Exploiting Mixed Precision in Numerical Linear Algebra

Erin C. Carson

Faculty of Mathematics and Physics, Charles University

October 29, 2021 CCDC Seminar

University of California, Santa Barbara

Exascale Computing: A Modern Space Race

- "Exascale": $\mathbf{1 0}^{18}$ floating point operations per second
- with maximum energy consumption around 20-40 MWatts
- Large investment in HPC worldwide

Exascale Computing: A Modern Space Race

- "Exascale": $\mathbf{1 0}^{18}$ floating point operations per second
- with maximum energy consumption around 20-40 MWatts
- Large investment in HPC worldwide

- Technical challenges at all levels
hardware to algorithms to applications

Exascale Computing: A Modern Space Race

- "Exascale": $\mathbf{1 0}^{18}$ floating point operations per second
- with maximum energy consumption around 20-40 MWatts
- Large investment in HPC worldwide

- Technical challenges at all levels
hardware to algorithms to applications

Floating Point Formats

$$
(-1)^{\text {sign }} \times 2^{(\text {exponent-offset) }} \times 1 \text {. fraction }
$$

IEEE double (FP64)

IEEE half (FP16)
exponent (5 bits) fraction (10 bits)

exponent (8 bits) fraction (7 bits)
bfloat16

	size	range	u
fp64	64 bits	$10^{ \pm 308}$	1×10^{-16}
fp32	32 bits	$10^{ \pm 38}$	6×10^{-8}
fp16	16 bits	$10^{ \pm 5}$	5×10^{-4}
bfloat16	16 bits	$10^{ \pm 38}$	4×10^{-3}

Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of lowprecision capabilities in hardware:

- Half precision (FP16) defined as storage format in 2008 IEEE standard
- ARM NEON: SIMD architecture, instructions for 8×16-bit, 4×32-bit, $2 \times 64-$ bit
- AMD Radeon Instinct MI25 GPU, 2017:
- single: 12.3 TFLOPS, half: 24.6 TFLOPS
- NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
- NVIDIA Tesla V100, 2017: tensor cores for half precision;
4×4 matrix multiply in one clock cycle
- double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)
- NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16, FP64, Binary, INT4, INT8, bfloat16
- Google's Tensor processing unit (TPU)
- Future exascale supercomputers: (${ }^{2021) ~ E x p e c t e d ~ e x t e n s i v e ~ s u p p o r t ~ f o r ~}$ reduced-precision arithmetic (32/16/8-bit)

Performance of LU factorization on an NVIDIA V100 GPU

[Haidar, Tomov, Dongarra, Higham, 2018]

Mixed Precision Capabilities on Supercomputers

From TOP500:

June 2021

	Accelerator/CP Family	Count	System Share (\%)	Rmax (GFlops)	Rpeak (GFlops)	Cores
1	NVIDIA Volta	97	19.4	$626,503,420$	$1,049,977,600$	$11,875,056$
2	NVIDIA Ampere	26	5.2	$351,252,600$	$505,841,268$	$3,435,116$
3	NVIDIA Pascal	9	1.8	$57,876,640$	$85,807,525$	$1,141,300$

Mixed Precision Capabilities on Supercomputers

From TOP500:

June 2021

	Accelerator/CP Family	Count	System Share (\%)	Rmax (GFIops)	Rpeak (GFIops)	Cores
1	NVIDIA Volta	97	19.4	$626,503,420$	$1,049,977,600$	$11,875,056$
2	NVIDIA Ampere	26	5.2	$351,252,600$	$505,841,268$	$3,435,116$
3	NVIDIA Pascal	9	1.8	$57,876,640$	$85,807,525$	$1,141,300$

June 2019

	Accelerator/CP Family	Count	System Share (\%)	Rmax (GFIops)	Rpeak (GFlops)	Cores
1	NVIDIA Pascal	61	12.2	$106,025,166$	$179,951,012$	$2,738,356$
3	NVIDIA Volta	12	2.4	$224,559,400$	$360,593,742$	$4,488,720$

An exaflop of what?

- When will victory be declared?
- When a supercomputer reaches exaflop performance on the HPL (LINPACK) benchmark (TOP500)
- Solving dense $A x=b$ using Gaussian elimination with partial pivoting in double precision (FP64)

An exaflop of what?

- When will victory be declared?
- When a supercomputer reaches exaflop performance on the HPL (LINPACK) benchmark (TOP500)
- Solving dense $A x=b$ using Gaussian elimination with partial pivoting in double precision (FP64)
- HPL benchmark is typically a compute-bound problem ("BLAS-3")
- Not a good indication of performance for a large number of applications!
- Lots of remaining work even after exascale performance is achieved
- Has led to incorporation of other benchmarks into the TOP500 ranking
- e.g., HPCG: Solving sparse $A x=b$ iteratively using the conjugate gradient method

An exaflop of what?

- HPL doesn't make use of modern mixed precision hardware
- We can already achieve "exaflop" performance today if we allow for mixed precision computations

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

An exaflop of what?

