The Rise of Multiprecision Computation

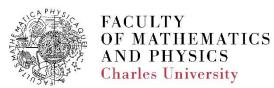
Erin C. Carson

Department of Numerical Mathematics, Faculty of Mathematics and Physics,

Charles University

KNM Seminar August 20, 2019

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16 027/0008495

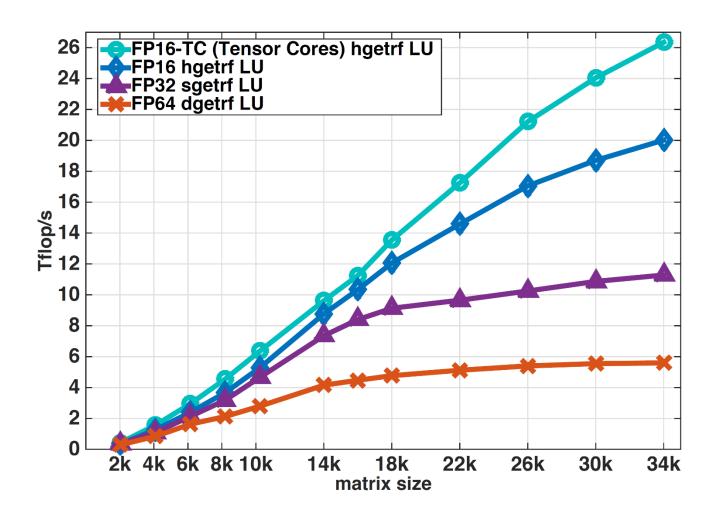


Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of low-precision capabilities in hardware:

- Half precision (FP16) defined as storage format in 2008 IEEE standard
- ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit
- AMD Radeon Instinct MI25 GPU, 2017:
 - single: 12.3 TFLOPS, half: 24.6 TFLOPS
- NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
- NVIDIA Tesla V100, 2017: tensor cores for half precision;
 - 4x4 matrix multiply in one clock cycle
 - double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)
- Google's Tensor processing unit (TPU): quantizes 32-bit FP computations into 8-bit integer arithmetic
- Future exascale supercomputers: (~2021) Expected extensive support for reduced-precision arithmetic (32/16/8-bit)

Performance of LU factorization on an NVIDIA V100 GPU



Iterative refinement: well-established method for improving an approximate solution to Ax = b

A is $n \times n$ and nonsingular; u is unit roundoff

Solve
$$Ax_0 = b$$
 by LU factorization for $i = 0$: maxit
$$r_i = b - Ax_i$$
 Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$

Iterative refinement: well-established method for improving an approximate solution to Ax = b

A is $n \times n$ and nonsingular; u is unit roundoff

```
Solve Ax_0 = b by LU factorization (in precision u) for i = 0: maxit  r_i = b - Ax_i \qquad \text{(in precision } u^2\text{)}  Solve Ad_i = r_i \qquad \text{via } d_i = U^{-1}(L^{-1}r_i) \qquad \text{(in precision } u\text{)}  x_{i+1} = x_i + d_i \qquad \text{(in precision } u\text{)}
```

"Traditional" (high-precision residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

$$\kappa_{\infty}(A) = \|A^{-1}\|_{\infty} \|A\|_{\infty}$$

$$\operatorname{cond}(A, x) = \|A^{-1}\|A\|x\|_{\infty} / \|x\|_{\infty}$$

- relative forward error is O(u)
- relative normwise and componentwise backward errors are O(u)

```
Solve Ax_0 = b by LU factorization (in precision u) for i = 0: maxit  r_i = b - Ax_i \qquad \qquad \text{(in precision } u^2\text{)}  Solve Ad_i = r_i \qquad \text{via } d_i = U^{-1}(L^{-1}r_i) \qquad \text{(in precision } u\text{)}  x_{i+1} = x_i + d_i \qquad \qquad \text{(in precision } u\text{)}
```

"Traditional" (high-precision residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

Solve
$$Ax_0 = b$$
 by LU factorization (in precision u) for $i = 0$: maxit
$$r_i = b - Ax_i \qquad \text{(in precision } u \text{)}$$
 Solve $Ad_i = r_i \qquad \text{via } d_i = U^{-1}(L^{-1}r_i) \qquad \text{(in precision } u \text{)}$ $x_{i+1} = x_i + d_i \qquad \text{(in precision } u \text{)}$

"Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

- relative forward error is O(u)cond(A, x)
- relative normwise and componentwise backward errors are O(u)

```
Solve Ax_0 = b by LU factorization (in precision u) for i = 0: maxit  r_i = b - Ax_i \qquad \text{(in precision } u \text{)}  Solve Ad_i = r_i \qquad \text{via } d_i = U^{-1}(L^{-1}r_i) \qquad \text{(in precision } u \text{)}  x_{i+1} = x_i + d_i \qquad \text{(in precision } u \text{)}
```

"Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

```
Solve Ax_0 = b by LU factorization (in precision u^{1/2}) for i = 0: maxit  r_i = b - Ax_i \qquad \qquad \text{(in precision } u \text{)}  Solve Ad_i = r_i \qquad \text{via } d_i = U^{-1}(L^{-1}r_i) \qquad \text{(in precision } u \text{)}  x_{i+1} = x_i + d_i \qquad \qquad \text{(in precision } u \text{)}
```

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

As long as $\kappa_{\infty}(A) \leq u^{-1/2}$,

- relative forward error is O(u)cond(A, x)
- relative normwise and componentwise backward errors are O(u)

```
Solve Ax_0 = b by LU factorization (in precision u^{1/2}) for i = 0: maxit  r_i = b - Ax_i \qquad \text{(in precision } u \text{)}  Solve Ad_i = r_i \qquad \text{via } d_i = U^{-1}(L^{-1}r_i) \qquad \text{(in precision } u \text{)}  x_{i+1} = x_i + d_i \qquad \text{(in precision } u \text{)}
```

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

⇒ 3-precision iterative refinement

$$u_f$$
 = factorization precision, u = working precision, u_r = residual precision $u_f \geq u \geq u_r$

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

⇒ 3-precision iterative refinement

$$u_f$$
 = factorization precision, u = working precision, u_r = residual precision $u_f \geq u \geq u_r$

New analysis generalizes existing types of IR:

[C. and Higham, SIAM SISC 40(2), 2018]

Traditional	$u_f = u$, $u_r = u^2$
Fixed precision	$u_f = u = u_r$
Lower precision factorization	$u_f^2 = u = u_r$

(and improves upon existing analyses in some cases)

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

⇒ 3-precision iterative refinement

$$u_f$$
 = factorization precision, u = working precision, u_r = residual precision $u_f \geq u \geq u_r$

New analysis generalizes existing types of IR:

[C. and Higham, SIAM SISC 40(2), 2018]

Traditional	$u_f = u$, $u_r = u^2$
Fixed precision	$u_f = u = u_r$
Lower precision factorization	$u_f^2 = u = u_r$

(and improves upon existing analyses in some cases)

Enables new types of IR: (half, single, double), (half, single, quad),
 (half, double, quad), etc.

