
Erin C. Carson
Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

SNA '19

January 21-25, 2019

High-Performance Variants of 
Krylov Subspace Methods: II/II

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16_027/0008495



Review
• Cost of data movement (relative to low computational cost) causes 

bottlenecks in classical formulations of Krylov subspace methods

• Motivates various approaches

• Pipelined Krylov subspace methods

• Add auxiliary recurrences to enable decoupling of inner products 
and SpMVs; can then be overlapped using non-blocking MPI

• Effectively hides the cost of synchronization in each iteration

• s-step Krylov subspace methods

• Block iterations in groups of s; use block computation of O(s) basis 
vectors and block orthogonalization

• Increases temporal locality, allowing asymptotic reduction in 
number of messages per iteration

• Many practical implementation details: choosing parameters, 
preconditioning, etc. 

• For certain (e.g., latency-bound) problems, these approaches can reduce the 
time-per-iteration cost
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The effects of finite precision

Well-known that roundoff error has two 
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no 
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6
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𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG
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Conjugate Gradient method for solving Ax = b
double precision (휀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖
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Lecture Outline

• Effects of finite precision in Krylov subspace methods

• Maximum attainable accuracy

• Convergence delay

• Existing results for classical Krylov subspace methods

• Results for pipelined and s-step Krylov subspace methods

• Potential remedies for finite precision error in high-performance variants

• Choosing a method in practice

• The future of Krylov subspace methods
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• Accuracy 𝑥 −  𝑥𝑖 generally not computable, but 𝑥 −  𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy 

Maximum attainable accuracy
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• In finite precision HSCG, iterates are updated by 

 𝑥𝑖 =  𝑥𝑖−1 +  𝛼𝑖−1  𝑝𝑖−1 − 𝜹𝒙𝒊 and          𝑟𝑖 =  𝑟𝑖−1 −  𝛼𝑖−1𝐴  𝑝𝑖−1 − 𝜹𝒓𝒊
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𝑓𝑖 ≤ 𝑂(휀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 휀  𝑚=0
𝑖 𝑁𝐴 𝐴  𝑥𝑚 +  𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 휀 𝑁𝐴 𝐴 𝐴−1  𝑚=0
𝑖  𝑟𝑚 Sleijpen and van der Vorst, 1995
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Maximum Attainable Accuracy in HPC Variants

• Various synchronization-reducing modifications/variants discussed in Part I

• Modified recurrence coefficient computation 

• 3-term CG (STCG)

• Addition of auxiliary recurrences

• Pipelined CG

• s-step methods
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Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?
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Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified formula for  𝛼𝑖−1
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Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for 
HSCG
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Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for 
HSCG

• Residual gap bounded by sum of local errors PLUS local errors 
multiplied by factors which depend on 

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

⇒ Large residual oscillations can cause these factors to be large!

⇒ Local errors can be amplified!
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STCG
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STCG
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Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?
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Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

• To isolate the effects, we consider a simplified version of a pipelined 
method

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax 

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)
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Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 휀

1 − 𝑂 휀
𝜅( 𝑈𝑖) 𝐴  𝑃𝑖 + 𝐴  𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 −  𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 −  𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1  𝛽1 … …  𝛽1
 𝛽2 ⋯  𝛽𝑖−1

0 1  𝛽2 …  𝛽2 ⋯  𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1  𝛽𝑖−1

0 ⋯ ⋯ 0 1

16see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]
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0 ⋯ ⋯ 0 1

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

16see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]
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• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!
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 𝑈𝑖 =

1 −  𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 −  𝛽𝑖−1

0 … 0 1

 𝑈𝑖
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• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Very similar to the results for attainable accuracy in the 3-term STCG
• Seemingly innocuous change can cause drastic loss of accuracy
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Simple pipelined CG

17

effect of using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖



Simple pipelined CG

17

effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖



Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)

18

(Cools, et al., 2018)
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 𝑥𝑖+1 =  𝑥𝑖 +  𝛼𝑖  𝑝𝑖 + 𝛿𝑖
𝑥