- HPL doesn't make use of modern mixed precision hardware
- We can already achieve "exaflop" performance today if we allow for mixed precision computations

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/
$=>$ HPL-AI: A new mixed precision benchmark

Iterative Refinement for $A x=b$

Iterative refinement: well-established method for improving an approximate solution to $A x=b$
A is $n \times n$ and nonsingular; u is unit roundoff
Solve $A x_{0}=b$ by LU factorization
for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i} \quad$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$
$x_{i+1}=x_{i}+d_{i}$

Iterative Refinement for $A x=b$

Iterative refinement: well-established method for improving an approximate solution to $A x=b$
A is $n \times n$ and nonsingular; u is unit roundoff
Solve $A x_{0}=b$ by LU factorization
(in precision u)
for $i=0$: maxit

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \\
\text { Solve } A d_{i}=r_{i} & \text { (in precision } \left.u^{2}\right) \\
x_{i+1}=x_{i}+d_{i} & \\
\text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \text { (in precision } u) \\
\text { (in precision } u \text {) }
\end{array}
$$

$$
\begin{array}{ll}
\text { "Traditional" } & \begin{array}{l}
\text { (high-precision } \\
\text { residual computation) }
\end{array}
\end{array}
$$

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

Iterative Refinement for $A x=b$

$$
\kappa_{\infty}(A)=\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}
$$

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

- relative forward error is $O(u)$
- relative normwise and componentwise backward errors are $O(u)$

Solve $A x_{0}=b$ by LU factorization
(in precision u)
for $i=0$: maxit

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \\
\text { Solve } A d_{i}=r_{i} & \text { (in precision } \left.u^{2}\right) \\
x_{i+1}=x_{i}+d_{i} & \\
\text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \text { (in precision } u) \\
\text { (in precision } u \text {) }
\end{array}
$$

$$
\begin{array}{ll}
\text { "Traditional" } & \begin{array}{l}
\text { (high-precision } \\
\text { residual computation) }
\end{array}
\end{array}
$$

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

Iterative Refinement for $A x=b$

Solve $A x_{0}=b$ by LU factorization
for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

(in precision u)

$$
\begin{array}{ll}
\text { Solve } A d_{i}=r_{i} & \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u) \\
\text { (in precision } u)
\end{array}
$$

"Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

Iterative Refinement for $A x=b$

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

$$
\operatorname{cond}(A, x)=\left\|\left|A^{-1}\|A| | x \mid\|_{\infty} /\|x\|_{\infty}\right)\right.
$$

- relative forward error is $O(u) \operatorname{cond}(A, x)$
- relative normwise and componentwise backward errors are $O(u)$

Solve $A x_{0}=b$ by LU factorization
(in precision u)
for $i=0$: maxit

$$
r_{i}=b-A x_{i} \quad \quad(\text { in precision } u)
$$

$$
\text { Solve } A d_{i}=r_{i} \quad \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \quad(\text { in precision } u)
$$

$$
x_{i+1}=x_{i}+d_{i}
$$

(in precision u)

"Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

Iterative Refinement for $A x=b$

Solve $A x_{0}=b$ by LU factorization
(in precision $u^{1 / 2}$) for $i=0$: maxi

$$
r_{i}=b-A x_{i} \quad(\text { in precision } u)
$$

$$
\begin{array}{ll}
\text { Solve } A d_{i}=r_{i} & \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u) \\
\text { (in precision } u)
\end{array}
$$

"Low-precision factorization"
[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

Iterative Refinement for $A x=b$

As long as $\kappa_{\infty}(A) \leq u^{-1 / 2}$,

- relative forward error is $O(u) \operatorname{cond}(A, x)$
- relative normwise and componentwise backward errors are $O(u)$

Solve $A x_{0}=b$ by LU factorization
(in precision $u^{1 / 2}$) for $i=0$: maxit

$$
\left.r_{i}=b-A x_{i} \quad \text { (in precision } u\right)
$$

$$
\begin{array}{ll}
\text { Solve } A d_{i}=r_{i} & \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u) \\
\text { (in precision } u)
\end{array}
$$

"Low-precision factorization"
[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?
\Rightarrow 3-precision iterative refinement
$u_{f}=$ factorization precision, $u=$ working precision, $u_{r}=$ residual precision

$$
u_{f} \geq u \geq u_{r}
$$

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?
\Rightarrow 3-precision iterative refinement
$u_{f}=$ factorization precision, $u=$ working precision, $u_{r}=$ residual precision

$$
u_{f} \geq u \geq u_{r}
$$

- New analysis generalizes existing types of IR:
[C. and Higham, SIAM SISC 40(2), 2018]

Traditional	$u_{f}=u, u_{r}=u^{2}$
Fixed precision	$u_{f}=u=u_{r}$
Lower precision factorization	$u_{f}^{2}=u=u_{r}$

(and improves upon existing analyses in some cases)

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?
\Rightarrow 3-precision iterative refinement
$u_{f}=$ factorization precision, $u=$ working precision, $u_{r}=$ residual precision

$$
u_{f} \geq u \geq u_{r}
$$

- New analysis generalizes existing types of IR:
[C. and Higham, SIAM SISC 40(2), 2018]

Traditional	$u_{f}=u, u_{r}=u^{2}$
Fixed precision	$u_{f}=u=u_{r}$
Lower precision factorization	$u_{f}^{2}=u=u_{r}$

(and improves upon existing analyses in some cases)

- Enables new types of IR: (half, single, double), (half, single, quad), (half, double, quad), etc.