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Define
$$\mu_i$$
: $||A(x - \hat{x}_i)||_{\infty} = \mu_i ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Define
$$\mu_i$$
: $||A(x - \hat{x}_i)||_{\infty} = \mu_i ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

For a stable refinement scheme, in early stages we expect

$$\frac{\|r_i\|}{\|A\|\|\hat{x}_i\|} \approx u \ll \frac{\|x - \hat{x}_i\|}{\|x\|} \longrightarrow \mu_i \ll 1$$

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Define
$$\mu_i$$
: $||A(x - \hat{x}_i)||_{\infty} = \mu_i ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

For a stable refinement scheme, in early stages we expect

$$\frac{\|r_i\|}{\|A\|\|\hat{x}_i\|} \approx u \ll \frac{\|x - \hat{x}_i\|}{\|x\|} \longrightarrow \mu_i \ll 1$$

But close to convergence,

$$||r_i|| \approx ||A|| ||x - \hat{x}_i|| \longrightarrow \mu_i \approx 1$$

$$||r_i||_2 = \mu_i^{(2)} ||A||_2 ||x - \hat{x}_i||_2$$

$$x - \hat{x}_i = V \Sigma^{-1} U^T r_i = \sum_{i=1}^n \frac{(u_j^T r_i) v_j}{\sigma_j} \qquad (A = U \Sigma V^T)$$

$$||r_{i}||_{2} = \mu_{i}^{(2)} ||A||_{2} ||x - \hat{x}_{i}||_{2}$$

$$x - \hat{x}_{i} = V\Sigma^{-1}U^{T}r_{i} = \sum_{j=1}^{n} \frac{(u_{j}^{T}r_{i})v_{j}}{\sigma_{j}} \qquad (A = U\Sigma V^{T})$$

$$||x - \hat{x}_{i}||_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{(u_{j}^{T}r_{i})^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n} (u_{j}^{T}r_{i})^{2} = \frac{||P_{k}r_{i}||_{2}^{2}}{\sigma_{n+1-k}^{2}}$$

$$\text{where } P_{k} = U_{k}U_{k}^{T}, U_{k} = [u_{n+1-k}, \dots, u_{n}]$$

$$||r_{i}||_{2} = \mu_{i}^{(2)} ||A||_{2} ||x - \hat{x}_{i}||_{2}$$

$$x - \hat{x}_{i} = V \Sigma^{-1} U^{T} r_{i} = \sum_{j=1}^{n} \frac{(u_{j}^{T} r_{i}) v_{j}}{\sigma_{j}} \qquad (A = U \Sigma V^{T})$$

$$||x - \hat{x}_{i}||_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{(u_{j}^{T} r_{i})^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n} (u_{j}^{T} r_{i})^{2} = \frac{||P_{k} r_{i}||_{2}^{2}}{\sigma_{n+1-k}^{2}}$$

$$\text{where } P_{k} = U_{k} U_{k}^{T}, U_{k} = [u_{n+1-k}, \dots, u_{n}]$$

$$\mu_{i}^{(2)} \leq \frac{||r_{i}||_{2}}{||P_{k} r_{i}||_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}$$

$$||r_{i}||_{2} = \mu_{i}^{(2)} ||A||_{2} ||x - \hat{x}_{i}||_{2}$$

$$x - \hat{x}_{i} = V\Sigma^{-1}U^{T}r_{i} = \sum_{j=1}^{n} \frac{(u_{j}^{T}r_{i})v_{j}}{\sigma_{j}} \qquad (A = U\Sigma V^{T})$$

$$||x - \hat{x}_{i}||_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{(u_{j}^{T}r_{i})^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n} (u_{j}^{T}r_{i})^{2} = \frac{||P_{k}r_{i}||_{2}^{2}}{\sigma_{n+1-k}^{2}}$$

$$\text{where } P_{k} = U_{k}U_{k}^{T}, U_{k} = [u_{n+1-k}, \dots, u_{n}]$$

$$\mu_{i}^{(2)} \leq \frac{||r_{i}||_{2}}{||P_{k}r_{i}||_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}$$

• $\mu_i^{(2)} \ll 1$ if r_i contains significant component in $\mathrm{span}(U_k)$ for any k s.t. $\sigma_{n+1-k} \approx \sigma_n$

$$||r_{i}||_{2} = \mu_{i}^{(2)} ||A||_{2} ||x - \hat{x}_{i}||_{2}$$

$$x - \hat{x}_{i} = V \Sigma^{-1} U^{T} r_{i} = \sum_{j=1}^{n} \frac{(u_{j}^{T} r_{i}) v_{j}}{\sigma_{j}} \qquad (A = U \Sigma V^{T})$$

$$||x - \hat{x}_{i}||_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{(u_{j}^{T} r_{i})^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n} (u_{j}^{T} r_{i})^{2} = \frac{||P_{k} r_{i}||_{2}^{2}}{\sigma_{n+1-k}^{2}}$$

$$\text{where } P_{k} = U_{k} U_{k}^{T}, U_{k} = [u_{n+1-k}, \dots, u_{n}]$$

$$\mu_{i}^{(2)} \leq \frac{||r_{i}||_{2}}{||P_{k} r_{i}||_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}$$

- $\mu_i^{(2)} \ll 1$ if r_i contains significant component in $\mathrm{span}(U_k)$ for any k s.t. $\sigma_{n+1-k} \approx \sigma_n$
- Expect $\mu_i^{(2)} \ll 1$ when r_i is "typical", i.e., contains sizeable components in the direction of each left singular vector
- In that case, $x \hat{x}_i$ is not "typical", i.e., it contains large components in right singular vectors corresponding to small singular values of A

$$||r_i||_2 = \mu_i^{(2)} ||A||_2 ||x - \hat{x}_i||_2$$

$$x - \hat{x}_i = V \Sigma^{-1} U^T r_i = \sum_{j=1}^n \frac{(u_j^T r_i) v_j}{\sigma_j} \qquad (A = U \Sigma V^T)$$

$$||x - \hat{x}_i||_2^2 \ge \sum_{j=n+1-k}^n \frac{\left(u_j^T r_i\right)^2}{\sigma_j^2} \ge \frac{1}{\sigma_{n+1-k}^2} \sum_{j=n+1-k}^n \left(u_j^T r_i\right)^2 = \frac{||P_k r_i||_2^2}{\sigma_{n+1-k}^2}$$

where $P_k = U_k U_k^T$, $U_k = [u_{n+1-k}, ..., u_n]$

$$\mu_i^{(2)} \le \frac{\|r_i\|_2}{\|P_k r_i\|_2} \frac{\sigma_{n+1-k}}{\sigma_1}$$

- $\mu_i^{(2)} \ll 1$ if r_i contains significant component in $\mathrm{span}(U_k)$ for any k s.t. $\sigma_{n+1-k} \approx \sigma_n$
- Expect $\mu_i^{(2)} \ll 1$ when r_i is "typical", i.e., contains sizeable components in the direction of each left singular vector
- In that case, $x \hat{x}_i$ is not "typical", i.e., it contains large components in right singular vectors corresponding to small singular values of A
- ullet Wilkinson (1977), comment in unpublished manuscript: $\mu_i^{(2)}$ increases with i

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + u_s E_i) d_i$$
, $u_s ||E_i||_{\infty} < 1$
 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_{s} and is less than 1

$$\frac{\mathbf{u}_{s}}{\|E_{i}\|_{\infty}} \leq 3n \frac{\mathbf{u}_{f}}{\|A^{-1}\|\hat{L}\|\hat{U}\|_{\infty}}$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + u_s E_i) d_i$$
, $u_s ||E_i||_{\infty} < 1$
 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \leq u_s(c_1\|A\|_{\infty}\|\hat{d}_i\|_{\infty} + c_2\|\hat{r}_i\|_{\infty})$$
 \rightarrow normwise relative backward error is at most $\max(c_1, c_2) u_s$

$$\frac{\mathbf{u}_{s}}{\|E_{i}\|_{\infty}} \leq 3n \frac{\mathbf{u}_{f}}{\|A^{-1}\|\widehat{L}\|\widehat{U}\|_{\infty}}$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + u_s E_i) d_i$$
, $u_s ||E_i||_{\infty} < 1$
 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1\|A\|_{\infty}\|\hat{d}_i\|_{\infty} + c_2\|\hat{r}_i\|_{\infty})$$
 \rightarrow normwise relative backward error is at most $\max(c_1, c_2) u_s$

$$\frac{\boldsymbol{u}_{s}}{\|\boldsymbol{E}_{i}\|_{\infty}} \leq 3n \frac{\boldsymbol{u}_{f}}{\|\boldsymbol{A}^{-1}| \left| \widehat{\boldsymbol{L}} \right| \left| \widehat{\boldsymbol{U}} \right| \right\|_{\infty}}$$

$$\max(c_1, c_2) \, \mathbf{u}_s \leq \frac{3n \mathbf{u}_f \||\widehat{L}||\widehat{U}|\|_{\infty}}{\|A\|_{\infty}}$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of $u_{\rm S}$ and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