 𝑟𝑖+1 =  𝑟𝑖 −  𝛼𝑖  𝑠𝑖 + 𝛿𝑖
𝑟

 𝑤𝑖+1 =  𝑤𝑖 −  𝛼𝑖  𝑧𝑖 + 𝛿𝑖
𝑤

 𝑢𝑖+1 = 𝑢𝑖 −  𝛼𝑖  𝑞𝑖 + 𝛿𝑖
𝑢

 𝑝𝑖 =  𝑢𝑖 +  𝛽𝑖  𝑝𝑖−1 + 𝛿𝑖
𝑝

 𝑠𝑖 =  𝑤𝑖 +  𝛽𝑖  𝑠𝑖−1 + 𝛿𝑖
𝑠

 𝑧𝑖 = 𝐴  𝑚𝑖 +  𝛽𝑖  𝑧𝑖−1 + 𝛿𝑖
𝑧

 𝑞𝑖 =  𝑚𝑖 +  𝛽𝑖  𝑞𝑖−1 + 𝛿𝑖
𝑞

(Cools, et al., 2018)
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𝑓𝑖+1 = 𝑏 − 𝐴 𝑥𝑖+1 −  𝑟𝑖+1

= 𝑓𝑖 −  𝛼𝑖 𝐴  𝑝𝑖 −  𝑠𝑖 − 𝐴𝛿𝑖
𝑥 − 𝛿𝑖

𝑟

𝑔𝑖 =  𝛽𝑖𝑔𝑖−1 + 𝐴 𝑢𝑖+1 −  𝑤𝑖+1 + 𝐴𝛿𝑖
𝑝

− 𝛿𝑖
𝑠

ℎ𝑖+1 = ℎ𝑖 −  𝛼𝑖 𝐴 𝑞𝑖 −  𝑧𝑖 + 𝐴𝛿𝑖
𝑢 − 𝛿𝑖

𝑤

(Cools, et al., 2018)



Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)
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 𝑥𝑖+1 =  𝑥𝑖 +  𝛼𝑖  𝑝𝑖 + 𝛿𝑖
𝑥

 𝑟𝑖+1 =  𝑟𝑖 −  𝛼𝑖  𝑠𝑖 + 𝛿𝑖
𝑟

 𝑤𝑖+1 =  𝑤𝑖 −  𝛼𝑖  𝑧𝑖 + 𝛿𝑖
𝑤

 𝑢𝑖+1 = 𝑢𝑖 −  𝛼𝑖  𝑞𝑖 + 𝛿𝑖
𝑢

 𝑝𝑖 =  𝑢𝑖 +  𝛽𝑖  𝑝𝑖−1 + 𝛿𝑖
𝑝

 𝑠𝑖 =  𝑤𝑖 +  𝛽𝑖  𝑠𝑖−1 + 𝛿𝑖
𝑠

 𝑧𝑖 = 𝐴  𝑚𝑖 +  𝛽𝑖  𝑧𝑖−1 + 𝛿𝑖
𝑧

 𝑞𝑖 =  𝑚𝑖 +  𝛽𝑖  𝑞𝑖−1 + 𝛿𝑖
𝑞

𝑓𝑖+1 = 𝑏 − 𝐴 𝑥𝑖+1 −  𝑟𝑖+1

= 𝑓𝑖 −  𝛼𝑖 𝐴  𝑝𝑖 −  𝑠𝑖 − 𝐴𝛿𝑖
𝑥 − 𝛿𝑖

𝑟

𝑔𝑖 =  𝛽𝑖𝑔𝑖−1 + 𝐴 𝑢𝑖+1 −  𝑤𝑖+1 + 𝐴𝛿𝑖
𝑝

− 𝛿𝑖
𝑠

ℎ𝑖+1 = ℎ𝑖 −  𝛼𝑖 𝐴 𝑞𝑖 −  𝑧𝑖 + 𝐴𝛿𝑖
𝑢 − 𝛿𝑖

𝑤

𝑗𝑖 =  𝛽𝑖𝑗𝑖−1 + 𝐴𝛿𝑖
𝑞

− 𝛿𝑖
𝑧

(Cools, et al., 2018)