Key Aspects of Analysis I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Key Aspects of Analysis I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Define $\mu_{i}: \quad\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty}=\mu_{i}\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Key Aspects of Analysis I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Define $\mu_{i}: \quad\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty}=\mu_{i}\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

For a stable refinement scheme, in early stages we expect

$$
\frac{\left\|r_{i}\right\|}{\|A\|\left\|\hat{x}_{i}\right\|} \approx u \ll \frac{\left\|x-\hat{x}_{i}\right\|}{\|x\|} \longrightarrow \mu_{i} \ll 1
$$

Key Aspects of Analysis I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Define $\mu_{i}: \quad\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty}=\mu_{i}\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

For a stable refinement scheme, in early stages we expect

$$
\frac{\left\|r_{i}\right\|}{\|A\|\left\|\hat{x}_{i}\right\|} \approx u \ll \frac{\left\|x-\hat{x}_{i}\right\|}{\|x\|} \longrightarrow \mu_{i} \ll 1
$$

But close to convergence,

$$
\left\|r_{i}\right\| \approx\|A\|\left\|x-\hat{x}_{i}\right\| \longrightarrow \mu_{i} \approx 1
$$

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution \hat{d}_{i} to $A d_{i}=\hat{r}_{i}$ satisfies:

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
\rightarrow normwise relative forward error is bounded by multiple of u_{s} and is less than 1

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$
example: LU solve:
Assume computed solution \hat{d}_{i} to $A d_{i}=\hat{r}_{i}$ satisfies:

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
\rightarrow normwise relative forward error is bounded

$$
u_{s}\left\|E_{i}\right\|_{\infty} \leq 3 n u_{f}\left\|\left|A^{-1}\|\hat{L}\| \widehat{U}\right|\right\|_{\infty}
$$

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$
example: LU solve:
Assume computed solution \hat{d}_{i} to $A d_{i}=\hat{r}_{i}$ satisfies:

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
\rightarrow normwise relative forward error is bounded

$$
u_{s}\left\|E_{i}\right\|_{\infty} \leq 3 n u_{f}\left\|| A ^ { - 1 } | \left|\hat{L}\|\widehat{U} \mid\|_{\infty}\right.\right.
$$

2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
\rightarrow normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$
example: LU solve:
Assume computed solution \hat{d}_{i} to $A d_{i}=\hat{r}_{i}$ satisfies:

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
\rightarrow normwise relative forward error is bounded by multiple of u_{s} and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
\rightarrow normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

$$
\max \left(c_{1}, c_{2}\right) u_{s} \leq \frac{3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}}{\|A\|_{\infty}}
$$

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$
example: LU solve:
Assume computed solution \hat{d}_{i} to $A d_{i}=\hat{r}_{i}$ satisfies:

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
\rightarrow normwise relative forward error is bounded by multiple of u_{s} and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
\rightarrow normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$
3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$
\rightarrow componentwise relative backward error is bounded by a multiple of u_{s}
E_{i}, c_{1}, c_{2}, and G_{i} depend on A, \hat{r}_{i}, n, and u_{s}

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$
example: LU solve:
Assume computed solution \hat{d}_{i} to $A d_{i}=\hat{r}_{i}$ satisfies:

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
\rightarrow normwise relative forward error is bounded

$$
u_{s}\left\|E_{i}\right\|_{\infty} \leq 3 n u_{f}\left\|| A ^ { - 1 } | \left|\hat{L}\|\widehat{U} \mid\|_{\infty}\right.\right.
$$

by multiple of u_{s} and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
\rightarrow normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

$$
\max \left(c_{1}, c_{2}\right) u_{s} \leq \frac{3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}}{\|A\|_{\infty}}
$$

3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$
\rightarrow componentwise relative backward error is bounded by a multiple of u_{s}

$$
u_{s}\left\|G_{i}\right\|_{\infty} \leq 3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}
$$

E_{i}, c_{1}, c_{2}, and G_{i} depend on A, \hat{r}_{i}, n, and u_{s}

Key Aspects of Analysis II

Allow for general solver:
Let u_{s} be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution \hat{d}_{i} to $A d_{i}=\hat{r}_{i}$ satisfies:
example: LU solve:

$$
u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
\rightarrow normwise relative forward error is bounded by multiple of u_{s} and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
\rightarrow normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

$$
\max \left(c_{1}, c_{2}\right) u_{s} \leq \frac{3 n u_{f}\left\|\left|\hat{L}\|\widehat{U} \mid\|_{\infty}\right.\right.}{\|A\|_{\infty}}
$$

3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$
\rightarrow componentwise relative backward error is bounded by a multiple of u_{s}
E_{i}, c_{1}, c_{2}, and G_{i} depend on A, \hat{r}_{i}, n, and u_{s}

$$
u_{s}\left\|G_{i}\right\|_{\infty} \leq 3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}
$$

$$
u_{s}\left\|E_{i}\right\|_{\infty} \leq 3 n u_{f}\left\|| A ^ { - 1 } | \left|\hat{L}\|\widehat{U} \mid\|_{\infty}\right.\right.
$$

Forward Error for IR3

- Three precisions:
- u_{f} : factorization precision
- u : working precision
- u_{r} : residual computation precision

$$
\begin{aligned}
\kappa_{\infty}(A) & =\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \\
\operatorname{cond}(A) & =\left\|\left|A^{-1}\|A \mid\|_{\infty}\right.\right. \\
\operatorname{cond}(A, x) & =\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty}
\end{aligned}
$$

Forward Error for IR3

- Three precisions:
- u_{f} : factorization precision
- u: working precision
- u_{r} : residual computation precision

$$
\begin{aligned}
\kappa_{\infty}(A) & =\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \\
\operatorname{cond}(A) & =\left\|\left|A^{-1}\|A \mid\|_{\infty}\right.\right. \\
\operatorname{cond}(A, x) & =\left\|\left|A^{-1}\right||A|\right\| x \mid\left\|_{\infty} /\right\| x \|_{\infty}
\end{aligned}
$$

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_{f} \geq u \geq u_{r}$ and effective solve precision u_{s}, if

$$
\phi_{i} \equiv 2 u_{s} \min \left(\operatorname{cond}(A), \kappa_{\infty}(A) \mu_{i}\right)+u_{s}\left\|E_{i}\right\|_{\infty}
$$

is less than 1 , then the forward error is reduced on the i th iteration by a factor $\approx \phi_{i}$ until an iterate \hat{x}_{i} is produced for which

$$
\frac{\left\|x-\hat{x}_{i}\right\|_{\infty}}{\|x\|_{\infty}} \lesssim 4 N u_{r} \operatorname{cond}(A, x)+u
$$

where N is the maximum number of nonzeros per row in A.