 \rightarrow normwise relative backward error is at most $\max(c_1, c_2) u_s$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \leq \mathbf{u}_s G_i |\hat{d}_i|$$

 \rightarrow componentwise relative backward error is bounded by a multiple of u_s

$$\frac{\mathbf{u}_s}{\|E_i\|_{\infty}} \le 3n \frac{\mathbf{u}_f}{\||A^{-1}|| \hat{L} || \hat{U} |\|_{\infty}}$$

$$\max(c_1, c_2) \, \textcolor{red}{\mathbf{u_s}} \leq \frac{3n \textcolor{red}{\mathbf{u_f}} \big\| \big| \widehat{L} \big| \big| \widehat{U} \big| \big\|_{\infty}}{\|A\|_{\infty}}$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

ightarrow normwise relative backward error is at most $\max(c_1,c_2)\,u_s$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \leq \mathbf{u}_s G_i |\hat{d}_i|$$

 \rightarrow componentwise relative backward error is bounded by a multiple of u_s

example: LU solve:

$$u_s = u_f$$

$$\|\mathbf{u}_{s}\|E_{i}\|_{\infty} \leq 3n\mathbf{u}_{f}\||A^{-1}||\widehat{L}||\widehat{U}|\|_{\infty}$$

$$\max(c_1, c_2) \, \underline{u_s} \leq \frac{3n \underline{u_f} \big\| \big| \widehat{L} \big| \big| \widehat{U} \big| \big\|_{\infty}}{\|A\|_{\infty}}$$

$$\frac{\mathbf{u}_{s}}{\|G_{i}\|_{\infty}} \leq 3n \frac{\mathbf{u}_{f}}{\|\hat{L}\| \|\hat{U}\|_{\infty}}$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of $u_{\rm S}$ and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

ightarrow normwise relative backward error is at most $\max(c_1,c_2)\,u_s$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \leq \mathbf{u}_s G_i |\hat{d}_i|$$

 \rightarrow componentwise relative backward error is bounded by a multiple of u_s

example: LU solve:

$$u_s = u_f$$

$$\|\mathbf{u}_{s}\|E_{i}\|_{\infty} \leq 3n\mathbf{u}_{f}\||A^{-1}||\widehat{L}||\widehat{U}|\|_{\infty}$$

$$\max(c_1, c_2) \mathbf{u}_s \leq \frac{3n\mathbf{u}_f \||\hat{L}||\hat{U}|\|_{\infty}}{\|A\|_{\infty}}$$

$$\frac{\mathbf{u}_{s}}{\|G_{i}\|_{\infty}} \leq 3n \frac{\mathbf{u}_{f}}{\|\hat{L}\| \|\hat{U}\|_{\infty}}$$

 E_i, c_1, c_2 , and G_i depend on A, \hat{r}_i , n, and u_s

Forward Error for IR3

- Three precisions:
 - u_f : factorization precision
 - *u*: working precision
 - u_r : residual computation precision

$$\kappa_{\infty}(A) = \|A^{-1}\|_{\infty} \|A\|_{\infty}$$

$$\operatorname{cond}(A) = \| |A^{-1}||A| \|_{\infty}$$

$$\operatorname{cond}(A, x) = \| |A^{-1}||A||x| \|_{\infty} / \|x\|_{\infty}$$

Forward Error for IR3

• Three precisions:

- u_f : factorization precision
- *u*: working precision
- u_r : residual computation precision

$$\kappa_{\infty}(A) = ||A^{-1}||_{\infty} ||A||_{\infty}$$

$$\operatorname{cond}(A) = |||A^{-1}||A||_{\infty}$$

$$\operatorname{cond}(A, x) = |||A^{-1}||A||x||_{\infty} / ||x||_{\infty}$$

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_f \ge u \ge u_r$ and effective solve precision u_s , if

$$\phi_i \equiv 2\mathbf{u_s} \min(\operatorname{cond}(A), \kappa_{\infty}(A)\mu_i) + \mathbf{u_s} ||E_i||_{\infty}$$

is sufficiently less than 1, then the forward error is reduced on the ith iteration by a factor $\approx \phi_i$ until an iterate \hat{x}_i is produced for which

$$\frac{\|x - \hat{x}_i\|_{\infty}}{\|x\|_{\infty}} \lesssim 4Nu_r \operatorname{cond}(A, x) + u,$$

where N is the maximum number of nonzeros per row in A.

Forward Error for IR3

- Three precisions:
 - *u_f*: factorization precision
 - *u*: working precision
 - u_r : residual computation precision

$$\kappa_{\infty}(A) = \|A^{-1}\|_{\infty} \|A\|_{\infty}$$

$$\operatorname{cond}(A) = \| |A^{-1}||A| \|_{\infty}$$

$$\operatorname{cond}(A, x) = \| |A^{-1}||A||x| \|_{\infty} / \|x\|_{\infty}$$

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_f \ge u \ge u_r$ and effective solve precision u_s , if

$$\phi_i \equiv 2 \mathbf{u_s} \min(\operatorname{cond}(A), \kappa_{\infty}(A)\mu_i) + \mathbf{u_s} ||E_i||_{\infty}$$

is sufficiently less than 1, then the forward error is reduced on the ith iteration by a factor $\approx \phi_i$ until an iterate \hat{x}_i is produced for which

$$\frac{\|x - \hat{x}_i\|_{\infty}}{\|x\|_{\infty}} \lesssim 4Nu_r \operatorname{cond}(A, x) + u,$$

where N is the maximum number of nonzeros per row in A.

Analogous traditional bounds: $\phi_i \equiv 3n\mathbf{u_f}\kappa_{\infty}(A)$

Normwise Backward Error for IR3

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_f \geq u \geq u_r$ and effective solve precision u_s , if

$$\phi_i \equiv (c_1 \kappa_{\infty}(A) + c_2) \mathbf{u}_{\mathbf{s}}$$

is sufficiently less than 1, then the residual is reduced on the *i*th iteration by a factor $\approx \phi_i$ until an iterate \hat{x}_i is produced for which

$$||b - A\hat{x}_i||_{\infty} \lesssim N\mathbf{u}(||b||_{\infty} + ||A||_{\infty}||\hat{x}_i||_{\infty}),$$

where N is the maximum number of nonzeros per row in A.

