤ 𝑶
𝟏

𝒏𝜺

⇒ For mixed precision case, expect orthogonality (and thus convergence behavior) to 
be somewhere between classical and (uniform precision) s-step Lanczos

⇒ Expect mixed precision algorithm can handle more ill-conditioned bases versus 
uniform precision algorithm



Extension to s-step CG

• s-step CG based on underlying s-step Lanczos procedure

• Better Ritz value accuracy and orthogonality in s-step Lanczos → better 
convergence behavior of mixed precision s-step CG
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• But: extended precision computations in Gram matrix computations will not 
improve attainable accuracy

• determined by precision in matrix-vector products
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Extension to s-step CG

• s-step CG based on underlying s-step Lanczos procedure

• Better Ritz value accuracy and orthogonality in s-step Lanczos → better 
convergence behavior of mixed precision s-step CG

• But: extended precision computations in Gram matrix computations will not 
improve attainable accuracy

• determined by precision in matrix-vector products

• Greenbaum (1989): finite precision classical CG behaves like exact CG 
applied to a larger matrix whose eigenvalues are in tight clusters around the 
eigenvalues of A.

• Can we extend this analysis?

• Prediction: Cluster radius will contain a Γ2 term for the uniform 
precision case, Γ term for the mixed precision case

15



𝜆

𝑂( 𝜀 𝐴 )

Classical Lanczos
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𝜆

𝑂( 𝜀 𝐴 )

𝑂( 𝜀 𝐴 𝚪𝟐)

Classical Lanczos

Uniform precision s-step Lanczos
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𝜆

𝑂( 𝜀 𝐴 )

𝑂( 𝜀 𝐴 𝚪𝟐)

Classical Lanczos

Uniform precision s-step Lanczos

𝑂( 𝜀 𝐴 𝚪)
mixed precision s-step Lanczos
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What is the overhead?

• 3D Laplace matrix with 𝑛 = 1003

• 500 iterations of s-step CG with 𝑠 = 5 on an NVIDIA V100 GPU

• Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes 𝐶 = 𝛼𝐴𝑇𝐵 + 𝛽𝐶

• Do not compute multiplication with 𝛼 (= 1)

• Only compute upper triangular part of C since symmetric

• Input cast to double before being passed in

17

[Yamazaki, C., Kelley, 2022]



What is the overhead?

• 3D Laplace matrix with 𝑛 = 1003

• 500 iterations of s-step CG with 𝑠 = 5 on an NVIDIA V100 GPU

• Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes 𝐶 = 𝛼𝐴𝑇𝐵 + 𝛽𝐶

• Do not compute multiplication with 𝛼 (= 1)

• Only compute upper triangular part of C since symmetric

• Input cast to double before being passed in

• Double/double-double: Software 
implementation of double-double 
(inner products require 17-21.5x more 
flops)

• SinceKokkos does not support 
double-double arithmetic, our 
implementation uses a custom 
reducer for mixed-precision inner 
products on a GPU

• For small double-double 
computations with the Gram 
matrix, we use multiprecision
BLAS on the host CPU

17

[Yamazaki, C., Kelley, 2022]



Strong Scaling

• Same problem

• Strong scaling up to 18 GPUs on Summit (6 GPUs per node)

• Using double/double-double

18

• Overhead of using software-implemented precision decreases as we scale up 
the hardware

• Likely because latency becomes more dominant?

[Yamazaki, C., Kelley, 2022]



Time to Solution for Laplace Problem

19

𝑏 2 = 1, equal entries

6 NVIDIA 100 GPUs, single working precision

[Yamazaki, C., Kelley, 2022]
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Diagonal test problem, 𝑛 = 100, 𝜅 𝐴 = 105, clustered eigenvalues



nos4 from SuiteSparse

21



• Accuracy 𝑥 − ො𝑥𝑖 generally not computable, but 𝑥 − ො𝑥𝑖 = 𝐴−1 𝑏 − 𝐴ො𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴ො𝑥𝑖 , used as computable measure of accuracy 

Maximum attainable accuracy
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• As Ƹ𝑟𝑖 → 0, 𝑏 − 𝐴ො𝑥𝑖 depends on 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖
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and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht 
and Strakoš (2000).
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• In finite precision HSCG, iterates are updated by 

ො𝑥𝑖 = ො𝑥𝑖−1 + ො𝛼𝑖−1 Ƹ𝑝𝑖−1 − 𝜹𝒙𝒊 and         Ƹ𝑟𝑖 = Ƹ𝑟𝑖−1 − ො𝛼𝑖−1𝐴 Ƹ𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG
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𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

ො𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀 σ𝑚=0
𝑖 𝑁𝐴 𝐴 ො𝑥𝑚 + Ƹ𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1 σ𝑚=0
𝑖 Ƹ𝑟𝑚 Sleijpen and van der Vorst, 1995
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Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴 ෠𝒴𝑘 = ෠𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

ො𝑥𝑘,𝑗
′ = ො𝑥𝑘,𝑗−1

′ + ො𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

Ƹ𝑟𝑘,𝑗
′ = Ƹ𝑟𝑘,𝑗−1

′ − ℬ𝑘 ො𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with   ො𝑞𝑘,𝑗−1
′ = fl( ො𝛼𝑠𝑘+𝑗−1 Ƹ𝑝𝑘,𝑗−1

′ )

Recovering CG vectors for use in next outer loop:

ො𝑥𝑠𝑘+𝑗 = ෠𝒴𝑘 ො𝑥𝑘,𝑗
′ + ො𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

Ƹ𝑟𝑠𝑘+𝑗 = ෠𝒴𝑘 Ƹ𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

24
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Error in 
basis change

Sources of local roundoff error in s-step CG

Error in computing 
𝑠-step basis

Error in updating 
coefficient vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 ෠𝒴𝑘 = ෠𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

ො𝑥𝑘,𝑗
′ = ො𝑥𝑘,𝑗−1

′ + ො𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

Ƹ𝑟𝑘,𝑗
′ = Ƹ𝑟𝑘,𝑗−1

′ − ℬ𝑘 ො𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with   ො𝑞𝑘,𝑗−1
′ = fl( ො𝛼𝑠𝑘+𝑗−1 Ƹ𝑝𝑘,𝑗−1

′ )

Recovering CG vectors for use in next outer loop:

ො𝑥𝑠𝑘+𝑗 = ෠𝒴𝑘 ො𝑥𝑘,𝑗
′ + ො𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

Ƹ𝑟𝑠𝑘+𝑗 = ෠𝒴𝑘 Ƹ𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗
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• We can write the gap between the true and updated residuals 𝑓 in terms 
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper 

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−෍

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +෍

𝑖=1

𝑠

𝐴 ෠𝒴ℓ𝜉ℓ,𝑖 + ෠𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ ො𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −෍

𝑖=1

𝑗

𝐴 ෠𝒴𝑘𝜉𝑘,𝑖 + ෠𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ ො𝑞𝑘,𝑖−1
′
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For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 𝜀 ෍

𝑚=1

𝑖

1 + 𝑁 𝐴 ො𝑥𝑚 + Ƹ𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴ො𝑥𝑖− Ƹ𝑟𝑖
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For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝒄ത𝚪𝒌 ෍

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 ො𝑥𝑚 + Ƹ𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀 ෍

𝑚=1

𝑖

1 + 𝑁 𝐴 ො𝑥𝑚 + Ƹ𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

തΓ𝑘 = max
ℓ≤𝑘

Γℓ ,     where     Γℓ = ෠𝒴ℓ
+ ⋅ ෠𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴ො𝑥𝑖− Ƹ𝑟𝑖

(see C., 2015)
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Residual replacement strategy

• Improve accuracy by replacing computed residual Ƹ𝑟𝒊 by the true 

residual 𝒃 − 𝑨ො𝑥𝒊 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)
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• Choose when to replace Ƹ𝑟𝑖 with 𝑏 − 𝐴ො𝑥𝑖 to meet two constraints: 

1. 𝑓𝑖 = 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖 is small  (relative to 𝜀𝑁 𝐴 ො𝑥𝑚+1 )

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)



Residual replacement strategy

• Improve accuracy by replacing computed residual Ƹ𝑟𝒊 by the true 

residual 𝒃 − 𝑨ො𝑥𝒊 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)

27

• Based on derived bound on deviation of residuals, can devise a residual 
replacement strategy for s-step CG

• Choose when to replace Ƹ𝑟𝑖 with 𝑏 − 𝐴ො𝑥𝑖 to meet two constraints: 

1. 𝑓𝑖 = 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖 is small  (relative to 𝜀𝑁 𝐴 ො𝑥𝑚+1 )

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)

• Implementation has negligible cost



Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖 to update 𝑑𝑖, an estimate of error 
in computing 𝑟𝑖, in each iteration

• Set threshold Ƹ𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold

28



if 𝑑𝑖−1 ≤ Ƹ𝜀 𝑟𝑖−1 𝐚𝐧𝐝 𝑑𝑖 > Ƹ𝜀 𝑟𝑖 𝐚𝐧𝐝 𝑑𝑖 > 1.1𝑑𝑖𝑛𝑖𝑡
𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗

′ + 𝑥𝑠𝑘
𝑥𝑖 = 0
𝑟𝑖 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑖= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑖
𝑝𝑖 = 𝒴𝑘𝑝𝑘,𝑗

′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖 to update 𝑑𝑖, an estimate of error 
in computing 𝑟𝑖, in each iteration

• Set threshold Ƹ𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold

28

Pseudo-code for residual replacement with group update for s-step CG:



if 𝑑𝑖−1 ≤ Ƹ𝜀 𝑟𝑖−1 𝐚𝐧𝐝 𝑑𝑖 > Ƹ𝜀 𝑟𝑖 𝐚𝐧𝐝 𝑑𝑖 > 1.1𝑑𝑖𝑛𝑖𝑡
𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗

′ + 𝑥𝑠𝑘
𝑥𝑖 = 0
𝑟𝑖 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑖= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑖
𝑝𝑖 = 𝒴𝑘𝑝𝑘,𝑗

′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖 to update 𝑑𝑖, an estimate of error 
in computing 𝑟𝑖, in each iteration

• Set threshold Ƹ𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold
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Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution
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Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

set residual to true residual
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• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

29

+𝜀 ൝
𝐴 ො𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑠

′ +𝑁′ ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑗
′ + ෠𝒴𝑘 ∙ ℬ𝑘 ∙ ො𝑥𝑘,𝑗

′ + ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑗
′



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

29

+𝜀 ൝
𝐴 ො𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑠

′ +𝑁′ ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑗
′ + ෠𝒴𝑘 ∙ ℬ𝑘 ∙ ො𝑥𝑘,𝑗

′ + ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑗
′

Estimated only once



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

29

+𝜀 ൝
𝐴 ො𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑠

′ +𝑁′ ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑗
′ + ෠𝒴𝑘 ∙ ℬ𝑘 ∙ ො𝑥𝑘,𝑗

′ + ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑗
′

𝑶(𝒏𝒔𝟐) flops per 𝒔 iterations; ≤1 reduction per 𝒔 iterations 

to compute ෡𝓨𝒌
𝑻 ෡𝓨𝒌



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

29

+𝜀 ൝
𝐴 ො𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑠

′ +𝑁′ ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 ෠𝒴𝑘 ∙ ො𝑥𝑘,𝑗
′ + ෠𝒴𝑘 ∙ ℬ𝑘 ∙ ො𝑥𝑘,𝑗

′ + ෠𝒴𝑘 ∙ Ƹ𝑟𝑘,𝑗
′

𝑶(𝒔𝟐) flops per 𝒔 iterations; no communication



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

Communication only increased by at most factor of 2
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+𝜀 ൝
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′



Laplace problem with RR (single)

30

6 NVIDIA 100 GPUs, single working precision

≈ 1.2 × speedup

𝑏 2 = 1, equal entries
[Yamazaki, C., Kelley, 2022]



Matrices from SuiteSparse (single)

31

CG s = 2 s = 3 s = 4 s = 5

G3_circuit 1.62 (3196)

uniform 1.72 (4359) 22.59 (66856) -- --

mixed 1.39 (3398) 1.40 (3329) 1.71 (3515) 2.80 (8155)

af_shell7 0.25 (504)

uniform 0.20 (504) 0.19 (503) 0.27 (816) 0.23 (522)

mixed 0.19 (501) 0.19 (503) 0.20 (504) 0.22 (506)

parabolic_fem 0.28 (554)

uniform 0.20 (552) 0.21 (555) 0.22 (562) 0.45 (1060)

mixed 0.22 (500) 0.21 (555) 0.22 (550) 0.25 (550)

3 NVIDIA 100 GPUs, single working precision

[Yamazaki, C., Kelley, 2022]



Diagonal Problem with RR (double)

32

6 NVIDIA 100 GPUs, double working precision

𝜆1 = 10−3, 𝜆𝑛 = 102, 𝜆𝑖 = 𝜆1 + (𝑖 − 1)/ 𝑛 − 1 𝜆𝑛 − 𝜆1 𝜌𝑛−𝑖

𝑛 = 120,000, 𝜌 = 0.65 (eigenvalues accumulated to the left)

≈ 1.8 × speedup

𝑏 2 = 1, equal entries

[Yamazaki, C., Kelley, 2022]



Diagonal Problems (double)

33

CG s = 2 s = 3 s = 4 s = 5

𝜆1 = 10−2 .041 (113)

uniform .024 (125) .021 (155) .023 (218) .030 (334)

mixed .023 (111) .022 (136) .026 (174) .028 (194)

𝜆1 = 10−3 .087 (186)

uniform .058 (257) .057 (341) -- --

mixed .062 (241) .057 (281) .059 (319) .064 (329)

𝜆1 = 10−4 .121 (336)

uniform -- -- -- --

mixed .083 (410) .073 (459) .090 (628) .091 (632)

3 NVIDIA 100 GPUs, double working precision

𝜆𝑛 = 102, 𝜆𝑖 = 𝜆1 + (𝑖 − 1)/ 𝑛 − 1 𝜆𝑛 − 𝜆1 𝜌𝑛−𝑖

𝑛 = 120,000, 𝜌 = 0.65 (eigenvalues accumulated to the left)

𝑏 2 = 1, equal entries

[Yamazaki, C., Kelley, 2022]



Takeaway

• Mixed precision + residual replacement can make s-step CG 
more reliable 

• Most beneficial for ill-conditioned matrices

• Depending on the setting, overhead can be minimal

• Is using better polynomial bases enough?

• Can we develop a way to adaptively “turn on” mixed precision 
(and/or RR) in s-step CG?

• Mixed precision strategies for other synchronization-reducing 
variants (e.g., pipelined CG?)
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