Forward Error for IR3

- Three precisions:
- u_{f} : factorization precision
- u: working precision
- u_{r} : residual computation precision

$$
\begin{aligned}
\kappa_{\infty}(A) & =\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \\
\operatorname{cond}(A) & =\left\|\left|A^{-1}\|A \mid\|_{\infty}\right.\right. \\
\operatorname{cond}(A, x) & =\left\|\left|A^{-1}\right||A|\right\| x \mid\left\|_{\infty} /\right\| x \|_{\infty}
\end{aligned}
$$

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_{f} \geq u \geq u_{r}$ and effective solve precision u_{s}, if

$$
\phi_{i} \equiv 2 u_{s} \min \left(\operatorname{cond}(A), \kappa_{\infty}(A) \mu_{i}\right)+u_{s}\left\|E_{i}\right\|_{\infty}
$$

is less than 1 , then the forward error is reduced on the i th iteration by a factor $\approx \phi_{i}$ until an iterate \hat{x}_{i} is produced for which

$$
\frac{\left\|x-\hat{x}_{i}\right\|_{\infty}}{\|x\|_{\infty}} \lesssim 4 N u_{r} \operatorname{cond}(A, x)+u
$$

where N is the maximum number of nonzeros per row in A.
Analogous traditional bounds: $\phi_{i} \equiv 3 n u_{f} \kappa_{\infty}(A)$

Normwise Backward Error for IR3

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_{f} \geq u \geq u_{r}$ and effective solve precision u_{s}, if

$$
\phi_{i} \equiv\left(c_{1} \kappa_{\infty}(A)+c_{2}\right) u_{s}
$$

is less than 1 , then the residual is reduced on the i th iteration by a factor $\approx \phi_{i}$ until an iterate \hat{x}_{i} is produced for which

$$
\left\|b-A \hat{x}_{i}\right\|_{\infty} \lesssim N u\left(\|b\|_{\infty}+\|A\|_{\infty}\left\|\hat{x}_{i}\right\|_{\infty}\right),
$$

where N is the maximum number of nonzeros per row in A.

IR3: Summary

Standard (LU-based) IR in three precisions ($u_{s}=u_{f}$) Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

				Backward error		
u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
H	S	S	10^{4}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
H	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
S	S	S	10^{8}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
S	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
S	D	D	10^{8}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}

IR3: Summary

Standard (LU-based) IR in three precisions ($u_{s}=u_{f}$) Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backward error		
	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	H	S	S	10^{4}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
LP fact.	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
	H	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
	S	S	S	10^{8}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	S	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10^{8}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}

IR3: Summary

Standard (LU-based) IR in three precisions ($u_{s}=u_{f}$) Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backward error		
	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	H	S	S	10^{4}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
Fixed	S	S	S	10^{8}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	H	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	S	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10^{8}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}

IR3: Summary

Standard (LU-based) IR in three precisions ($u_{s}=u_{f}$) Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backward error		
	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	H	S	S	10^{4}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	H	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10^{8}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10^{8}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}

IR3: Summary

Standard (LU-based) IR in three precisions ($u_{s}=u_{f}$) Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

						Backward error	
	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	H	S	S	10^{4}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
New	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	H	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10^{8}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10^{8}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}

IR3: Summary

Standard (LU-based) IR in three precisions ($u_{s}=u_{f}$) Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backward error		
	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	H	S	S	10^{4}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
New	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	H	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10^{8}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10^{8}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}

\Rightarrow Benefit of IR3 vs. "LP fact.": no cond (A, x) term in forward error

IR3: Summary

Standard (LU-based) IR in three precisions ($u_{s}=u_{f}$) Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

						Backward error	
	$\boldsymbol{u}_{\boldsymbol{f}}$	\boldsymbol{u}	$\boldsymbol{u}_{\boldsymbol{r}}$	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	H	S	S	10^{4}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
New	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
LP fact.	H	D	D	10^{4}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
	Sixed	S	S	S	10^{8}	10^{-8}	10^{-8}
Trad.	S	S	D	10^{8}	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
LP fact.	S	D	D	10^{8}	10^{-16}	10^{-16}	$\operatorname{cond}(A, x) \cdot 10^{-16}$
New	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}

\Rightarrow Benefit of IR3 vs. traditional IR: As long as $\kappa_{\infty}(A) \leq 10^{4}$, can use lower precision factorization w/no loss of accuracy!

$$
\begin{aligned}
& A=\text { gallery }(' r a n d s v d ', 100,1 e 3) \\
& b=\operatorname{randn}(100,1) \\
& \boldsymbol{\kappa}_{\infty}(\boldsymbol{A}) \approx 1 e 4
\end{aligned}
$$