				Backwai	d error	
u_f	u	u_r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
Н	S	S	10 ⁴	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Н	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
Н	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
S	S	S	10 ⁸	10 ⁻⁸	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
S	D	D	108	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
S	D	Q	108	10^{-16}	10^{-16}	10^{-16}

					Backwai	rd error	
	u_f	и	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10^{-8}	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	Н	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
	S	S	S	10 ⁸	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	S	S	D	108	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

					Backwai	d error	
	u_f	u	u_r	$oxed{max\; \kappa_\infty(A)}$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10-8	10-8	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	Н	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10 ⁸	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

					Backwar	rd error	
	u_f	и	u_r	$oxed{max\; \kappa_\infty(A)}$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10^{-8}	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	Н	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10 ⁸	10^{-8}	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

					Backwai	rd error	
	u_f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10^{-8}	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
New	Н	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	108	10^{-8}	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	108	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	108	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

					Backwai	d error	
	u_f	и	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10^{-8}	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
New	Н	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10 ⁸	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

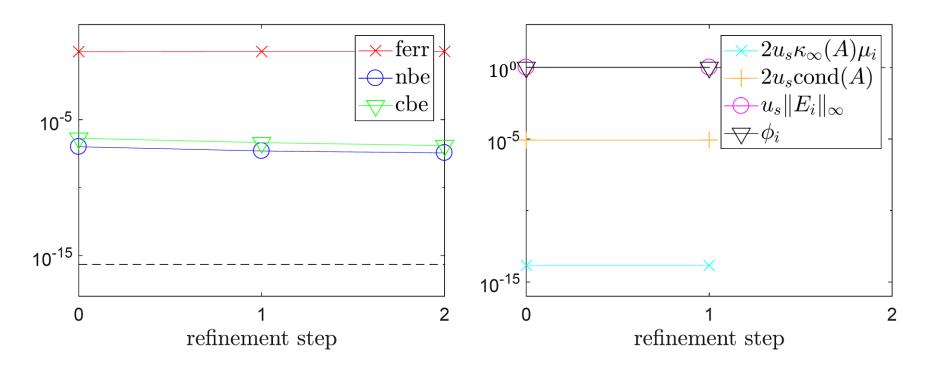
 $[\]Rightarrow$ Benefit of IR3 vs. "LP fact.": no cond(A, x) term in forward error

					Backwai	rd error	
	u_f	и	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10^{-8}	10-8	$\operatorname{cond}(A, x) \cdot 10^{-8}$
New	Н	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10 ⁸	10^{-8}	10-8	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

 $[\]Rightarrow$ Benefit of IR3 vs. traditional IR: As long as $\kappa_{\infty}(A) \leq 10^4$, can use lower precision factorization w/no loss of accuracy!

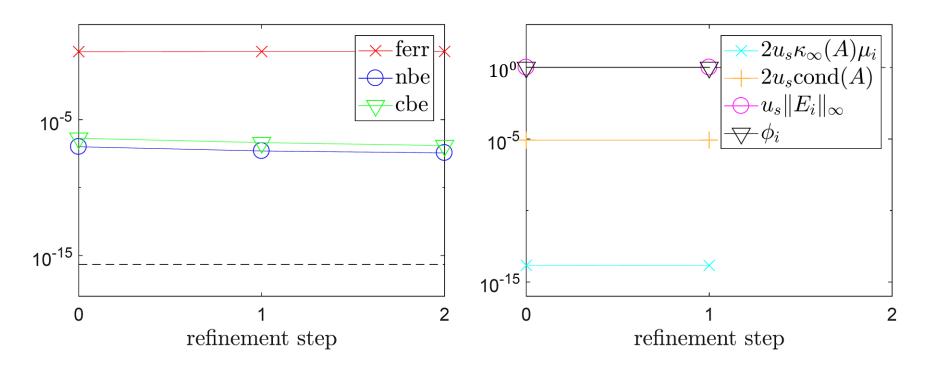
A = gallery('randsvd', 100, 1e9, 2) b = randn(100,1) $\kappa_{\infty}(A) \approx 2e10$, $\operatorname{cond}(A, x) \approx 5e9$

Standard (LU-based) IR with u_f : single, u: double, u_r : double



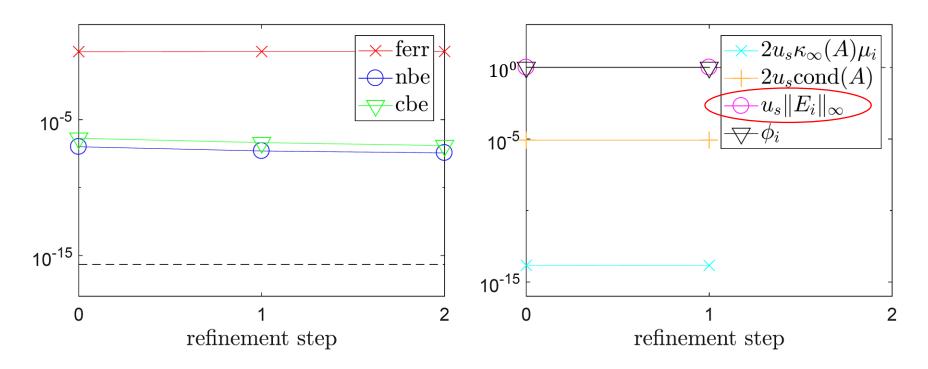
A = gallery('randsvd', 100, 1e9, 2) b = randn(100,1) $\kappa_{\infty}(A) \approx 2e10$, $\operatorname{cond}(A, x) \approx 5e9$

Standard (LU-based) IR with u_f : single, u: double, u_r : quad



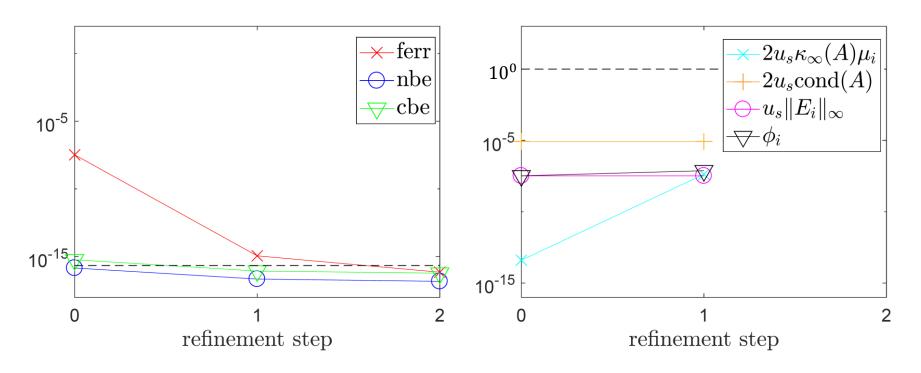
A = gallery('randsvd', 100, 1e9, 2)
b = randn(100,1)
$$\kappa_{\infty}(A) \approx 2e10$$
, cond $(A,x) \approx 5e9$

Standard (LU-based) IR with u_f : single, u: double, u_r : quad



A = gallery('randsvd', 100, 1e9, 2) b = randn(100,1) $\kappa_{\infty}(A) \approx 2e10$, $\operatorname{cond}(A, x) \approx 5e9$

Standard (LU-based) IR with u_f : double, u: double, u_r : quad



• Observation [Rump, 1990]: if \widehat{L} and \widehat{U} are computed LU factors of A in precision u_f , then

$$\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)u_f,$$

even if
$$\kappa_{\infty}(A) \gg u_f^{-1}$$
.

• Observation [Rump, 1990]: if \widehat{L} and \widehat{U} are computed LU factors of A in precision u_f , then

$$\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)u_f,$$

even if $\kappa_{\infty}(A) \gg u_f^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

 $ilde{A} ilde{r_i}$

• To compute the updates d_i , apply GMRES to $\widehat{U}^{-1}\widehat{L}^{-1}Ad_i=\widehat{U}^{-1}\widehat{L}^{-1}r_i$

• Observation [Rump, 1990]: if \widehat{L} and \widehat{U} are computed LU factors of A in precision u_f , then

$$\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)u_f,$$

even if $\kappa_{\infty}(A) \gg u_f^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

$$ilde{A} ilde{r_i}$$

• To compute the updates d_i , apply GMRES to $\widehat{U}^{-1}\widehat{L}^{-1}Ad_i=\widehat{U}^{-1}\widehat{L}^{-1}r_i$

Solve
$$Ax_0 = b$$
 by LU factorization for $i = 0$: maxit
$$r_i = b - Ax_i$$
 Solve $Ad_i = r_i$ via GMRES on $\tilde{A}d_i = \tilde{r}_i$ $x_{i+1} = x_i + d_i$

• Observation [Rump, 1990]: if \widehat{L} and \widehat{U} are computed LU factors of A in precision u_f , then

$$\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)u_f,$$

even if $\kappa_{\infty}(A) \gg u_f^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