Attainable Accuracy of Pipelined CG

𝑓𝑖+1 = 𝑓0 −  

𝑗=0

𝑖

 𝛼𝑗𝑔𝑗 −  

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)
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Attainable Accuracy of Pipelined CG

𝑓𝑖+1 = 𝑓0 −  

𝑗=0

𝑖

 𝛼𝑗𝑔𝑗 −  

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)
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𝑔𝑗 =  

𝑘=1

𝑗

 𝛽𝑘 𝑔0 +  

𝑘=1

𝑗

 

ℓ=𝑘+1

𝑗

 𝛽ℓ 𝐴𝛿𝑘
𝑝

− 𝛿𝑘
𝑠 +  

𝑘=1

𝑗

 

ℓ=𝑘+1

𝑗

 𝛽ℓ ℎ𝑘

ℎ𝑘 = ℎ0 −  

ℓ=0

𝑘−1

 𝛼ℓ𝑗ℓ +  

ℓ=0

𝑘−1

(𝐴𝛿ℓ
𝑢 + 𝛿ℓ

𝑤)

𝑗ℓ =  

𝑚=1

ℓ

 𝛽𝑚 𝑗0 +  

𝑚=1

ℓ

 

𝑛=𝑚+1

ℓ

 𝛽𝑛 𝐴𝛿𝑚
𝑞

− 𝛿𝑚
𝑧



Attainable Accuracy of Pipelined CG

𝑓𝑖+1 = 𝑓0 −  

𝑗=0

𝑖

 𝛼𝑗𝑔𝑗 −  

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)
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𝑔𝑗 =  

𝑘=1

𝑗

 𝛽𝑘 𝑔0 +  

𝑘=1

𝑗

 

ℓ=𝑘+1

𝑗

 𝛽ℓ 𝐴𝛿𝑘
𝑝

− 𝛿𝑘
𝑠 +  

𝑘=1

𝑗

 

ℓ=𝑘+1

𝑗

 𝛽ℓ ℎ𝑘

ℎ𝑘 = ℎ0 −  

ℓ=0

𝑘−1

 𝛼ℓ𝑗ℓ +  

ℓ=0

𝑘−1

(𝐴𝛿ℓ
𝑢 − 𝛿ℓ

𝑤)

𝑗ℓ =  

𝑚=1

ℓ

 𝛽𝑚 𝑗0 +  

𝑚=1

ℓ

 

𝑛=𝑚+1

ℓ

 𝛽𝑛 𝐴𝛿𝑚
𝑞

− 𝛿𝑚
𝑧

Local rounding errors 
all potentially 

amplified!



Pipelined CG
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effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖



Pipelined CG

20

effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖



Effect of Deeper Pipelines
• Deeper pipeline -> effectively adding more auxiliary recurrences

• We expect residual gap to increase with increasing pipeline depth

• Some initial work (Cools, 2018) uses Chebyshev shifts to attempt to 
stabilize (deep) pipelined CG; but increasing gap is still apparent
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2D Poisson problem, 𝑁 = 200, 𝑏 set such that 𝑥𝑖 = 1/ 𝑁

(Cools, 2018) 

square root 
breakdown + 
explicit restart



s-step CG

Outer Loop

Compute basis 
O(s) SPMVs

O(𝑠2) Inner 
Products (one 

synchronization)

Inner Loop

Local Vector 
Updates (no 

comm.)