Standard (LU-based) IR with $\boldsymbol{u}_{\boldsymbol{f}}$: single, \boldsymbol{u} : double, \boldsymbol{u}_{r} : quad

$$
\begin{aligned}
& A=\text { gallery }(' r a n d s v d ', 100,1 e 7) \\
& b=\operatorname{randn}(100,1) \\
& \boldsymbol{\kappa}_{\infty}(\boldsymbol{A}) \approx 7 \mathrm{e} 7
\end{aligned}
$$

Standard (LU-based) IR with $\boldsymbol{u}_{\boldsymbol{f}}$: single, \boldsymbol{u} : double, \boldsymbol{u}_{r} : quad

$$
\begin{aligned}
& \mathrm{A}=\operatorname{gallery}\left(' r a n d s v d^{\prime}, 100,1 e 9\right) \\
& \mathrm{b}=\operatorname{randn}(100,1) \\
& \boldsymbol{\kappa}_{\infty}(\boldsymbol{A}) \approx 2 \mathrm{e} 10
\end{aligned}
$$

Standard (LU-based) IR with $\boldsymbol{u}_{\boldsymbol{f}}$: single, \boldsymbol{u} : double, $\boldsymbol{u}_{\boldsymbol{r}}$: quad


```
A = gallery('randsvd', 100, 1e9)
b = randn (100,1)
\kappa
```

Standard (LU-based) IR with \boldsymbol{u}_{f} : single, \boldsymbol{u} : double, \boldsymbol{u}_{r} : quad

$$
\begin{aligned}
& \mathrm{A}=\text { gallery('randsvd', 100, 1e9) } \\
& \mathrm{b}=\operatorname{randn}(100,1) \\
& \boldsymbol{\kappa}_{\infty}(\boldsymbol{A}) \approx 2 \mathrm{e} 10
\end{aligned}
$$

Standard (LU-based) IR with \boldsymbol{u}_{f} : double, \boldsymbol{u} : double, \boldsymbol{u}_{r} : quad

GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if \hat{L} and \widehat{U} are computed LU factors of A in precision \boldsymbol{u}_{f}, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f}
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if \hat{L} and \widehat{U} are computed LU factors of A in precision \boldsymbol{u}_{f}, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f}
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

- To compute the updates d_{i}, apply GMRES to

GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if \hat{L} and \widehat{U} are computed LU factors of A in precision u_{f}, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f}
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

- To compute the updates d_{i}, apply GMRES to

Solve $A x_{0}=b$ by LU factorization
for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i}$ via GMRES on $\tilde{A} d_{i}=\tilde{r}_{i}$
$x_{i+1}=x_{i}+d_{i}$

GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if \hat{L} and \widehat{U} are computed LU factors of A in precision u_{f}, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f}
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

- To compute the updates d_{i}, apply GMRES to

Solve $A x_{0}=b$ by LU factorization for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i}$ via GMRES on $\tilde{A} d_{i}=\tilde{r}_{i}$
$x_{i+1}=x_{i}+d_{i}$

```
A = gallery('randsvd', 100, 1e9, 2)
b = randn (100,1)
\kappa\infty
```

Standard (LU-based) IR with $\boldsymbol{u}_{\boldsymbol{f}}$: single, \boldsymbol{u} : double, \boldsymbol{u}_{r} : quad


```
A = gallery('randsvd', 100, 1e9, 2)
b = randn (100,1)
```

$$
\kappa_{\infty}(A) \approx 2 \mathrm{e} 10, \operatorname{cond}(A, x) \approx 5 \mathrm{e} 9, \kappa_{\infty}(\tilde{A}) \approx 2 \mathrm{e} 4
$$

Number of GMRES iterations: $(2,3)$

GMRES-IR: Summary

Benefits of GMRES-IR:

					Backward error		
	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LU-IR	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
GMRES-IR	H	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	H	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}

GMRES-IR: Summary

Benefits of GMRES-IR:

	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	Backward error		norm
comp	Forward error						
LU-IR	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
GMRES-IR	H	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	H	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}

\Rightarrow With GMRES-IR, low precision factorization will work for higher $\kappa_{\infty}(A)$

GMRES-IR: Summary

Benefits of GMRES-IR:

	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	Backward error		norm
comp	Forward error						
LU-IR	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
GMRES-IR	H	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	H	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}
\Rightarrow With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$							
\longrightarrow							

GMRES-IR: Summary

Benefits of GMRES-IR:

						Backward error	
	u_{f}	u	u_{r}	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LU-IR	H	S	D	10^{4}	10^{-8}	10^{-8}	10^{-8}
GMRES-IR	H	S	D	10^{8}	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10^{8}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	S	D	Q	10^{16}	10^{-16}	10^{-16}	10^{-16}
LU-IR	H	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
GMRES-IR	H	D	Q	10^{12}	10^{-16}	10^{-16}	10^{-16}

\Rightarrow As long as $\kappa_{\infty}(A) \leq 10^{12}$, can use half precision factorization and still obtain double precision accuracy!

Comments and Caveats I

- Convergence tolerance τ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps

Comments and Caveats I

- Convergence tolerance τ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- What about overflow, underflow, subnormal numbers?
- Sophisticated scaling methods can help avoid this
- "Squeezing a Matrix into Half Precision, with an Application to Solving Linear Systems" [Higham, Pranesh, Zounon, 2019]

Comments and Caveats II

- Convergence rate of GMRES?