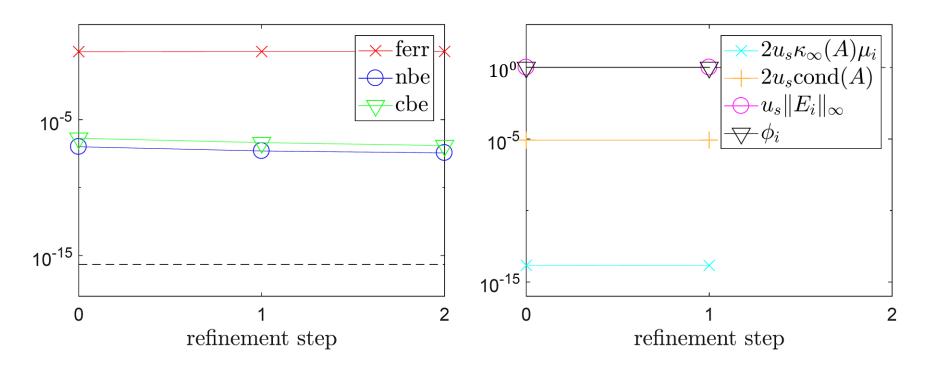
 \tilde{A} \tilde{r}_i

• To compute the updates d_i , apply GMRES to $\widehat{U}^{-1}\widehat{L}^{-1}Ad_i=\widehat{U}^{-1}\widehat{L}^{-1}r_i$

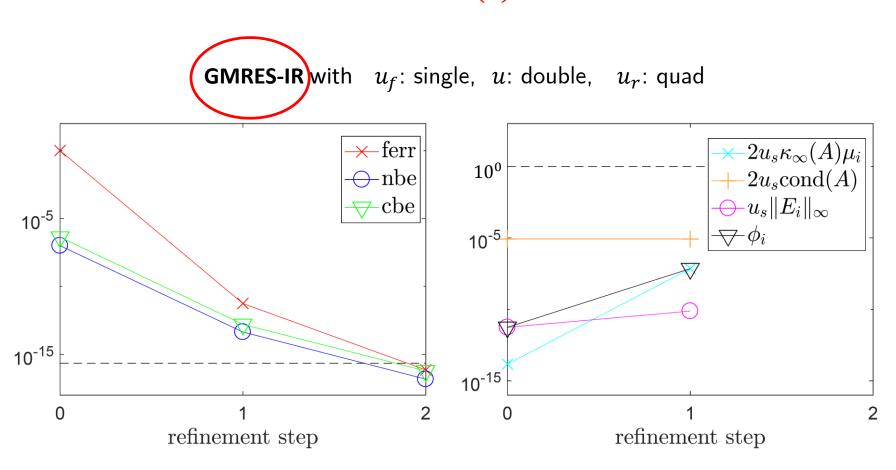
Solve
$$Ax_0 = b$$
 by LU factorization for $i = 0$: maxit
$$r_i = b - Ax_i$$
 Solve $Ad_i = r_i$ via GMRES on $\tilde{A}d_i = \tilde{r}_i$
$$x_{i+1} = x_i + d_i$$

A = gallery('randsvd', 100, 1e9, 2) b = randn(100,1) $\kappa_{\infty}(A) \approx 2e10$, $\operatorname{cond}(A, x) \approx 5e9$

Standard (LU-based) IR with u_f : single, u: double, u_r : quad



A = gallery('randsvd', 100, 1e9, 2) b = randn(100,1) $\kappa_{\infty}(A) \approx 2e10$, $\operatorname{cond}(A, x) \approx 5e9$, $\kappa_{\infty}(\tilde{A}) \approx 2e4$



Benefits of GMRES-IR:

					Backwa	rd error	
	u_f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	10 ⁴	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	108	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	10 ⁴	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	Н	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}

Benefits of GMRES-IR:

					Backwa	rd error	
	u_f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	10^{4}	10 ⁻⁸	10 ⁻⁸	10^{-8}
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	108	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	10 ⁴	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	Н	D	Q	10 ¹²	10^{-16}	10^{-16}	10^{-16}

 \Rightarrow With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$

Benefits of GMRES-IR:

					Backwa	rd error	
	u_f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	10 ⁴	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	10 ⁴	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	Н	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}

 \Rightarrow With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$ $\kappa_{\infty}(A) \leq u^{-1/2} \, u_f^{-1}$

Benefits of GMRES-IR:

					Backwa	rd error	
	u_f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	10 ⁴	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	10 ⁴	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	H	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}

 \Rightarrow If $\kappa_{\infty}(A) \leq 10^{12}$, can use lower precision factorization w/no loss of accuracy!

Benefits of GMRES-IR:

					Backwa	rd error	
	u_f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	10 ⁴	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10 ⁻¹⁶
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	10 ⁴	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	H	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3

- Convergence tolerance τ for GMRES?
 - Smaller $\tau \to \text{more GMRES}$ iterations, potentially fewer refinement steps
 - Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps

- Convergence tolerance τ for GMRES?
 - Smaller $\tau \to \text{more GMRES}$ iterations, potentially fewer refinement steps
 - Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?

- Convergence tolerance τ for GMRES?
 - Smaller $\tau \to \text{more GMRES}$ iterations, potentially fewer refinement steps
 - Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
 - If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
 - e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until n^{th} iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]

- Convergence tolerance τ for GMRES?
 - Smaller $\tau \to \text{more GMRES}$ iterations, potentially fewer refinement steps
 - Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
 - If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
 - e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until n^{th} iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
 - Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner

- Convergence tolerance τ for GMRES?
 - Smaller $\tau \to \text{more GMRES}$ iterations, potentially fewer refinement steps
 - Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
 - If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
 - e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until n^{th} iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
 - Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A, applying \tilde{A} to a vector must be done accurately (precision u^2) in each GMRES iteration

- Convergence tolerance τ for GMRES?
 - Smaller $\tau \to \text{more GMRES}$ iterations, potentially fewer refinement steps
 - Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
 - If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
 - e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until n^{th} iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
 - Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A, applying \tilde{A} to a vector must be done accurately (precision u^2) in each GMRES iteration
- Why GMRES?
 - Theoretical purposes: existing analysis and proof of backward stability [Paige, Rozložník, Strakoš, 2006]
 - In practice, use any solver you want!

Extension to Least Squares Problems

• Want to solve

$$\min_{x} ||b - Ax||_2$$

where $A \in \mathbb{R}^{m \times n}$ (m > n) has rank n

Extension to Least Squares Problems

Want to solve

$$\min_{x} ||b - Ax||_2$$

where $A \in \mathbb{R}^{m \times n}$ (m > n) has rank n

Commonly solved using QR factorization:

$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix}$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular.

$$x = U^{-1}Q_1^T b$$
, $||b - Ax||_2 = ||Q_2^T b||_2$

Extension to Least Squares Problems

Want to solve

$$\min_{x} ||b - Ax||_2$$

where $A \in \mathbb{R}^{m \times n}$ (m > n) has rank n

Commonly solved using QR factorization:

$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix}$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular.

$$x = U^{-1}Q_1^T b$$
, $||b - Ax||_2 = ||Q_2^T b||_2$

 As in linear system case, for ill-conditioned problems, iterative refinement often needed to improve accuracy and stability

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

$$\tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

$$\tilde{r}_i = \tilde{b} - \tilde{A}\tilde{x}_i$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

$$\tilde{A}d_i = \tilde{r}_i$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

$$\tilde{x}_{i+1} = \tilde{x}_i + d_i$$

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

$$\tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

Results for 3-precision IR for linear systems also applies to least squares problems

$$\tilde{r}_i = \tilde{b} - \tilde{A}\tilde{x}_i$$

$$\tilde{A}d_i = \tilde{r}_i$$

$$\tilde{x}_{i+1} = \tilde{x}_i + d_i$$

Least Squares Iterative Refinement

- To apply the existing analysis, we must consider:
 - 1. How is the condition number of \tilde{A} related to the condition number of A?
 - 2. What are bounds on the forward and backward error in solving the correction equation $\tilde{A}d_i = \tilde{r}_i$?
 - We now have a QR factorization rather than an LU factorization, and the augmented system has structure which can be exploited