End Inner Loop

Inner Outer Loop

s 
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and 

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1 ] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
22



Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴  𝒴𝑘 =  𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ =  𝑥𝑘,𝑗−1

′ +  𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ =  𝑟𝑘,𝑗−1

′ − ℬ𝑘  𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with    𝑞𝑘,𝑗−1
′ = fl(  𝛼𝑠𝑘+𝑗−1  𝑝𝑘,𝑗−1

′ )

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 =  𝒴𝑘  𝑥𝑘,𝑗
′ +  𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 =  𝒴𝑘  𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗
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Sources of local roundoff error in s-step CG
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Error in updating 
coefficient vectors
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Error in 
basis change

Sources of local roundoff error in s-step CG
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• We can write the gap between the true and updated residuals 𝑓 in terms 
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper 

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−  

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +  

𝑖=1

𝑠

𝐴  𝒴ℓ𝜉ℓ,𝑖 +  𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ  𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −  

𝑖=1

𝑗

𝐴  𝒴𝑘𝜉𝑘,𝑖 +  𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ  𝑞𝑘,𝑖−1
′
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For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 휀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 휀𝒄 𝚪𝒌  

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 휀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

 Γ𝑘 = max
ℓ≤𝑘

Γℓ ,     where     Γℓ =  𝒴ℓ
+ ⋅  𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖

(see C., 2015)
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s-step CG

26



s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])
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s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])
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s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra 
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of synchronizations!

27



s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra 
SpMVs and inner products), already at 𝑠 = 4 we are worse than HSCG in terms of number 
of synchronizations!

27

⇒ Can use other, more well-conditioned bases to improve convergence rate 
and accuracy (see, e.g. Philippe and Reichel, 2012). 



Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}
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• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials 

• Chebyshev polynomials

• Improve basis condition number to improve numerical behavior:  Use different 
polynomials to compute a basis for the same subspace. 

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy 
(Leland, 1989), (Chronopoulous & Swanson, 1995)
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Better conditioned bases

29

• The Newton basis:

𝑣, 𝐴 − 𝜃1 𝑣, 𝐴 − 𝜃2 𝐴 − 𝜃1 𝑣, … , 𝐴 − 𝜃𝑠 ⋯ 𝐴 − 𝜃1 𝑣

where {𝜃1, … , 𝜃𝑠} are approximate eigenvalues of 𝐴,  ordered according to Leja ordering

– In practice: recover Ritz values from the first few iterations, iteratively refine 
eigenvalue estimates to improve basis

– Used by many to improve 𝑠-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel 
(1995), Hoemmen (2010)



Better conditioned bases

• The Newton basis:

𝑣, 𝐴 − 𝜃1 𝑣, 𝐴 − 𝜃2 𝐴 − 𝜃1 𝑣, … , 𝐴 − 𝜃𝑠 ⋯ 𝐴 − 𝜃1 𝑣

where {𝜃1, … , 𝜃𝑠} are approximate eigenvalues of 𝐴,  ordered according to Leja ordering

– In practice: recover Ritz values from the first few iterations, iteratively refine 
eigenvalue estimates to improve basis

– Used by many to improve 𝑠-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel 
(1995), Hoemmen (2010)

• Chebyshev basis: given ellipse enclosing spectrum of 𝐴 with foci at 𝑑 ± 𝑐, we can 
generate the scaled and shifted Chebyshev polynomials as:

 𝜏𝑗 𝑧 =  𝜏𝑗
𝑑−𝑧

𝑐
𝜏𝑗

𝑑

𝑐

where 𝜏𝑗 𝑗≥0
are the Chebyshev polynomials of the first kind

– In practice: estimate 𝑑 and 𝑐 parameters from Ritz values recovered from the first 
few iterations

– Used by many to improve 𝑠-step variants: e.g., de Sturler (1991), Joubert and 
Carey (1992), de Sturler and van der Vorst (1995)

29



"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like 
exact CG run on a larger matrix  𝐴 whose eigenvalues lie in tight clusters 
around the eigenvalues of 𝐴
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• At least one small interval containing an eigenvalue of A is found by 
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• The algorithm behaves as if it used full reorthogonalization until a close 
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern 
and implies that some eigenvalue approximation has converged
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• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like 
exact CG run on a larger matrix  𝐴 whose eigenvalues lie in tight clusters 
around the eigenvalues of 𝐴

• Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

• Complete rounding error analysis

• Computed eigenvalues lie between extreme eigenvalues of A to within a 
small multiple of machine precision

• At least one small interval containing an eigenvalue of A is found by 
the Nth iteration