Comments and Caveats II

- Convergence rate of GMRES?
- If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
- e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until $n^{\text {th }}$ iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
- Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner

Comments and Caveats II

- Convergence rate of GMRES?
- If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
- e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until $n^{\text {th }}$ iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
- Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A , applying \tilde{A} to a vector must be done accurately (precision u^{2}) in each GMRES iteration
- Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]
- Defines working precision u_{g} for GMRES and u_{p} for preconditioning within GMRES

Comments and Caveats II

- Convergence rate of GMRES?
- If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
- e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until $n^{\text {th }}$ iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
- Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A , applying \tilde{A} to a vector must be done accurately (precision u^{2}) in each GMRES iteration
- Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]
- Defines working precision u_{g} for GMRES and u_{p} for preconditioning within GMRES
- Why GMRES?
- Theoretical purposes: existing analysis and proof of backward stability [Paige, Rozložník, Strakoš, 2006]
- In practice, use any solver you want!

GMRES-IR in Libraries and Applications

- MAGMA: Dense linear algebra routines for heterogeneous/hybrid architectures

```
magma / src / dxgesv_gmres_gpu.cpp
```

\square

```
DSGESV or DHGESV expert interface.
```

 It computes the solution to a real system of linear equations
 \(A * X=B, A^{* *} T * X=B\), or \(A^{* * H} * X=B\),
 where \(A\) is an \(N-b y-N\) matrix and \(X\) and \(B\) are \(N\)-by-NRHS matrices.
 the accomodate the Single Precision DSGESV and the Half precision dhgesv API.
 precision and iterative refinement solver are specified by facto_type, solver_type.
 For other API parameter please refer to the corresponding dsgesv or dhgesv.
 - NVIDIA's cuSOLVER Library
2.2.1.6. cusolverIRSRefinement_t

The cusolverIRSRefinement_t type indicates which solver type would be used for the specific cusolver function. Most of our experimentation shows that CUSOLVER_IRS_REFINE_GMRES is the best option.

CUSOLVER_IRS_REFINE_GMRES	GMRES (Generalized Minimal Residual) based iterative refinement solver. In recent study, the GMRES method has drawn the scientific community attention for its ability to be used as refinement solver that outperforms the classical iterative refinement method. based on our experimentation, we recommend this setting.

- In production codes: FK6D/ASGarD code (Oak Ridge National Lab, USA) for tokomak containment problem

Performance Results (MAGMA)

- [Haidar, Tomov, Dongarra, Higham, 2018]
- 2-precision GMRES-IR approach $\left(u=u_{r}\right)$ on NVIDIA V100
- IR run to FP64 accuracy, max 400 iterations in GMRES
- Tflops/s measured as $\left(2 n^{3} / 3\right) /$ time

(a) Matrix of type 1: diagonally dominant.

Performance Results (MAGMA)

- [Haidar, Tomov, Dongarra, Higham, 2018]

(a) Matrix of type 3: positive λ with clustered singular values, $\sigma_{i}=(1, \cdots, 1$, $\frac{1}{\text { cond }}$).

Performance Results (MAGMA)

- [Haidar, Tomov, Dongarra, Higham, 2018]

(b) Matrix of type 4: clustered singular values, $\sigma_{i}=\left(1, \cdots, 1, \frac{1}{\text { cond }}\right)$.

Performance Results

[Haidar, Tomov, Dongarra, Higham, 2018]

Performance for Matrices from SuiteSparse

name	Description	size	$\kappa_{\infty}(A)$	$\begin{aligned} & \hline \text { dgesv } \\ & \text { time(s) } \end{aligned}$	dsgesv		dhgesv		dhgesv-TC	
					\# iter	time (s)	\# iter	time (s)	\# iter	time (s)
em192	radar design	26896	10^{6}	5.70	3	3.11	40	5.21	10	2.05
appu	NASA app benchmark	14000	10^{4}	0.43	2	0.27	7	0.24	4	0.19
ns 3 Da	3D Navier Stokes	20414	7.610^{3}	1.12	2	0.69	6	0.54	4	0.43
nd6k	ND problem set	18000	3.510^{2}	0.81	2	0.45	4	0.36	3	0.30
nd12k	ND problem set	36000	4.310^{2}	5.36	2	2.75	3	1.76	3	1.31

HPL-Al Benchmark

- HPL/LINPACK benchmark has been used in TOP500 since the 90s
- Double precision, dense $\mathrm{Ax}=\mathrm{b}$ using GEPP
- Not necessarily indicative of application performance, especially for ML/AI applications
- Doesn't take advantage of low-precision hardware!

HPL-AI Benchmark

- HPL/LINPACK benchmark has been used in TOP500 since the 90s
- Double precision, dense $A x=b$ using GEPP
- Not necessarily indicative of application performance, especially for ML/AI applications
- Doesn't take advantage of low-precision hardware!
- HPL-AI benchmark (2019)
- Highlights confluence of HPC+AI workloads
- Like HPL, solves dense $A x=b$, results still to double precision accuracy
- Achieves this via mixed-precision GMRES-IR
- may be implemented in a way that takes advantage of the current and upcoming devices for accelerating AI workloads

HPL-AI Benchmark Performance

HPL-AI Results (June 2021):

1. Fugaku: 2 EXAFLOP/s (vs. 442 PETAFLOP/s on HPL; 4.5×)
2. Summit: 1.15 EXAFLOP/s (vs. 149 PETAFLOP/s on HPL; $7.7 \times$)