Augmented System Condition Number

• Result of Björck (1967):

The matrix

$$\tilde{A}_{\alpha} = \begin{bmatrix} \alpha I & A \\ A^T & 0 \end{bmatrix}$$

has condition number bounded by

$$\sqrt{2}\kappa_2(A) \le \min_{\alpha} \kappa_2(\tilde{A}_{\alpha}) \le 2\kappa_2(A), \qquad \max_{\alpha} \kappa_2(\tilde{A}_{\alpha}) > \kappa_2(A)^2$$

and
$$\min_{\alpha} \kappa_2(\tilde{A}_{\alpha})$$
 is attained for $\alpha = 2^{-\frac{1}{2}} \sigma_{min}(A)$.

Augmented System Condition Number

• Result of Björck (1967):

The matrix

$$\tilde{A}_{\alpha} = \begin{bmatrix} \alpha I & A \\ A^T & 0 \end{bmatrix}$$

has condition number bounded by

$$\sqrt{2}\kappa_2(A) \le \min_{\alpha} \kappa_2(\tilde{A}_{\alpha}) \le 2\kappa_2(A), \qquad \max_{\alpha} \kappa_2(\tilde{A}_{\alpha}) > \kappa_2(A)^2$$

and
$$\min_{\alpha} \kappa_2(\tilde{A}_{\alpha})$$
 is attained for $\alpha = 2^{-\frac{1}{2}} \sigma_{min}(A)$.

- Scaling does not change the solution to least squares problem; further, if α is a power of the machine base, it doesn't affect rounding errors
 - \Rightarrow Safe to assume that $\kappa_2(\tilde{A})$ is the same order of magnitude as $\kappa_2(A)$

Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix}$$
 precision u_f

Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix}$$
 precision u_f

Compute $x_0 = U^{-1}Q_1^Tb$, $r_0 = b - Ax_0$ precision u

Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix}$$
 \longrightarrow precision u_f Compute $x_0 = U^{-1}Q_1^Tb$, $r_0 = b - Ax_0$ \longrightarrow precision u For $i = 0, ...$ Compute residuals $\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^Tr_i \end{bmatrix}$ \longrightarrow precision u_r

Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix}$$
 \longrightarrow precision u_f Compute $x_0 = U^{-1}Q_1^Tb$, $r_0 = b - Ax_0$ \longrightarrow precision u For $i = 0, ...$ Compute residuals $\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^Tr_i \end{bmatrix}$ \longrightarrow precision u_r Solve $\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$, via
$$h = U^{-T}g_i$$

$$h = U^{-T}g_i$$

$$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = [Q_1, Q_2]^T f_i$$

$$\Delta r_i = Q \begin{bmatrix} h \\ d_2 \end{bmatrix}$$

$$\Delta x_i = U^{-1}(d_1 - h)$$

Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix}$$
 \longrightarrow precision u_f Compute $x_0 = U^{-1}Q_1^Tb, r_0 = b - Ax_0$ \longrightarrow precision u For $i = 0, ...$ Compute residuals $\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^Tr_i \end{bmatrix}$ \longrightarrow precision u_r Solve $\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$, via
$$h = U^{-T}g_i$$

$$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = [Q_1, Q_2]^Tf_i$$

$$\Delta r_i = Q\begin{bmatrix} h \\ d_2 \end{bmatrix}$$
 precision u
$$\Delta x_i = U^{-1}(d_1 - h)$$

Update
$$x_{i+1} = x_i + \Delta x_i$$
, $r_{i+1} = r_i + \Delta r_i$ precision u

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \mathbf{u}_f \|\tilde{A}\|_{\infty}$$

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \mathbf{u}_f \|\tilde{A}\|_{\infty}$$

$$u_s = u_f$$

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \leq c_{m,n} \mathbf{u}_f \|\tilde{A}\|_{\infty}$$

$$u_s = u_f$$

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

$$\|\mathbf{u}_{s}\|E_{i}\|_{\infty} \leq c_{m,n}\mathbf{u}_{f}\|\tilde{A}\|_{\infty}$$

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \leq c_{m,n} \mathbf{u}_f \|\tilde{A}\|_{\infty}$$

$$u_s = u_f$$

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

$$\|\mathbf{u}_{s}\|E_{i}\|_{\infty} \leq c_{m,n}\mathbf{u}_{f}\|\tilde{A}\|_{\infty}$$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

$$\max(c_1, c_2) \mathbf{u}_s = O(\mathbf{u}_f)$$

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \mathbf{u}_f \|\tilde{A}\|_{\infty}$$

$$u_s = u_f$$

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

$$\|\mathbf{u}_{s}\|E_{i}\|_{\infty} \leq c_{m,n}\mathbf{u}_{f}\|\tilde{A}\|_{\infty}$$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

$$\max(c_1, c_2) \mathbf{u_s} = O(\mathbf{u_f})$$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \leq \mathbf{u}_s G_i |\hat{d}_i|$$

$$\mathbf{u}_{s} \|G_{i}\|_{\infty} = O\left(\mathbf{u}_{f} \|\tilde{A}\|_{\infty}\right)$$

The backward error for the correction solve:

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \mathbf{u}_f \|\tilde{A}\|_{\infty}$$

$$u_s = u_f$$

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

As long as $\kappa_{\infty}(\tilde{A}) \lesssim u_f^{-1}$, expect convergence to limiting relative forward error

$$\frac{\left\|\tilde{x} - \hat{\tilde{x}}\right\|_{\infty}}{\left\|\tilde{x}\right\|_{\infty}} \approx u_r \operatorname{cond}(\tilde{A}, \tilde{x}) + u$$

$$\|\mathbf{u}_{s}\|E_{i}\|_{\infty} \leq c_{m,n}\mathbf{u}_{f}\|\tilde{A}\|_{\infty}$$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \leq \mathbf{u}_s G_i |\hat{d}_i|$$

$$\max(c_1, c_2) \mathbf{u_s} = O(\mathbf{u_f})$$

$$\mathbf{u}_{s} \|G_{i}\|_{\infty} = O\left(\mathbf{u}_{f} \|\tilde{A}\|_{\infty}\right)$$

The backward error for the correction solve:

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \mathbf{u}_f \|\tilde{A}\|_{\infty}$$

$$u_s = u_f$$

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

As long as $\kappa_{\infty}(\tilde{A}) \lesssim u_f^{-1}$, expect convergence to limiting relative forward error

$$\frac{\left\|\tilde{x} - \hat{\tilde{x}}\right\|_{\infty}}{\left\|\tilde{x}\right\|_{\infty}} \approx u_r \operatorname{cond}(\tilde{A}, \tilde{x}) + u$$

$$\|\mathbf{u}_{s}\|E_{i}\|_{\infty} \leq c_{m,n} \|\mathbf{u}_{f}\|\|\tilde{A}\|_{\infty}$$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \leq \mathbf{u}_s G_i |\hat{d}_i|$$