• The algorithm behaves as if it used full reorthogonalization until a close 
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern 
and implies that some eigenvalue approximation has converged

• Can we make similar statements for HPC variants?
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Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976] 

휀0 = 𝑂 휀𝑁

휀1 = 𝑂 휀𝑛𝜃

31

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 휀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2휀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  휀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3휀0 + 휀1 𝜎2
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 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976] 

휀0 = 𝑂 휀𝑁

휀1 = 𝑂 휀𝑛𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 휀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2휀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  휀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3휀0 + 휀1 𝜎2

s-step Lanczos [C., Demmel, 2015]:

휀0 = 𝑂 휀𝑁𝚪𝟐

휀1 = 𝑂 휀𝑛𝜃𝚪

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+  𝒴ℓ 31



• Roundoff errors in s-step variant follow same pattern as classical variant, 
but amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis 
conditioning (dating back to late ‘80s)

The amplification term 
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• Using the definition     
Γ ≡ Γ𝑘 = max

ℓ≤𝑘
𝒴ℓ

+ ∙ 𝒴ℓ

gives simple, but loose bounds

• What we really need: 𝒴 |𝑦′| ≤ Γ 𝒴𝑦′ to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.
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• Roundoff errors in s-step variant follow same pattern as classical variant, 
but amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis 
conditioning (dating back to late ‘80s)

• Using the definition     
Γ ≡ Γ𝑘 = max

ℓ≤𝑘
𝒴ℓ

+ ∙ 𝒴ℓ

gives simple, but loose bounds

• What we really need: 𝒴 |𝑦′| ≤ Γ 𝒴𝑦′ to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Alternate definition of 𝚪 gives tighter bounds; requires light bookkeeping 

• Example: for bounds on  𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 and  𝑣𝑖+1

𝑇  𝑣𝑖+1 − 1 , we can use the 
definition

Γ𝑘,𝑗 ≡ max
𝑥∈{  𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ ,  𝑣𝑘,𝑗

′ ,  𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥

 𝒴𝑘𝑥

The amplification term 
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Problem: 2D Poisson, 
𝑛 = 256, 
random starting vector 

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  휀0 2

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2휀0𝜎

Computed value

Bound 
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Problem: 2D Poisson, 
𝑛 = 256, 
random starting vector 

Computed value

Bound 
Amplification factor Γ𝑘,𝑗
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𝒔 = 𝟖
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𝒔 = 𝟏𝟐

Problem: 2D Poisson, 
𝑛 = 256, 
random starting vector 

Computed value

Bound 
Amplification factor Γ𝑘,𝑗

2
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Γ ≤ 24휀 𝑁 + 11𝑠 + 15
−  1 2

≈
1

𝑁휀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 
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Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 
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𝑂(휀𝑁3 𝐴 )

𝑂(휀𝑁3 𝐴 )

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos behaves 
the same numerically 
as classical Lanczos

If 𝚪 ≈ 𝟏:

s-step Lanczos
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Problem: Diagonal matrix with 𝑛 = 100 with 
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector



Problem: Diagonal matrix with 𝑛 = 100 with 
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ𝑘,𝑗
2

24(휀(𝑛 + 11𝑠 + 15) −1

𝒔 = 𝟐

monomial basis Chebyshev basis
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Bottom Plots:

𝒔 = 𝟐

Computed Ritz values True eigenvalues 

Bounds on range of computed Ritz values

monomial basis Chebyshev basis
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𝒔 = 𝟒

Bottom Plots:
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𝒔 = 𝟏𝟐

Bottom Plots:

Problem: Diagonal matrix with 𝑛 = 100 with 
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
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Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 2

Γ ≤ 7 × 102

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence 36
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Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
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Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between 
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, Chebyshev basis, 𝑠 = 8

Γ ≤ 2 × 103

Measure of loss 
of orthogonality

Measure of Ritz 
value convergence 36



Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions 
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =  

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

37
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• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions 
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =  

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed  𝜔 𝑖 (𝜆) be associated with 
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𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
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• For classical CG, yes; proved by Greenbaum [1989]
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in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =  