HPL-AI
NOVEMBER 2020

NUMEER 1 SYSTEM

Fugaku

Riken R-ccs
Riken Center for Computational Science
JAPAN

HPL-Al Benchmark

- In the future, HPL-AI will gain same status as benchmarks that complement HPL, like HPCG, Graph500, Green500
- Usage is growing:
- 1 machine (2019), 5 machines (2020), 11 machines (2021)
- More information: https://icl.bitbucket.io/hpl-ai/
- Reference implementation: https://bitbucket.org/icl/hpl-ai/src/

Extension to Least Squares Problems

- Want to solve

$$
\min _{x}\|b-A x\|_{2}
$$

where $A \in \mathbb{R}^{m \times n}(m>n)$ has rank n

- Commonly solved using QR factorization:

$$
A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}
U \\
0
\end{array}\right]
$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular.

$$
x=U^{-1} Q_{1}^{T} b, \quad\|b-A x\|_{2}=\left\|Q_{2}^{T} b\right\|_{2}
$$

Extension to Least Squares Problems

- Want to solve

$$
\min _{x}\|b-A x\|_{2}
$$

where $A \in \mathbb{R}^{m \times n}(m>n)$ has rank n

- Commonly solved using QR factorization:

$$
A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}
U \\
0
\end{array}\right]
$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular.

$$
x=U^{-1} Q_{1}^{T} b, \quad\|b-A x\|_{2}=\left\|Q_{2}^{T} b\right\|_{2}
$$

- As in linear system case, for ill-conditioned problems, iterative refinement often needed to improve accuracy and stability

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right] \quad \tilde{A} \tilde{x}=\tilde{b}
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right] \quad \tilde{A} \tilde{x}=\tilde{b}
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{c}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right] \quad \tilde{r}_{i}=\tilde{b}-\tilde{A} \tilde{x}_{i}
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

$$
\tilde{A} d_{i}=\tilde{r}_{i}
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

$$
\tilde{x}_{i+1}=\tilde{x}_{i}+d_{i}
$$

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right] \quad \tilde{A} \tilde{x}=\tilde{b}
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

$$
\tilde{r}_{i}=\tilde{b}-\tilde{A} \tilde{x}_{i}
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

$$
\tilde{A} d_{i}=\tilde{r}_{i}
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

Results for 3-precision IR for linear systems

$$
\tilde{x}_{i+1}=\tilde{x}_{i}+d_{i}
$$

```
m n
A = gallery('randsvd', [100, 10], kappa,3)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
u_{f}: \text { half, } \quad u \text { : single, } u_{r}: \text { double }
$$


```
m n
A = gallery('randsvd', [100, 10], kappa,3)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
u_{f}: \text { half, } \quad u \text { : single, } u_{r}: \text { double }
$$

$$
\kappa=1 \mathrm{e}+03
$$


```
m n
A = gallery('randsvd', [100, 10], kappa,3)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
\boldsymbol{u}_{f}: \text { half, } \quad \boldsymbol{u}: \text { single, } \boldsymbol{u}_{r}: \text { double }
$$

$$
\kappa=1 \mathrm{e}+05
$$

GMRES-IR for Least Squares

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?
- Note that augmented system is a saddle-point system; lots of existing work (block diagonal, triangular, constraint-based, ...)

GMRES-IR for Least Squares

- Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$
\left[\begin{array}{cc}
\alpha I & 0 \\
0 & \frac{1}{\alpha} \hat{R}^{T} \hat{R}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{\alpha} I & 0 \\
0 & \frac{1}{\sqrt{\alpha}} \hat{R}^{T}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{\alpha} I & 0 \\
0 & \frac{1}{\sqrt{\alpha}} \hat{R}
\end{array}\right] \equiv M_{1} M_{2}
$$

GMRES-IR for Least Squares

- Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$
\left[\begin{array}{cc}
\alpha I & 0 \\
0 & \frac{1}{\alpha} \hat{R}^{T} \hat{R}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{\alpha} I & 0 \\
0 & \frac{1}{\sqrt{\alpha}} \hat{R}^{T}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{\alpha} I & 0 \\
0 & \frac{1}{\sqrt{\alpha}} \hat{R}
\end{array}\right] \equiv M_{1} M_{2}
$$

- Assuming QR factorization is exact,

$$
M_{2}^{-1} M_{1}^{-1} \tilde{A}=\left[\begin{array}{cc}
I & \frac{1}{\alpha} A \\
\alpha \hat{R}^{-1} \hat{R}^{-T} A^{T} & 0
\end{array}\right]
$$

is nonsymmetric, diagonalizable, with eigenvalues $\left\{1, \frac{1}{2}(1 \pm \sqrt{5})\right\}$.

- However, condition number can still be quite large; unsuitable for proving backward stability of GMRES

GMRES-IR for Least Squares

- Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [lpsen, 2001])

$$
\left[\begin{array}{cc}
\alpha I & 0 \\
0 & \frac{1}{\alpha} \hat{R}^{T} \hat{R}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{\alpha} I & 0 \\
0 & \frac{1}{\sqrt{\alpha}} \hat{R}^{T}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{\alpha} I & 0 \\
0 & \frac{1}{\sqrt{\alpha}} \hat{R}
\end{array}\right] \equiv M_{1} M_{2}
$$

- Assuming QR factorization is exact,

$$
M_{2}^{-1} M_{1}^{-1} \tilde{A}=\left[\begin{array}{cc}
I & \frac{1}{\alpha} A \\
\alpha \hat{R}^{-1} \hat{R}^{-T} A^{T} & 0
\end{array}\right]
$$

is nonsymmetric, diagonalizable, with eigenvalues $\left\{1, \frac{1}{2}(1 \pm \sqrt{5})\right\}$.

- However, condition number can still be quite large; unsuitable for proving backward stability of GMRES
- If we take split preconditioner

$$
M_{1}^{-1} \tilde{A} M_{2}^{-1}=\left[\begin{array}{cc}
I & A \hat{R} \\
\hat{R}^{-T} A^{T} & 0
\end{array}\right]
$$

we will have a well-conditioned system

- However, split-preconditioned GMRES is not backward stable
- Potentially useful in practice, not but in theory

GMRES-IR for Least Squares

- One option:

$$
M=\left[\begin{array}{cc}
\alpha I & \hat{Q}_{1} \hat{R} \\
\hat{R}^{T} \widehat{Q}_{1}^{T} & 0
\end{array}\right]
$$

- Then we can prove that for the left-preconditioned system,

$$
\kappa\left(M^{-1} \tilde{A}\right) \leq\left(1+u_{f} c \kappa(A)\right)^{2}
$$

where $c=O\left(m^{2}\right)$, where we note this bound is pessimistic.

- Thus even if $\kappa(A) \gg \boldsymbol{u}_{f}^{-1}$, the preconditioned system can still be reasonably well conditioned

GMRES-IR for Least Squares

- One option:

$$
M=\left[\begin{array}{cc}
\alpha I & \hat{Q}_{1} \hat{R} \\
\hat{R}^{T} \hat{Q}_{1}^{T} & 0
\end{array}\right]
$$

- Then we can prove that for the left-preconditioned system,

$$
\kappa\left(M^{-1} \tilde{A}\right) \leq\left(1+u_{f} C \kappa(A)\right)^{2}
$$

where $c=O\left(m^{2}\right)$, where we note this bound is pessimistic.

- Thus even if $\kappa(A) \gg \boldsymbol{u}_{f}^{-1}$, the preconditioned system can still be reasonably well conditioned
- GMRES run on \tilde{A} with left-preconditioner M gives

$$
u_{s}\left\|E_{i}\right\|_{\infty} \equiv u f(m+n) \kappa_{\infty}\left(M^{-1} \tilde{A}\right)
$$

where f is a quadratic polynomial

GMRES-IR for Least Squares

- One option:

$$
M=\left[\begin{array}{cc}
\alpha I & \widehat{Q}_{1} \hat{R} \\
\hat{R}^{T} \hat{Q}_{1}^{T} & 0
\end{array}\right]
$$

- Then we can prove that for the left-preconditioned system,

$$
\kappa\left(M^{-1} \tilde{A}\right) \leq\left(1+u_{f} c \kappa(A)\right)^{2}
$$

where $c=O\left(m^{2}\right)$, where we note this bound is pessimistic.

- Thus even if $\kappa(A) \gg \boldsymbol{u}_{f}^{-1}$, the preconditioned system can still be reasonably well conditioned
- GMRES run on \tilde{A} with left-preconditioner M gives

$$
u_{s}\left\|E_{i}\right\|_{\infty} \equiv u f(m+n) \kappa_{\infty}\left(M^{-1} \tilde{A}\right)
$$

where f is a quadratic polynomial

- So for GMRES-based LSIR, $u_{s} \equiv u$; expect convergence of forward error when $\kappa_{\infty}(A)<u^{-1 / 2} \boldsymbol{u}_{f}^{-1}$
[C., Higham, Pranesh, SISC 2020]
- Multistage mixed precision iterative refinement [Oktay, C., 2021]
- Other variants of least squares: underdetermined LS, total LS, data LS
- Use of inexact preconditioners: ILU, SPAI, etc.

The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad

The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
- e.g., bfloat16 (truncated 16-bit version of single precision), posits

The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
- e.g., bfloat16 (truncated 16-bit version of single precision), posits
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm

The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
- e.g., bfloat16 (truncated 16-bit version of single precision), posits
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm
- As numerical analysts, we must determine when and where we can exploit lower-precision hardware to improve performance

Mixed precision in NLA

- Iterative refinement:
- Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...
- More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., Higham, Pranesh, 2020], [Amestoy et al., 2021]
- BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]
- Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], [Abdelfattah et al., 2020]
- Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 2001], [Petschow et al., 2014], [Alvermann et al., 2019]
- Sparse direct solvers: [Buttari et al., 2008]
- Orthogonalization: [Yamazaki et al., 2015]
- Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, Kronbichler, 2017, 2019]
- (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., IJHPC, 2021]

Thank You!

carson@karlin.mff.cuni.cz

 www.karlin.mff.cuni.cz/~ carson/
Select References

- Carson, E., \& Higham, N. J. (2018). Accelerating the solution of linear systems by iterative refinement in three precisions. SIAM J. SISC, 40(2), A817-A847.
- Carson, E., \& Higham, N. J. (2017). A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems. SIAM J. SISC, 39(6), A2834-A2856.
- Carson, E., Higham, N. J., \& Pranesh, S. (2020). Three-Precision GMRESBased Iterative Refinement for Least Squares Problems. SIAM J. SISC (to appear).
- Haidar, A., Tomov, S., Dongarra, J., \& Higham, N. J. (2018, November). Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixedprecision iterative refinement solvers. In Proc. SC18 (pp. 603-613). IEEE.
- Higham, N. J., Pranesh, S., \& Zounon, M. (2019). Squeezing a matrix into half precision, with an application to solving linear systems. SIAM J. SISC, 41(4), A2536-A2551.
- Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E., Cojean, T., Dongarra, J., et al. (2021). A survey of numerical methods utilizing mixed precision arithmetic. IJHPC, 35(1), 344-369.