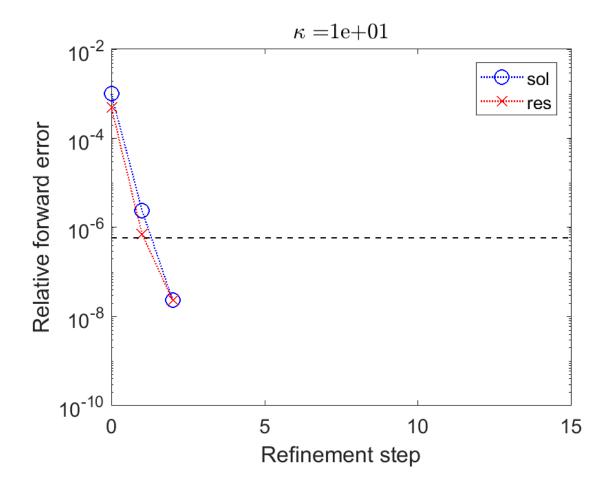
As long as $\kappa_{\infty}(\tilde{A}) \lesssim u_f^{-1}$, expect normwise and componentwise backward errors to be O(u)

$$\max(c_1, c_2) \mathbf{u}_s = O(\mathbf{u}_f)$$

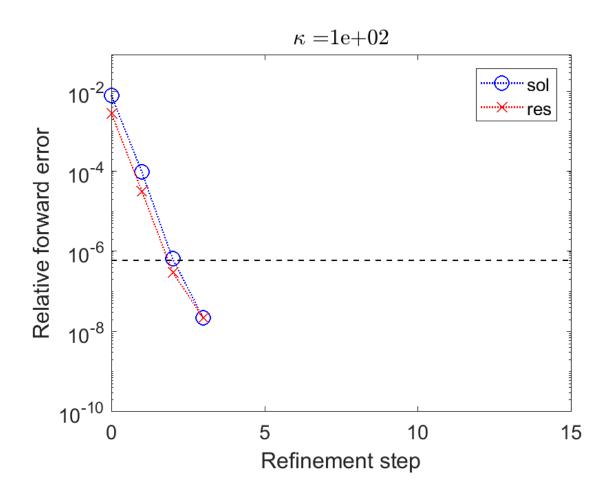
$$\mathbf{u}_{s} \|G_{i}\|_{\infty} = O\left(\mathbf{u}_{f} \|\tilde{A}\|_{\infty}\right)$$

A = gallery('randsvd', [100, 10], kappa,3) b = randn(100,1); b = b./norm(b)

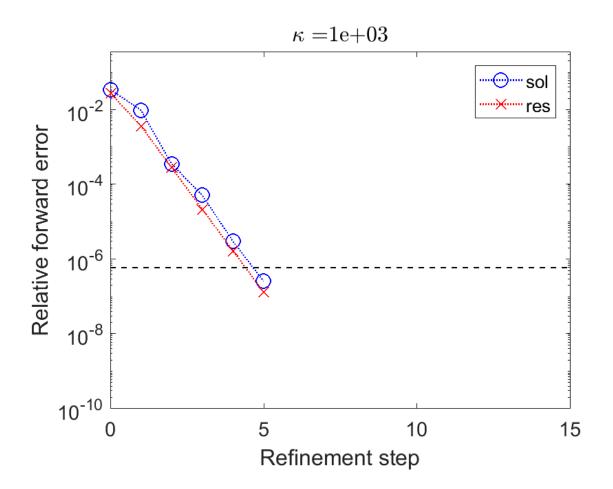
Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double



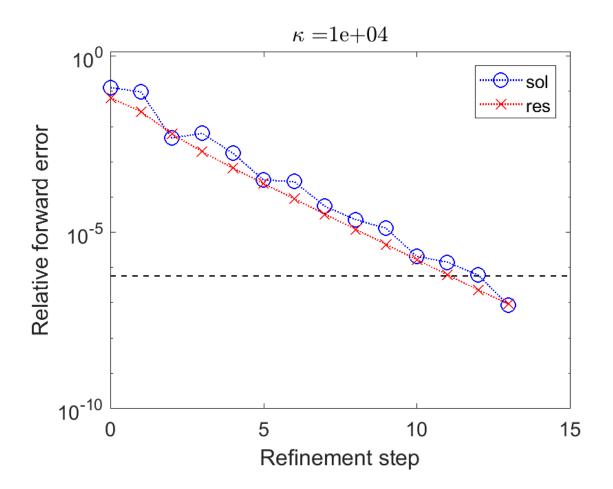
Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double



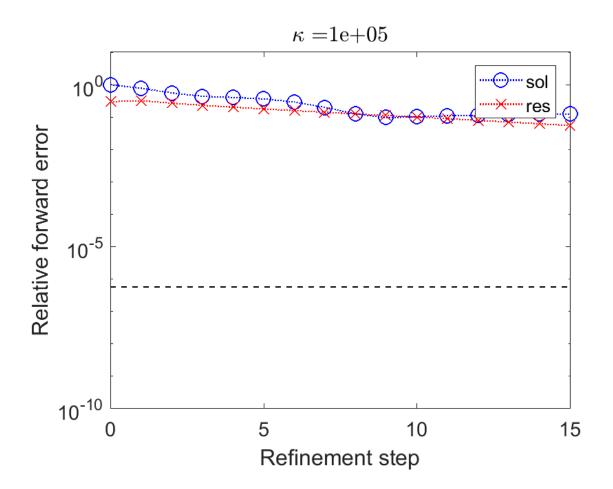
Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double



Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double



Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double



- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?
- Note that augmented system is a saddle-point system; lots of existing work (block diagonal, triangular, constraint-based, ...)

Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$\begin{bmatrix} \alpha I & 0 \\ 0 & \frac{1}{\alpha} \hat{R}^T \hat{R} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R}^T \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R} \end{bmatrix} \equiv M_1 M_2$$

Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$\begin{bmatrix} \alpha I & 0 \\ 0 & \frac{1}{\alpha} \hat{R}^T \hat{R} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R}^T \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R} \end{bmatrix} \equiv M_1 M_2$$

Assuming QR factorization is exact,

$$M_2^{-1} M_1^{-1} \tilde{A} = \begin{vmatrix} I & \frac{1}{\alpha} A \\ \alpha \hat{R}^{-1} \hat{R}^{-T} A^T & 0 \end{vmatrix}$$

is nonsymmetric, diagonalizable, with eigenvalues $\{1, \frac{1}{2}(1 \pm \sqrt{5})\}$.

 However, condition number can still be quite large; unsuitable for proving backward stability of GMRES

Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$\begin{bmatrix} \alpha I & 0 \\ 0 & \frac{1}{\alpha} \hat{R}^T \hat{R} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R}^T \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R} \end{bmatrix} \equiv M_1 M_2$$

Assuming QR factorization is exact,

$$M_2^{-1} M_1^{-1} \tilde{A} = \begin{vmatrix} I & \frac{1}{\alpha} A \\ \alpha \hat{R}^{-1} \hat{R}^{-T} A^T & 0 \end{vmatrix}$$

is nonsymmetric, diagonalizable, with eigenvalues $\{1, \frac{1}{2}(1 \pm \sqrt{5})\}$.

- However, condition number can still be quite large; unsuitable for proving backward stability of GMRES
- If we take split preconditioner

$$M_1^{-1}\tilde{A}M_2^{-1} = \begin{bmatrix} I & A\hat{R} \\ \hat{R}^{-T}A^T & 0 \end{bmatrix}$$

we will have a well-conditioned system

- However, split-preconditioned GMRES is not backward stable
- Potentially useful in practice, not but in theory

• One option:

$$M = \begin{bmatrix} \alpha I & \hat{Q}_1 \hat{R} \\ \hat{R}^T \hat{Q}_1^T & 0 \end{bmatrix}$$

Then we can prove that for the left-preconditioned system,

$$\kappa(M^{-1}\tilde{A}) \le (1 + \mathbf{u_f} c \kappa(A))^2$$

where $c = O(m^{7/2})$, where we note this bound is pessimistic.