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed  𝜔 𝑖 (𝜆) be associated with 
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+
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+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

• For pipelined CG and s-step CG, THOROUGH ANALYSIS NEEDED!
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(matrix bcsstk03)

Differences in entries 𝛾𝑖 , 𝛿𝑖 in Jacobi matrices 𝑇𝑖 in HSCG vs. GVCG

see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]
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*

o
x

eigenvalues of 𝐴

eigenvalues of  𝑇400, HSCG

eigenvalues of  𝑇400, GVCG

value

fr
eq

u
en

cy

see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]
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A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3
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A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires 
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10, 

any of these methods will work!

Need adaptive, problem-dependent approach based 
on understanding of finite precision behavior!



Summary

• Finite precision errors cause loss of attainable accuracy and convergence 
delay

• In classical CG, attainable accuracy limited only by sum of local rounding 
errors

• In pipelined CG, sum of many different local rounding errors can be 
(globally!) amplified

• Amplification depends on CG recurrence coefficients 𝛼 and 𝛽

• Not much to do except try to decrease local errors (e.g., by 
stabilizing shifts)

• In s-step CG, local rounding errors in each outer loop are amplified by a 
factor related to the condition number of the generated s-step basis matrix

• Amplification effects are still "local" within an outer loop (block of s 
iterations)

• Suggests that basis condition number plays a huge role

• More difficult to precisely characterize convergence delay; further work 
needed
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s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



Better basis 
choice allows 

higher s values

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



Better basis 
choice allows 

higher s values

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16

But can still see loss of 
accuracy/convergence 

delay

CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



Residual replacement strategy

• Improve accuracy by replacing computed residual  𝑟𝒊 by the true residual 

𝒃 − 𝑨 𝑥𝒊 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)
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1. 𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖 is small  (relative to 휀𝑁 𝐴  𝑥𝑚+1 )

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)
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𝒃 − 𝑨 𝑥𝒊 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)
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• Based on derived bound on deviation of residuals, can devise a residual 
replacement strategy for s-step CG

• Choose when to replace  𝑟𝑖 with 𝑏 − 𝐴 𝑥𝑖 to meet two constraints: 

1. 𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖 is small  (relative to 휀𝑁 𝐴  𝑥𝑚+1 )

2. Convergence rate is maintained (avoid large perturbations to finite 

precision CG recurrence)

• Implementation has negligible cost



Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖 to update 𝑑𝑖, an estimate of error 
in computing 𝑟𝑖, in each iteration

• Set threshold  휀 ≈ 휀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold
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𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑖= 휀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑖
𝑝𝑖 = 𝒴𝑘𝑝𝑘,𝑗

′

break from inner loop and begin new outer loop

end
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Pseudo-code for residual replacement with group update for s-step CG:
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Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution
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• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .
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+휀  
𝐴  𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴  𝒴𝑘 ∙  𝑥𝑘,𝑠

′ +𝑁′  𝒴𝑘 ∙  𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+휀 4+𝑁′ 𝐴  𝒴𝑘 ∙  𝑥𝑘,𝑗
′ +  𝒴𝑘 ∙ ℬ𝑘 ∙  𝑥𝑘,𝑗

′ +  𝒴𝑘 ∙  𝑟𝑘,𝑗
′



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:
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′

Estimated only once



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .
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+휀  
𝐴  𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴  𝒴𝑘 ∙  𝑥𝑘,𝑠

′ +𝑁′  𝒴𝑘 ∙  𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+휀 4+𝑁′ 𝐴  𝒴𝑘 ∙  𝑥𝑘,𝑗
′ +  𝒴𝑘 ∙ ℬ𝑘 ∙  𝑥𝑘,𝑗

′ +  𝒴𝑘 ∙  𝑟𝑘,𝑗
′

𝑶(𝒔𝟑) flops per 𝒔 iterations; ≤1 reduction per 𝒔 iterations 

to compute  𝓨𝒌
𝑻  𝓨𝒌



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .
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′

𝑶(𝒔𝟐) flops per 𝒔 iterations; no communication



• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where  𝑁′ = max 𝑁, 2𝑠 + 1 .

Extra computation all lower order terms, communication only 
increased by at most factor of 2
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s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG+RR true
CG+RR updated
s-step CG+RR (monomial) true
s-step CG+RR (monomial) updated
s-step CG+RR (Newton) true
s-step CG+RR (Newton) updated
s-step CG+RR(Chebyshev) true
s-step CG+RR(Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122,  𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG+RR true
CG+RR updated
s-step CG+RR (monomial) true
s-step CG+RR (monomial) updated
s-step CG+RR (Newton) true
s-step CG+RR (Newton) updated
s-step CG+RR(Chebyshev) true
s-step CG+RR(Chebyshev) updated

Residual Replacement 
can improve accuracy 
orders of magnitude 

for negligible cost

Maximum 
replacement steps 
(extra reductions) 

for any test: 8

Model Problem: 2D Poisson (5-pt stencil), 
𝑛 = 5122,  𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1 )



Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)

48

20 nodes (two 6-core Intel Xeon X5660 Nehalem 2:80-GHz processors per node), 
2D Poisson problem with 1e6 unknowns; 
in pipelined CG with residual replacement, 39 replacements were performed.
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• Consider the growth of the relative residual gap caused by errors in outer loop 
𝑘, which begins with global iteration number 𝑚

Adaptive s-step CG
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Γ𝑘 ≡ 𝑐 ⋅  𝒴𝑘
+  𝒴𝑘 ≲

휀∗

휀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

•  𝑟𝑖 large → Γ𝑘 must be small;  𝑟𝑖 small → Γ𝑘 can grow

⇒ adaptive s-step approach [C., 2018]

• 𝑠 starts off small, increases at rate depending on  𝑟𝑖 and 휀∗
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Extensions to adaptive s-step CG

• Method of Meurant and Tichý (2018) for cheap approximation of extremal
Ritz values 

• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update 

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication
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• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update 

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication

• Can be used in two ways in adaptive algorithm

1. Incrementally refine estimate of 𝜅(𝐴) (used in determining which s to 
use)

2. Incrementally refine parameters used to construct Newton or 
Chebyshev polynomials
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Fixed s-step Old adaptive s-step
Improved adaptive s-step 

w/Newton
Improved adaptive s-step 

w/Chebyshev
classical CG

- 132 59 53 414

Number of global synchronizations

𝐴 = 494bus from SuiteSparse

𝑏i = 1/ 𝑁
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Fixed s-step Old adaptive s-step
Improved adaptive s-step 

w/Newton
Improved adaptive s-step 

w/Chebyshev
classical CG

111 111 43 43 407

Number of global synchronizations

𝐴 = 494bus from SuiteSparse

𝑏i = 1/ 𝑁



When to use an HPC variant

• Solve constitutes a bottleneck within the application (Amdahl's law)
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• Extremal eigenvalues are known or easy to estimate

• Accuracy much less than machine epsilon required by the application

• s-step methods

• The matrix is well-partitioned into domains with low surface-to-volume ratio

• Simple preconditioning is sufficient/the preconditioner is amenable to 
communication avoidance

• The same coefficient matrix (or at least a coefficient matrix with the same 
nonzero structure) will be reused over multiple solves

• improvement even for small numbers of nodes (reduces both intra- and inter-
processor communication)

• (deep) pipelined methods

• cost of applying preconditioner + SpMV is less than or the same as a global 
synchronization

• improvement only for large numbers of nodes
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Looking Forward

• Better understanding of finite precision behavior

• Improved usability

• More adaptivity, autotuning; less left to the user

• Hybrid methods? 

• stationary iterative method + Krylov subspace method

• Fault tolerance?

• MTTF=0 on an exascale machine

• A problem to be handled at the algorithm level, or...?

• Making use of specialized hardware

• accelerators, GPUs, etc. 

• multiple precisions?

• new performance model, new programming model, bigger tuning space
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carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson

Thank You!Thank you! 