• Thus even if $\kappa(A) \gg u_f^{-1}$, the preconditioned system can still be reasonably well conditioned

• One option:

$$M = \begin{bmatrix} \alpha I & \hat{Q}_1 \hat{R} \\ \hat{R}^T \hat{Q}_1^T & 0 \end{bmatrix}$$

Then we can prove that for the left-preconditioned system,

$$\kappa(M^{-1}\tilde{A}) \le (1 + \mathbf{u_f} c \kappa(A))^2$$

where $c = O(m^{7/2})$, where we note this bound is pessimistic.

- Thus even if $\kappa(A) \gg u_f^{-1}$, the preconditioned system can still be reasonably well conditioned
- GMRES run on \tilde{A} with left-preconditioner M gives

$$\mathbf{u}_{\mathbf{s}} \| E_i \|_{\infty} \equiv \mathbf{u} f(m+n) \kappa_{\infty} (M^{-1} \tilde{A})$$

where f is a quadratic polynomial

• One option:

$$M = \begin{bmatrix} \alpha I & \hat{Q}_1 \hat{R} \\ \hat{R}^T \hat{Q}_1^T & 0 \end{bmatrix}$$

Then we can prove that for the left-preconditioned system,

$$\kappa(M^{-1}\tilde{A}) \le (1 + \mathbf{u_f} c \kappa(A))^2$$

where $c = O(m^{7/2})$, where we note this bound is pessimistic.

- Thus even if $\kappa(A) \gg u_f^{-1}$, the preconditioned system can still be reasonably well conditioned
- GMRES run on \tilde{A} with left-preconditioner M gives

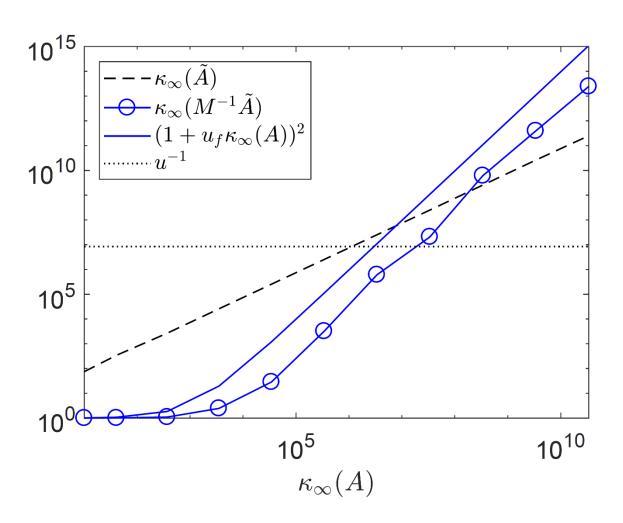
$$\mathbf{u}_{\mathbf{s}} \| E_i \|_{\infty} \equiv \mathbf{u} f(m+n) \kappa_{\infty} (M^{-1} \tilde{A})$$

where f is a quadratic polynomial

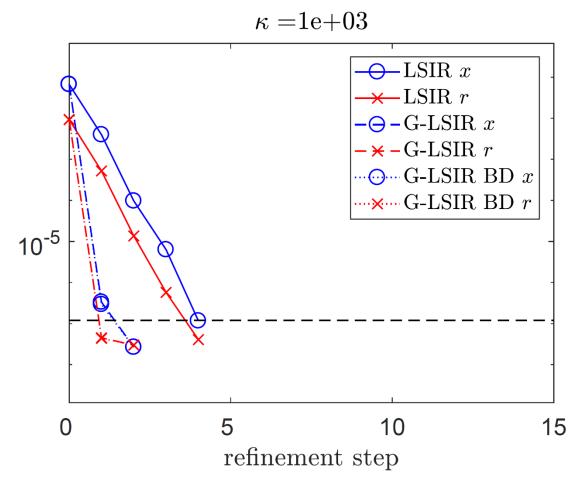
• So for GMRES-based LSIR, $u_s \equiv u$; expect convergence of forward error when $\kappa_{\infty}(A) < u^{-1/2}u_f^{-1}$

gallery('randsvd', [100,10], kappa(i), 3)

QR factorization computed in half precision; preconditioned system computed exactly

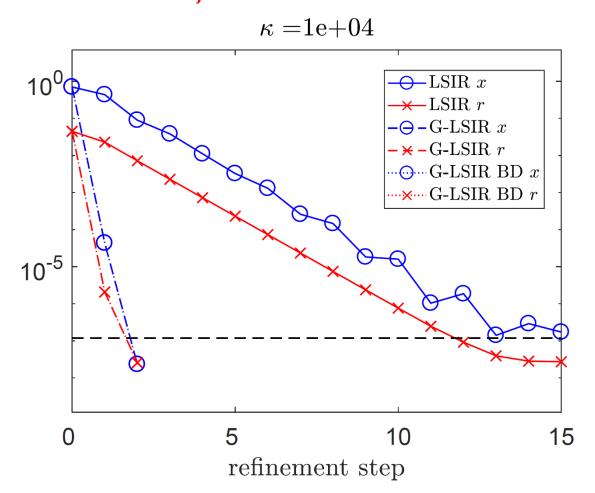


GMRES-LSIR and "Standard" LSIR with $oldsymbol{u_f}$: half, $oldsymbol{u}$: single, $oldsymbol{u_r}$: double

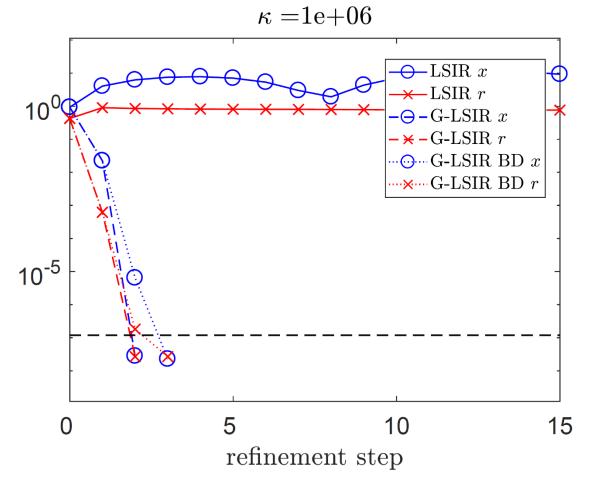


b = randn(100,1); b = b./norm(b)

GMRES-LSIR and "Standard" LSIR with u_f : half, u: single, u_r : double

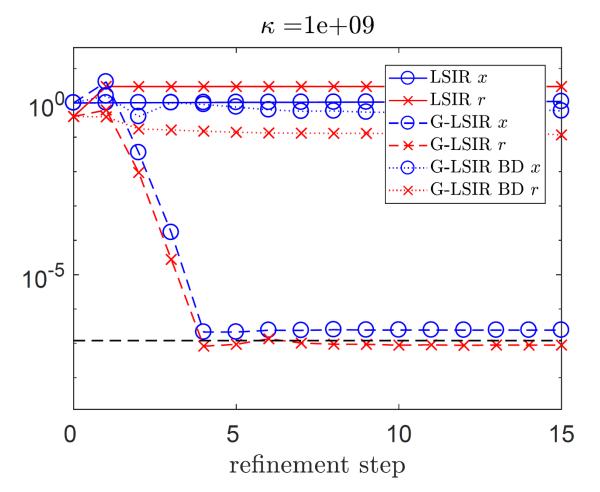


GMRES-LSIR and "Standard" LSIR with $oldsymbol{u_f}$: half, $oldsymbol{u}$: single, $oldsymbol{u_r}$: double



A = gallery('randsvd', [100, 10], kappa, 3)
b = randn(100,1); b = b./norm(b)

GMRES-LSIR and "Standard" LSIR with u_f : half, u: single, u_r : double



• Future machines will support a range of precisions: quarter, half, single, double, quad

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision)

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision)
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision)
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm
- As numerical analysts, we must determine when and where we can exploit lower-precision hardware to improve performance

Thank You!

carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson/