High-Performance Variants of Krylov Subspace Methods: II/II

Erin C. Carson

Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

SNA '19 January 21-25, 2019

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16_027/0008495

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Review

- Cost of data movement (relative to low computational cost) causes bottlenecks in classical formulations of Krylov subspace methods
- Motivates various approaches
 - Pipelined Krylov subspace methods
 - Add auxiliary recurrences to enable decoupling of inner products and SpMVs; can then be overlapped using non-blocking MPI
 - Effectively hides the cost of synchronization in each iteration
 - s-step Krylov subspace methods
 - Block iterations in groups of s; use block computation of O(s) basis vectors and block orthogonalization
 - Increases temporal locality, allowing asymptotic reduction in number of messages per iteration
 - Many practical implementation details: choosing parameters, preconditioning, etc.
- For certain (e.g., latency-bound) problems, these approaches can reduce the time-per-iteration cost

The effects of finite precision

Well-known that roundoff error has two effects:

- 1. Delay of convergence
 - No longer have exact Krylov subspace
 - Can lose numerical rank deficiency
 - Residuals no longer orthogonal Minimization of $||x x_i||_A$ no longer exact
- 2. Loss of attainable accuracy
 - Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!

$$N = 112, \kappa(A) \approx 7e6$$

The effects of finite precision

Well-known that roundoff error has two effects:

- Delay of convergence 1.
 - No longer have exact Krylov subspace
 - Can lose numerical rank deficiency
 - Residuals no longer orthogonal -٠ Minimization of $||x - x_i||_A$ no longer exact
- 2. Loss of attainable accuracy
 - Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!

Iteration A: bcsstk03 from SuiteSparse, b: equal components in the eigenbasis of A, ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

runtime = $\binom{\text{time per}}{\text{iteration}} \times \binom{\text{number of iterations}}{\text{until convergence}}$

runtime = $\binom{\text{time per}}{\text{iteration}} \times \binom{\text{number of iterations}}{\text{until convergence}}$

Reduce time per iteration

approximate operators

modify algorithm to reduce communication

asynchronous execution

reduced precision

runtime = $\binom{\text{time per}}{\text{iteration}} \times \binom{\text{number of iterations}}{\text{until convergence}}$

Reduce time per iteration

approximate operators

modify algorithm to reduce communication

asynchronous execution

reduced precision

Reduce number of iterations

block methods

preconditioning

subspace recycling

eigenvalue deflation

increased precision

runtime = $\binom{\text{time per}}{\text{iteration}} \times \binom{\text{number of iterations}}{\text{until convergence}}$

$$Ax = b \implies M_L^{-1}AM_R^{-1}u = M_L^{-1}b$$
$$x = M_R^{-1}u$$

$$Ax = b \implies M_L^{-1}AM_R^{-1}u = M_L^{-1}b$$
$$x = M_R^{-1}u$$

Reduce time per iteration

approximate operators

modify algorithm to reduce communication

asynchronous execution

reduced precision

Reduce number of iterations

block methods

preconditioning

eigenvalue deflation

increased precision

subspace

recycling

doubled precision \rightarrow twice as many bits moved

Reduce time per iteration

approximate operators

modify algorithm to reduce communication

asynchronous execution

reduced precision

Reduce number of iterations

block methods

preconditioning

subspace recycling

eigenvalue deflation

increased precision

runtime = $\binom{\text{time per}}{\text{iteration}} \times \binom{\text{number of iterations}}{\text{until convergence}}$

convergence criteria never met: divergence, or convergence to inaccurate solution

convergence criteria never met: divergence, or convergence to inaccurate solution

runtime = $\binom{\text{time per}}{\text{iteration}} \times \binom{\text{number of iterations}}{\text{until convergence}}$

To minimize runtime, must understand how modifications affect: 1) attainable accuracy 2) convergence rate 3) time per iteration

runtime = $\binom{\text{time per}}{\text{iteration}} \times \binom{\text{number of iterations}}{\text{until convergence}}$

Lecture Outline

- Effects of finite precision in Krylov subspace methods
 - Maximum attainable accuracy
 - Convergence delay
- Existing results for classical Krylov subspace methods
- Results for pipelined and s-step Krylov subspace methods
- Potential remedies for finite precision error in high-performance variants
- Choosing a method in practice
- The future of Krylov subspace methods

- Accuracy $||x \hat{x}_i||$ generally not computable, but $x \hat{x}_i = A^{-1}(b A\hat{x}_i)$
- Size of the true residual, $\|b A\hat{x}_i\|$, used as computable measure of accuracy

- Accuracy $||x \hat{x}_i||$ generally not computable, but $x \hat{x}_i = A^{-1}(b A\hat{x}_i)$
- Size of the true residual, $\|b A\hat{x}_i\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $b A \hat{x}_i$, and the updated residual, \hat{r}_i , to deviate

- Accuracy $||x \hat{x}_i||$ generally not computable, but $x \hat{x}_i = A^{-1}(b A\hat{x}_i)$
- Size of the true residual, $\|b A\hat{x}_i\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $b A \hat{x}_i$, and the updated residual, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

$$||b - A\hat{x}_i|| \le ||\hat{r}_i|| + ||b - A\hat{x}_i - \hat{r}_i||$$

- Accuracy $||x \hat{x}_i||$ generally not computable, but $x \hat{x}_i = A^{-1}(b A\hat{x}_i)$
- Size of the true residual, $\|b A\hat{x}_i\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $b A \hat{x}_i$, and the updated residual, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

$$\|b - A\hat{x}_i\| \le \|\hat{r}_i\| + \|b - A\hat{x}_i - \hat{r}_i\|$$

• As $\|\hat{r}_i\| \to 0$, $\|b - A\hat{x}_i\|$ depends on $\|b - A\hat{x}_i - \hat{r}_i\|$

- Accuracy $||x \hat{x}_i||$ generally not computable, but $x \hat{x}_i = A^{-1}(b A\hat{x}_i)$
- Size of the true residual, $\|b A\hat{x}_i\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $b A \hat{x}_i$, and the updated residual, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

$$||b - A\hat{x}_i|| \le ||\hat{r}_i|| + ||b - A\hat{x}_i - \hat{r}_i||$$

• As $\|\hat{r}_i\| \to 0$, $\|b - A\hat{x}_i\|$ depends on $\|b - A\hat{x}_i - \hat{r}_i\|$

Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i \quad \text{and} \quad$

$$\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1} A \hat{p}_{i-1} - \boldsymbol{\delta r_i}$$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta x_i} \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta r_i}$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}$ and $\hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i}$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

 $f_i = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i)$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{x_i} \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{r_i}$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

$$f_{i} = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$$

= $f_{i-1} + A\delta x_{i} + \delta r_{i}$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{x_i} \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{r_i}$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

$$\begin{aligned} f_i &= b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i) \\ &= f_{i-1} + A\delta x_i + \delta r_i \\ &= f_0 + \sum_{m=1}^i (A\delta x_m + \delta r_m) \end{aligned}$$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{x}_i \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{r}_i$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

$$\begin{aligned} f_{i} &= b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i}) \\ &= f_{i-1} + A\delta x_{i} + \delta r_{i} \\ &= f_{0} + \sum_{m=1}^{i} (A\delta x_{m} + \delta r_{m}) \end{aligned}$$

 $||f_i|| \le O(\varepsilon) \sum_{m=0}^{i} N_A ||A|| ||\hat{x}_m|| + ||\hat{r}_m|| \quad \text{van der Vorst and Ye, 2000}$ $||f_i|| \le O(\varepsilon) ||A|| (||x|| + \max_{m=0,\dots,i} ||\hat{x}_m||) \quad \text{Greenbaum, 1997}$

 $||f_i|| \le O(\varepsilon) N_A |||A||| ||A^{-1}|| \sum_{m=0}^i ||\hat{r}_m||$

Sleijpen and van der Vorst, 1995

Maximum Attainable Accuracy in HPC Variants

- Various synchronization-reducing modifications/variants discussed in Part I
 - Modified recurrence coefficient computation
 - 3-term CG (STCG)
 - Addition of auxiliary recurrences
 - Pipelined CG
 - s-step methods

 What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $||f_i||$

$$f_{i} = b - A\hat{x}_{i} - \hat{r}_{i}$$

= $b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $||f_i||$ $\begin{aligned} f_i &= b - A\hat{x}_i - \hat{r}_i \\ &= b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i) \end{aligned}$
- As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_i and \hat{r}_i ,

$$f_i = f_{i-1} + A\delta x_i + \delta r_i$$

still holds

- Rounding errors made in computing $\hat{\alpha}_{i-1}$ do not contribute to the residual gap

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $||f_i||$ $\begin{aligned} f_i &= b - A\hat{x}_i - \hat{r}_i \\ &= b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i) \end{aligned}$
- As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_i and \hat{r}_i ,

$$f_i = f_{i-1} + A\delta x_i + \delta r_i$$

still holds

- Rounding errors made in computing $\hat{\alpha}_{i-1}$ do not contribute to the residual gap
- But may change computed \hat{x}_i , \hat{r}_i , which can affect convergence rate...

Example: HSCG with modified formula for α_{i-1}

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

$$\max_{0 \le \ell < j \le i} \frac{\left\| r_j \right\|^2}{\| r_\ell \|^2}$$

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

$$\max_{0 \le \ell < j \le i} \frac{\left\| r_j \right\|^2}{\| r_\ell \|^2}$$

⇒ Large residual oscillations can cause these factors to be large!
⇒ Local errors can be amplified!

• What is the effect of adding auxiliary recurrences to the CG method?

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method

$$\begin{aligned} r_0 &= b - Ax_0, p_0 = r_0, s_0 = Ap_0 \\ \text{for } i &= 1:\text{nmax} \\ & \alpha_{i-1} = \frac{(r_{i-1}, r_{i-1})}{(p_{i-1}, s_{i-1})} \\ & x_i = x_{i-1} + \alpha_{i-1}p_{i-1} \\ & r_i = r_{i-1} - \alpha_{i-1}s_{i-1} \\ & \beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})} \\ & p_i = r_i + \beta_i p_{i-1} \\ & s_i = Ar_i + \beta_i s_{i-1} \end{aligned}$$
end

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method
 - Uses same update formulas for α and β as HSCG, but uses additional recurrence for Ap_i

 $r_0 = b - Ax_0, p_0 = r_0, s_0 = Ap_0$ for i = 1:nmax $\alpha_{i-1} = \frac{(r_{i-1}, r_{i-1})}{(p_{i-1}, s_{i-1})}$ $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$ $r_i = r_{i-1} - \alpha_{i-1} s_{i-1}$ $\beta_i = \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$ $p_i = r_i + \beta_i p_{i-1}$ $s_i = Ar_i + \beta_i s_{i-1}$ end

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_i = \hat{r}_i - (b - A\hat{x}_i)$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_i = \hat{r}_i - (b - A\hat{x}_i)$$
$$= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_i + A\delta x_i$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

= $f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i}$
= $f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i}$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

$$= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i}$$

$$= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_{i} = \hat{r}_{i} - (b - A\hat{x}_{i})$$

$$= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i}$$

$$= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

$$\begin{split} \|G_{i}\| &\leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \Big(\kappa(\widehat{U}_{i})\|A\| \|\widehat{P}_{i}\| + \|A\| \|\widehat{R}_{i}\| \|\widehat{U}_{i}^{-1}\| \Big) \\ \widehat{U}_{i} &= \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \widehat{\beta}_{1} & \dots & \dots & \widehat{\beta}_{1}\widehat{\beta}_{2} & \dots & \widehat{\beta}_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & 1 & \widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \end{split}$$

$$\begin{split} \|G_{i}\| &\leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_{i}) \|A\| \|\widehat{P}_{i}\| + \|A\| \|\widehat{R}_{i}\| \|\widehat{U}_{i}^{-1}\| \right) \\ \widehat{U}_{i} &= \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \widehat{\beta}_{1} & \dots & \dots & \widehat{\beta}_{1}\widehat{\beta}_{2} & \cdots & \widehat{\beta}_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \cdots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ 0 & \dots & 0 & 1 \end{bmatrix} \end{split}$$

$$\beta_{\ell}\beta_{\ell+1}\cdots\beta_j = \frac{\left\|r_j\right\|^2}{\|r_{\ell-1}\|^2}, \qquad \ell < j$$

$$\begin{split} \|G_{i}\| &\leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_{i}) \|A\| \|\widehat{P}_{i}\| + \|A\| \|\widehat{R}_{i}\| \|\widehat{U}_{i}^{-1}\| \right) \\ \widehat{U}_{i} &= \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} &= \begin{bmatrix} 1 & \widehat{\beta}_{1} & \dots & \dots & \widehat{\beta}_{1}\widehat{\beta}_{2} & \cdots & \widehat{\beta}_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \cdots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & 1 & & \widehat{\beta}_{i-1} \\ 0 & \dots & 0 & & 1 \end{bmatrix} \\ \beta_{\ell}\beta_{\ell+1}\cdots\beta_{j} &= \frac{\|r_{j}\|^{2}}{\|r_{\ell-1}\|^{2}}, \qquad \ell < j \end{split}$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!

$$\begin{split} \|G_{i}\| &\leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_{i}) \|A\| \|\widehat{P}_{i}\| + \|A\| \|\widehat{R}_{i}\| \|\widehat{U}_{i}^{-1}\| \right) \\ \widehat{U}_{i} &= \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} &= \begin{bmatrix} 1 & \widehat{\beta}_{1} & \dots & \dots & \widehat{\beta}_{1}\widehat{\beta}_{2} & \cdots & \widehat{\beta}_{i-1} \\ 0 & 1 & \widehat{\beta}_{2} & \dots & \widehat{\beta}_{2} & \cdots & \widehat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & 1 & & \widehat{\beta}_{i-1} \\ 0 & \dots & 0 & & 1 \end{bmatrix} \\ \beta_{\ell}\beta_{\ell+1}\cdots\beta_{j} &= \frac{\|r_{j}\|^{2}}{\|r_{\ell-1}\|^{2}}, \qquad \ell < j \end{split}$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!
- Very similar to the results for attainable accuracy in the 3-term STCG
- Seemingly innocuous change can cause drastic loss of accuracy

Simple pipelined CG

Simple pipelined CG

effect of using auxiliary vector $s_i \equiv Ap_i$

Simple pipelined CG

(Cools, et al., 2018)

Pipelined CG uses 5 auxiliary recurrences:

(Cools, et al., 2018)

Pipelined CG uses 5 auxiliary recurrences:

$$\begin{aligned} \hat{p}_{i} &= \hat{u}_{i} + \hat{\beta}_{i} \hat{p}_{i-1} + \delta_{i}^{p} & \hat{x}_{i+1} &= \hat{x}_{i} + \hat{\alpha}_{i} \hat{p}_{i} + \delta_{i}^{x} \\ \hat{s}_{i} &= \hat{w}_{i} + \hat{\beta}_{i} \hat{s}_{i-1} + \delta_{i}^{s} & \hat{r}_{i+1} &= \hat{r}_{i} - \hat{\alpha}_{i} \hat{s}_{i} + \delta_{i}^{r} \\ \hat{z}_{i} &= A \hat{m}_{i} + \hat{\beta}_{i} \hat{z}_{i-1} + \delta_{i}^{z} & \hat{w}_{i+1} &= \hat{w}_{i} - \hat{\alpha}_{i} \hat{z}_{i} + \delta_{i}^{w} \\ \hat{q}_{i} &= \hat{m}_{i} + \hat{\beta}_{i} \hat{q}_{i-1} + \delta_{i}^{q} & \hat{u}_{i+1} &= u_{i} - \hat{\alpha}_{i} \hat{q}_{i} + \delta_{i}^{u} \end{aligned}$$

(Cools, et al., 2018)

Pipelined CG uses 5 auxiliary recurrences:

$$\begin{aligned} \hat{p}_{i} &= \hat{u}_{i} + \hat{\beta}_{i} \hat{p}_{i-1} + \delta_{i}^{p} & \hat{x}_{i+1} &= \hat{x}_{i} + \hat{\alpha}_{i} \hat{p}_{i} + \delta_{i}^{x} \\ \hat{s}_{i} &= \hat{w}_{i} + \hat{\beta}_{i} \hat{s}_{i-1} + \delta_{i}^{s} & \hat{r}_{i+1} &= \hat{r}_{i} - \hat{\alpha}_{i} \hat{s}_{i} + \delta_{i}^{r} \\ \hat{z}_{i} &= A \hat{m}_{i} + \hat{\beta}_{i} \hat{z}_{i-1} + \delta_{i}^{z} & \hat{w}_{i+1} &= \hat{w}_{i} - \hat{\alpha}_{i} \hat{z}_{i} + \delta_{i}^{w} \\ \hat{q}_{i} &= \hat{m}_{i} + \hat{\beta}_{i} \hat{q}_{i-1} + \delta_{i}^{q} & \hat{u}_{i+1} &= u_{i} - \hat{\alpha}_{i} \hat{q}_{i} + \delta_{i}^{u} \end{aligned}$$

$$f_{i+1} = (b - A\hat{x}_{i+1}) - \hat{r}_{i+1}$$
$$= f_i - \hat{\alpha}_i (A\hat{p}_i - \hat{s}_i) - A\delta_i^x - \delta_i^r$$

(Cools, et al., 2018)

Pipelined CG uses 5 auxiliary recurrences:

$$\begin{aligned} \hat{p}_{i} &= \hat{u}_{i} + \hat{\beta}_{i} \hat{p}_{i-1} + \delta_{i}^{p} & \hat{x}_{i+1} &= \hat{x}_{i} + \hat{\alpha}_{i} \hat{p}_{i} + \delta_{i}^{x} \\ \hat{s}_{i} &= \hat{w}_{i} + \hat{\beta}_{i} \hat{s}_{i-1} + \delta_{i}^{s} & \hat{r}_{i+1} &= \hat{r}_{i} - \hat{\alpha}_{i} \hat{s}_{i} + \delta_{i}^{r} \\ \hat{z}_{i} &= A \hat{m}_{i} + \hat{\beta}_{i} \hat{z}_{i-1} + \delta_{i}^{z} & \hat{w}_{i+1} &= \hat{w}_{i} - \hat{\alpha}_{i} \hat{z}_{i} + \delta_{i}^{w} \\ \hat{q}_{i} &= \hat{m}_{i} + \hat{\beta}_{i} \hat{q}_{i-1} + \delta_{i}^{q} & \hat{u}_{i+1} &= u_{i} - \hat{\alpha}_{i} \hat{q}_{i} + \delta_{i}^{u} \end{aligned}$$

$$f_{i+1} = (b - A\hat{x}_{i+1}) - \hat{r}_{i+1}$$

= $f_i - \hat{\alpha}_i (A\hat{p}_i - \hat{s}_i) - A\delta_i^x - \delta_i^r$
 $g_i = \hat{\beta}_i g_{i-1} + (A\hat{u}_{i+1} - \hat{w}_{i+1}) + A\delta_i^p - \delta_i^s$

(Cools, et al., 2018)

Pipelined CG uses 5 auxiliary recurrences:

$$\begin{aligned} \hat{p}_{i} &= \hat{u}_{i} + \hat{\beta}_{i} \hat{p}_{i-1} + \delta_{i}^{p} & \hat{x}_{i+1} &= \hat{x}_{i} + \hat{\alpha}_{i} \hat{p}_{i} + \delta_{i}^{x} \\ \hat{s}_{i} &= \hat{w}_{i} + \hat{\beta}_{i} \hat{s}_{i-1} + \delta_{i}^{s} & \hat{r}_{i+1} &= \hat{r}_{i} - \hat{\alpha}_{i} \hat{s}_{i} + \delta_{i}^{r} \\ \hat{z}_{i} &= A \hat{m}_{i} + \hat{\beta}_{i} \hat{z}_{i-1} + \delta_{i}^{z} & \hat{w}_{i+1} &= \hat{w}_{i} - \hat{\alpha}_{i} \hat{z}_{i} + \delta_{i}^{w} \\ \hat{q}_{i} &= \hat{m}_{i} + \hat{\beta}_{i} \hat{q}_{i-1} + \delta_{i}^{q} & \hat{u}_{i+1} &= u_{i} - \hat{\alpha}_{i} \hat{q}_{i} + \delta_{i}^{u} \end{aligned}$$

$$\begin{aligned} f_{i+1} &= (b - A\hat{x}_{i+1}) - \hat{r}_{i+1} \\ &= f_i - \hat{\alpha}_i (A\hat{p}_i - \hat{s}_i) - A\delta_i^x - \delta_i^r \\ g_i &= \hat{\beta}_i g_{i-1} + (A\hat{u}_{i+1} - \hat{w}_{i+1}) + A\delta_i^p - \delta_i^s \\ h_{i+1} &= h_i - \hat{\alpha}_i (A\hat{q}_i - \hat{z}_i) + A\delta_i^u - \delta_i^w \end{aligned}$$

(Cools, et al., 2018)

Pipelined CG uses 5 auxiliary recurrences:

$$\begin{aligned} \hat{p}_{i} &= \hat{u}_{i} + \hat{\beta}_{i} \hat{p}_{i-1} + \delta_{i}^{p} & \hat{x}_{i+1} &= \hat{x}_{i} + \hat{\alpha}_{i} \hat{p}_{i} + \delta_{i}^{x} \\ \hat{s}_{i} &= \hat{w}_{i} + \hat{\beta}_{i} \hat{s}_{i-1} + \delta_{i}^{s} & \hat{r}_{i+1} &= \hat{r}_{i} - \hat{\alpha}_{i} \hat{s}_{i} + \delta_{i}^{r} \\ \hat{z}_{i} &= A \hat{m}_{i} + \hat{\beta}_{i} \hat{z}_{i-1} + \delta_{i}^{z} & \hat{w}_{i+1} &= \hat{w}_{i} - \hat{\alpha}_{i} \hat{z}_{i} + \delta_{i}^{w} \\ \hat{q}_{i} &= \hat{m}_{i} + \hat{\beta}_{i} \hat{q}_{i-1} + \delta_{i}^{q} & \hat{u}_{i+1} &= u_{i} - \hat{\alpha}_{i} \hat{q}_{i} + \delta_{i}^{u} \end{aligned}$$

$$\begin{aligned} f_{i+1} &= (b - A\hat{x}_{i+1}) - \hat{r}_{i+1} \\ &= f_i - \hat{\alpha}_i (A\hat{p}_i - \hat{s}_i) - A\delta_i^x - \delta_i^r \\ g_i &= \hat{\beta}_i g_{i-1} + (A\hat{u}_{i+1} - \hat{w}_{i+1}) + A\delta_i^p - \delta_i^s \\ h_{i+1} &= h_i - \hat{\alpha}_i (A\hat{q}_i - \hat{z}_i) + A\delta_i^u - \delta_i^w \\ j_i &= \hat{\beta}_i j_{i-1} + A\delta_i^q - \delta_i^z \end{aligned}$$

$$f_{i+1} = f_0 - \sum_{j=0}^{i} \hat{\alpha}_j g_j - \sum_{j=0}^{i} (A\delta_j^x + \delta_j^r)$$

$$\begin{split} f_{i+1} &= f_0 - \sum_{j=0}^i \hat{\alpha}_j g_j - \sum_{j=0}^i (A\delta_j^x + \delta_j^r) \\ g_j &= \left(\prod_{k=1}^j \hat{\beta}_k\right) g_0 + \sum_{k=1}^j \left(\prod_{\ell=k+1}^j \hat{\beta}_\ell\right) (A\delta_k^p - \delta_k^s) + \sum_{k=1}^j \left(\prod_{\ell=k+1}^j \hat{\beta}_\ell\right) h_k \end{split}$$

$$h_k = h_0 - \sum_{\ell=0}^{k-1} \hat{\alpha}_\ell j_\ell + \sum_{\ell=0}^{k-1} (A \delta^u_\ell + \delta^w_\ell)$$

$$j_{\ell} = \left(\prod_{m=1}^{\ell} \hat{\beta}_m\right) j_0 + \sum_{m=1}^{\ell} \left(\prod_{n=m+1}^{\ell} \hat{\beta}_n\right) \left(A\delta_m^q - \delta_m^z\right)$$

$$\begin{aligned} f_{i+1} &= f_0 - \sum_{j=0}^{i} \hat{\alpha}_j g_j - \sum_{j=0}^{i} (A \delta_j^x + \delta_j^r) \\ g_j &= \left(\prod_{k=1}^{j} \hat{\beta}_k\right) g_0 + \sum_{k=1}^{j} \left(\prod_{\ell=k+1}^{j} \hat{\beta}_\ell\right) (A \delta_k^p - \delta_k^s) + \sum_{k=1}^{j} \left(\prod_{\ell=k+1}^{j} \hat{\beta}_\ell\right) h_k \\ h_k &= h_0 - \sum_{\ell=0}^{k-1} \hat{\alpha}_\ell j_\ell + \sum_{\ell=0}^{k-1} (A \delta_\ell^u - \delta_\ell^w) \end{aligned}$$
Local rounding errors all potentially amplified!
$$j_\ell &= \left(\prod_{m=1}^{\ell} \hat{\beta}_m\right) j_0 + \sum_{m=1}^{\ell} \left(\prod_{n=m+1}^{\ell} \hat{\beta}_n\right) (A \delta_m^q - \delta_m^z) \end{aligned}$$

Pipelined CG

effect of changing formula for recurrence coefficient α and using auxiliary vector $s_i \equiv Ap_i$

Pipelined CG

effect of changing formula for recurrence coefficient α and using auxiliary vectors $s_i \equiv Ap_i$, $w_i \equiv Ar_i$, $z_i \equiv A^2r_i$

Effect of Deeper Pipelines

- Deeper pipeline -> effectively adding more auxiliary recurrences
- We expect residual gap to increase with increasing pipeline depth
- Some initial work (Cools, 2018) uses Chebyshev shifts to attempt to stabilize (deep) pipelined CG; but increasing gap is still apparent

s-step CG

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$ $x'_{j} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$

end

Sources of local roundoff error in s-step CG

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}}_k = \hat{\mathcal{Y}}_k \mathcal{B}_k + \Delta \mathcal{Y}_k$$

Updating coordinate vectors in the inner loop:

$$\begin{aligned} \hat{x}'_{k,j} &= \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j} \\ \hat{r}'_{k,j} &= \hat{r}'_{k,j-1} - \mathcal{B}_k \ \hat{q}'_{k,j-1} + \eta_{k,j} \\ & \text{with} \quad \hat{q}'_{k,j-1} = \text{fl}(\hat{\alpha}_{sk+j-1}\hat{p}'_{k,j-1}) \end{aligned}$$

Recovering CG vectors for use in next outer loop:

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Sources of local roundoff error in s-step CG

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}}_{k} = \hat{\mathcal{Y}}_{k}\mathcal{B}_{k} + \Delta\mathcal{Y}_{k} <$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$\begin{aligned} \hat{x}'_{k,j} &= \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j} \\ \hat{r}'_{k,j} &= \hat{r}'_{k,j-1} - \mathcal{B}_k \, \hat{q}'_{k,j-1} + \eta_{k,j} \\ & \text{with} \quad \hat{q}'_{k,j-1} = \text{fl}(\hat{\alpha}_{sk+j-1}\hat{p}'_{k,j-1}) \end{aligned}$$

Recovering CG vectors for use in next outer loop:

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$
Sources of local roundoff error in s-step CG

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}}_{k} = \hat{\mathcal{Y}}_{k}\mathcal{B}_{k} + \Delta\mathcal{Y}_{k} \leftarrow$$

Updating coordinate vectors in the inner loop:

Error in computing s-step basis

$$\begin{aligned} \hat{x}_{k,j}' &= \hat{x}_{k,j-1}' + \hat{q}_{k,j-1}' + \xi_{k,j} \\ \hat{r}_{k,j}' &= \hat{r}_{k,j-1}' - \mathcal{B}_k \hat{q}_{k,j-1}' + \eta_{k,j} \\ \text{with} \quad \hat{q}_{k,j-1}' &= \text{fl}(\hat{\alpha}_{sk+j-1}\hat{p}_{k,j-1}') \end{aligned}$$

Recovering CG vectors for use in next outer loop:

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Sources of local roundoff error in s-step CG

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}}_{k} = \hat{\mathcal{Y}}_{k}\mathcal{B}_{k} + \Delta\mathcal{Y}_{k} \leftarrow$$

Updating coordinate vectors in the inner loop:

Error in computing s-step basis

 $\hat{x}_{k,j}' = \hat{x}_{k,j-1}' + \hat{q}_{k,j-1}' + \xi_{k,j}$ Error in updating coefficient vectors with $\hat{q}_{k,j-1}' = \operatorname{fl}(\hat{\alpha}_{sk+j-1}\hat{p}_{k,j-1}')$

Recovering CG vectors for use in next outer loop:

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
Error in

$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$
Error in
basis change

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$\begin{split} f_{sk+j} &= f_0 \\ &- \sum_{\ell=0}^{k-1} \left[A \phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}_{\ell,i-1}' \right] \right] \\ &- A \phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A \hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}_{k,i-1}' \right] \end{split}$$

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$\begin{split} f_{sk+j} &= f_0 \\ &- \sum_{\ell=0}^{k-1} \left[A \phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{\ell,i-1} \right] \right] \\ &- A \phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A \hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{k,i-1} \right] \end{split}$$

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A\phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A\hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{\ell,i-1} \right] \right]$$

$$-A\phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A\hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{k,i-1} \right]$$

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A \phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{\ell,i-1} \right] \right]$$

$$-A \phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A \hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{k,i-1} \right]$$

 $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

For CG:

$$\|f_i\| \le \|f_0\| + \varepsilon \sum_{m=1}^i (1+N) \|A\| \|\hat{x}_m\| + \|\hat{r}_m\|$$

 $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

For CG:

$$\|f_i\| \le \|f_0\| + \varepsilon \sum_{m=1}^i (1+N) \|A\| \|\hat{x}_m\| + \|\hat{r}_m\|$$

For s-step CG: $i \equiv sk + j$

$$\|f_{sk+j}\| \le \|f_0\| + \varepsilon c \overline{\Gamma}_k \sum_{m=1}^{sk+j} (1+N) \|A\| \|\hat{x}_m\| + \|\hat{r}_m\|$$

where c is a low-degree polynomial in s, and

$$\bar{\Gamma}_{k} = \max_{\ell \leq k} \Gamma_{\ell} , \quad \text{where} \quad \Gamma_{\ell} = \|\widehat{\mathcal{Y}}_{\ell}^{+}\| \cdot \||\widehat{\mathcal{Y}}_{\ell}\|\| \quad \text{(see C., 2015)}$$

s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)

s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)

s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)

Even assuming perfect parallel scalability with s (which is usually not the case due to extra SpMVs and inner products), already at s = 4 we are worse than HSCG in terms of number of synchronizations!

Even assuming perfect parallel scalability with s (which is usually not the case due to extra SpMVs and inner products), already at s = 4 we are worse than HSCG in terms of number of synchronizations!

 \Rightarrow Can use other, more well-conditioned bases to improve convergence rate and accuracy (see, e.g. Philippe and Reichel, 2012).

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}(A, p_i) = \operatorname{span}\{p_i, Ap_i, \dots, A^s p_i\}$

- Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}(A, p_i) = \operatorname{span}\{p_i, Ap_i, \dots, A^s p_i\}$
- Simple loop unrolling gives monomial basis, e.g., $\mathcal{Y}_k = [p_m, Ap_m, ..., A^s p_m]$
 - Condition number can grow exponentially with s
 - Recognized early on that this negatively affects convergence and accuracy (Leland, 1989), (Chronopoulous & Swanson, 1995)

- Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}(A, p_i) = \operatorname{span}\{p_i, Ap_i, \dots, A^s p_i\}$
- Simple loop unrolling gives monomial basis, e.g., $\mathcal{Y}_k = [p_m, Ap_m, ..., A^s p_m]$
 - Condition number can grow exponentially with s
 - Recognized early on that this negatively affects convergence and accuracy (Leland, 1989), (Chronopoulous & Swanson, 1995)

• Improve basis condition number to improve numerical behavior: Use different polynomials to compute a basis for the same subspace.

- Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}(A, p_i) = \operatorname{span}\{p_i, Ap_i, \dots, A^s p_i\}$
- Simple loop unrolling gives monomial basis, e.g., $\mathcal{Y}_k = [p_m, Ap_m, ..., A^s p_m]$
 - Condition number can grow exponentially with s
 - Recognized early on that this negatively affects convergence and accuracy (Leland, 1989), (Chronopoulous & Swanson, 1995)

- Improve basis condition number to improve numerical behavior: Use different polynomials to compute a basis for the same subspace.
- Two choices based on spectral information that usually lead to wellconditioned bases:
 - Newton polynomials
 - Chebyshev polynomials

Better conditioned bases

The Newton basis:

$$\{v, (A - \theta_1)v, (A - \theta_2)(A - \theta_1)v, \dots, (A - \theta_s)\cdots(A - \theta_1)v\}$$

where $\{\theta_1, \dots, \theta_s\}$ are approximate eigenvalues of A, ordered according to Leja ordering

- In practice: recover Ritz values from the first few iterations, iteratively refine eigenvalue estimates to improve basis
- Used by many to improve s-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel (1995), Hoemmen (2010)

Better conditioned bases

• The Newton basis:

$$\{v, (A - \theta_1)v, (A - \theta_2)(A - \theta_1)v, \dots, (A - \theta_s)\cdots(A - \theta_1)v\}$$

where $\{\theta_1, \dots, \theta_s\}$ are approximate eigenvalues of A, ordered according to Leja ordering

- In practice: recover Ritz values from the first few iterations, iteratively refine eigenvalue estimates to improve basis
- Used by many to improve s-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel (1995), Hoemmen (2010)
- Chebyshev basis: given ellipse enclosing spectrum of A with foci at $d \pm c$, we can generate the scaled and shifted Chebyshev polynomials as:

$$\tilde{\tau}_j(z) = \left(\tau_j\left(\frac{d-z}{c}\right)\right) / \left(\tau_j\left(\frac{d}{c}\right)\right)$$

where $\{\tau_j\}_{j\geq 0}$ are the Chebyshev polynomials of the first kind

- In practice: estimate d and c parameters from Ritz values recovered from the first few iterations
- Used by many to improve s-step variants: e.g., de Sturler (1991), Joubert and Carey (1992), de Sturler and van der Vorst (1995)

"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix A behaves like exact CG run on a larger matrix \tilde{A} whose eigenvalues lie in tight clusters around the eigenvalues of A

"Backwards-like" analysis of Greenbaum

- Anne Greenbaum (1989): finite precision CG with matrix A behaves like exact CG run on a larger matrix \tilde{A} whose eigenvalues lie in tight clusters around the eigenvalues of A
- Based on work of Chris Paige for finite precision Lanczos (1976, 1980):
 - Complete rounding error analysis
 - Computed eigenvalues lie between extreme eigenvalues of A to within a small multiple of machine precision
 - At least one small interval containing an eigenvalue of A is found by the Nth iteration
 - The algorithm behaves as if it used full reorthogonalization until a close eigenvalue approximation is found
 - Loss of orthogonality among basis vectors follows a rigorous pattern and implies that some eigenvalue approximation has converged

"Backwards-like" analysis of Greenbaum

- Anne Greenbaum (1989): finite precision CG with matrix A behaves like exact CG run on a larger matrix \tilde{A} whose eigenvalues lie in tight clusters around the eigenvalues of A
- Based on work of Chris Paige for finite precision Lanczos (1976, 1980):
 - Complete rounding error analysis
 - Computed eigenvalues lie between extreme eigenvalues of A to within a small multiple of machine precision
 - At least one small interval containing an eigenvalue of A is found by the Nth iteration
 - The algorithm behaves as if it used full reorthogonalization until a close eigenvalue approximation is found
 - Loss of orthogonality among basis vectors follows a rigorous pattern and implies that some eigenvalue approximation has converged
- Can we make similar statements for HPC variants?

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$\begin{split} A\hat{V}_m &= \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m \\ \hat{V}_m &= [\hat{v}_1, \dots, \hat{v}_m], \quad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \quad \hat{T}_m = \begin{bmatrix} \hat{\alpha}_1 & \hat{\beta}_2 & & \\ \hat{\beta}_2 & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_m \\ & & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix} \end{split}$$

for
$$i \in \{1, ..., m\}$$
,

$$\begin{aligned} \|\delta \hat{v}_i\|_2 &\leq \varepsilon_1 \sigma \\ \hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| &\leq 2\varepsilon_0 \sigma \\ |\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| &\leq \varepsilon_0/2 \\ |\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2| &\leq 4i(3\varepsilon_0 + \varepsilon_1)\sigma^2 \end{aligned}$$

$$\sigma \equiv \|A\|_2 \\ \theta \sigma \equiv \||A|\|_2$$

Lanczos [Paige, 1976] $\varepsilon_0 = O(\varepsilon N)$ $\varepsilon_1 = O(\varepsilon n\theta)$

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$\begin{split} A\hat{V}_m &= \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m \\ \hat{V}_m &= [\hat{v}_1, \dots, \hat{v}_m], \quad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \quad \hat{T}_m = \begin{bmatrix} \hat{\alpha}_1 & \hat{\beta}_2 & & \\ \hat{\beta}_2 & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_m \\ & & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix} \end{split}$$

for
$$i \in \{1, ..., m\}$$
,

$$\begin{split} \|\delta \hat{v}_i\|_2 &\leq \varepsilon_1 \sigma \\ \hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| &\leq 2\varepsilon_0 \sigma \\ |\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| &\leq \varepsilon_0/2 \\ |\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2| &\leq 4i(3\varepsilon_0 + \varepsilon_1)\sigma^2 \end{split}$$

$$\sigma \equiv \|A\|_2 \\ \theta \sigma \equiv \||A\|\|_2 \\ \theta \sigma \equiv \||A\|\|_2 \\ \theta \sigma \equiv \|A\|_2 \\ \theta \sigma \equiv \|$$

Lanczos [Paige, 1976]
$$\varepsilon_0 = O(\varepsilon N)$$

 $\varepsilon_1 = O(\varepsilon n\theta)$

s-step Lanczos [C., Demmel, 2015]:

$$\varepsilon_0 = O(\varepsilon N \Gamma^2)$$

$$\varepsilon_1 = O(\varepsilon n \theta \Gamma)$$

$$\Gamma = c \cdot \max_{\ell \le k} \|\hat{\mathcal{Y}}_{\ell}^+\| \| \|\hat{\mathcal{Y}}_{\ell}\| \|_{31}$$

The amplification term

- Roundoff errors in s-step variant follow same pattern as classical variant, but amplified by factor of Γ or Γ^2
 - Theoretically confirms empirical observations on importance of basis conditioning (dating back to late '80s)

The amplification term

- Roundoff errors in s-step variant follow same pattern as classical variant, but amplified by factor of Γ or Γ^2
 - Theoretically confirms empirical observations on importance of basis conditioning (dating back to late '80s)
- Using the definition

$$\Gamma \equiv \Gamma_k = \max_{\ell \le k} \|\mathcal{Y}_{\ell}^+\| \cdot \||\mathcal{Y}_{\ell}\|\|$$

gives simple, but loose bounds

• What we really need: $|||\mathcal{Y}||y'||| \leq \Gamma ||\mathcal{Y}y'||$ to hold for the computed basis \mathcal{Y} and coordinate vector y' in every bound.

The amplification term

- Roundoff errors in s-step variant follow same pattern as classical variant, but amplified by factor of Γ or Γ^2
 - Theoretically confirms empirical observations on importance of basis conditioning (dating back to late '80s)
- Using the definition

$$\Gamma \equiv \Gamma_k = \max_{\ell \le k} \|\mathcal{Y}_{\ell}^+\| \cdot \||\mathcal{Y}_{\ell}\|\|$$

gives simple, but loose bounds

- What we really need: $|||\mathcal{Y}||y'||| \leq \Gamma ||\mathcal{Y}y'||$ to hold for the computed basis \mathcal{Y} and coordinate vector y' in every bound.
- Alternate definition of Γ gives tighter bounds; requires light bookkeeping
- Example: for bounds on $\hat{\beta}_{i+1} | \hat{v}_i^T \hat{v}_{i+1} |$ and $| \hat{v}_{i+1}^T \hat{v}_{i+1} 1 |$, we can use the definition

$$\Gamma_{k,j} \equiv \max_{x \in \{\hat{w}'_{k,j}, \hat{u}'_{k,j}, \hat{v}'_{k,j}, \hat{v}'_{k,j-1}\}} \frac{\||\hat{\mathcal{Y}}_k||x|\|}{\|\hat{\mathcal{Y}}_k x\|}$$

Problem: 2D Poisson, n = 256, random starting vector

 $\begin{aligned} \left| \hat{v}_{i+1}^T \hat{v}_{i+1} - 1 \right| &\leq \varepsilon_0 / 2 \\ \hat{\beta}_{i+1} \left| \hat{v}_i^T \hat{v}_{i+1} \right| &\leq 2\varepsilon_0 \sigma \end{aligned}$

Convergence of Ritz Values in s-step Lanczos

$$\Gamma \leq \left(24\varepsilon(N+11s+15)\right)^{-1/2} \approx \frac{1}{\sqrt{N\varepsilon}}$$

Convergence of Ritz Values in s-step Lanczos

$$\Gamma \leq \left(24\varepsilon(N+11s+15)\right)^{-1/2} \approx \frac{1}{\sqrt{N\varepsilon}}$$

- Bounds on accuracy of Ritz values depend on Γ^2

Convergence of Ritz Values in s-step Lanczos

$$\Gamma \leq \left(24\varepsilon(N+11s+15)\right)^{-1/2} \approx \frac{1}{\sqrt{N\varepsilon}}$$

- Bounds on accuracy of Ritz values depend on Γ^2

Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality → eigenvalue convergence, hold for s-step Lanczos as long as
 (Γ = c · max ||ŷ_ℓ|| |||ŷ_ℓ|||)

$$\Gamma \leq \left(24\varepsilon(N+11s+15)\right)^{-1/2} \approx \frac{1}{\sqrt{N\varepsilon}}$$

- Bounds on accuracy of Ritz values depend on Γ^2

Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality → eigenvalue convergence, hold for s-step Lanczos as long as
 (Γ = c · max ||ŷ_ℓ|| |||ŷ_ℓ|||)

$$\Gamma \le \left(24\varepsilon(N+11s+15)\right)^{-1/2} \approx \frac{1}{\sqrt{N\varepsilon}}$$

- Bounds on accuracy of Ritz values depend on Γ^2

If $\Gamma \approx 1$:

s = 2

Top plots:

— Computed
$$\Gamma_{k,j}^2$$

(24(ε(n + 11s + 15))⁻¹

s = 2

Top plots:

Computed
$$\Gamma_{k,j}^2$$

..... (24(ε(n + 11s + 15))⁻¹

s = 4

Top plots:

— Computed
$$\Gamma_{k,j}^2$$

(24(ε(n + 11s + 15))⁻¹

Bounds on range of computed Ritz values

s = 12

Top plots:

— Computed
$$\Gamma_{k,j}^2$$

(24(ε(n + 11s + 15))⁻¹

Bounds on range of computed Ritz values

 $\Gamma \leq 3 \times 10^3$

- Coefficients α and β (related to entries of T_i) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_0 in terms of the *i*th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen & Strakoš, 2013])
- A-norm of CG error for $f(\lambda) = \lambda^{-1}$ given as scaled quadrature error

$$\int \lambda^{-1} d\omega(\lambda) = \sum_{\ell=1}^{l} \omega_{\ell}^{(i)} \left\{ \theta_{\ell}^{(i)} \right\}^{-1} + \frac{\|x - x_{i}\|_{A}^{2}}{\|r_{0}\|^{2}}$$

- Coefficients α and β (related to entries of T_i) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_0 in terms of the *i*th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen & Strakoš, 2013])
- A-norm of CG error for $f(\lambda) = \lambda^{-1}$ given as scaled quadrature error

$$\int \lambda^{-1} d\omega(\lambda) = \sum_{\ell=1}^{l} \omega_{\ell}^{(i)} \left\{ \theta_{\ell}^{(i)} \right\}^{-1} + \frac{\|x - x_i\|_A^2}{\|r_0\|^2}$$

• For particular CG implementation, can the computed $\widehat{\omega}^{(i)}(\lambda)$ be associated with some distribution function $\widehat{\omega}(\lambda)$ related to the distribution function $\omega(\lambda)$, i.e.,

$$\int \lambda^{-1} d\omega(\lambda) \approx \int \lambda^{-1} d\widehat{\omega}(\lambda) = \sum_{\ell=1}^{i} \widehat{\omega}_{\ell}^{(i)} \left\{ \widehat{\theta}_{\ell}^{(i)} \right\}^{-1} + \frac{\|x - \widehat{x}_{i}\|_{A}^{2}}{\|r_{0}\|^{2}} + F_{i}$$

where F_i is small relative to error term?

- Coefficients α and β (related to entries of T_i) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_0 in terms of the *i*th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen & Strakoš, 2013])
- A-norm of CG error for $f(\lambda) = \lambda^{-1}$ given as scaled quadrature error

$$\int \lambda^{-1} d\omega(\lambda) = \sum_{\ell=1}^{l} \omega_{\ell}^{(i)} \left\{ \theta_{\ell}^{(i)} \right\}^{-1} + \frac{\|x - x_{i}\|_{A}^{2}}{\|r_{0}\|^{2}}$$

• For particular CG implementation, can the computed $\hat{\omega}^{(i)}(\lambda)$ be associated with some distribution function $\hat{\omega}(\lambda)$ related to the distribution function $\omega(\lambda)$, i.e.,

$$\int \lambda^{-1} d\omega(\lambda) \approx \int \lambda^{-1} d\widehat{\omega}(\lambda) = \sum_{\ell=1}^{i} \widehat{\omega}_{\ell}^{(i)} \left\{ \widehat{\theta}_{\ell}^{(i)} \right\}^{-1} + \frac{\|x - \widehat{x}_{i}\|_{A}^{2}}{\|r_{0}\|^{2}} + F_{i}$$

where F_i is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

- Coefficients α and β (related to entries of T_i) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_0 in terms of the *i*th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen & Strakoš, 2013])
- A-norm of CG error for $f(\lambda) = \lambda^{-1}$ given as scaled quadrature error

$$\int \lambda^{-1} d\omega(\lambda) = \sum_{\ell=1}^{l} \omega_{\ell}^{(i)} \left\{ \theta_{\ell}^{(i)} \right\}^{-1} + \frac{\|x - x_i\|_A^2}{\|r_0\|^2}$$

• For particular CG implementation, can the computed $\widehat{\omega}^{(i)}(\lambda)$ be associated with some distribution function $\widehat{\omega}(\lambda)$ related to the distribution function $\omega(\lambda)$, i.e.,

$$\int \lambda^{-1} d\omega(\lambda) \approx \int \lambda^{-1} d\widehat{\omega}(\lambda) = \sum_{\ell=1}^{i} \widehat{\omega}_{\ell}^{(i)} \left\{ \widehat{\theta}_{\ell}^{(i)} \right\}^{-1} + \frac{\|x - \widehat{x}_{i}\|_{A}^{2}}{\|r_{0}\|^{2}} + F_{i}$$

where F_i is small relative to error term?

- For classical CG, yes; proved by Greenbaum [1989]
- For pipelined CG and s-step CG, THOROUGH ANALYSIS NEEDED!

Differences in entries γ_i , δ_i in Jacobi matrices T_i in HSCG vs. GVCG (matrix bcsstk03)

38

see [C., Rozložník, Strakoš, Tichý, Tůma, 2018] 39

A: nos4 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 100, \kappa(A) \approx 2e3$

> If application only requires $\|x - x_i\|_A \le 10^{-10}$, any of these methods will work!

Summary

- Finite precision errors cause loss of attainable accuracy and convergence delay
- In classical CG, attainable accuracy limited only by sum of local rounding errors
- In pipelined CG, sum of many different local rounding errors can be (globally!) amplified
 - Amplification depends on CG recurrence coefficients α and β
 - Not much to do except try to decrease local errors (e.g., by stabilizing shifts)
- In s-step CG, local rounding errors in each outer loop are amplified by a factor related to the condition number of the generated s-step basis matrix
 - Amplification effects are still "local" within an outer loop (block of s iterations)
 - Suggests that basis condition number plays a huge role
- More difficult to precisely characterize convergence delay; further work needed

Residual replacement strategy

- Improve accuracy by replacing computed residual \hat{r}_i by the true residual $b A\hat{x}_i$ in certain iterations
 - Related work for classical CG: van der Vorst and Ye (1999)

Residual replacement strategy

- Improve accuracy by replacing computed residual \hat{r}_i by the true residual $b A\hat{x}_i$ in certain iterations
 - Related work for classical CG: van der Vorst and Ye (1999)
- Choose when to replace \hat{r}_i with $b A\hat{x}_i$ to meet two constraints:
 - 1. $||f_i|| = ||b A\hat{x}_i \hat{r}_i||$ is small (relative to $\varepsilon N ||A|| ||\hat{x}_{m+1}||$)
 - 2. Convergence rate is maintained (avoid large perturbations to finite precision CG recurrence)

Residual replacement strategy

- Improve accuracy by replacing computed residual \hat{r}_i by the true residual $b A\hat{x}_i$ in certain iterations
 - Related work for classical CG: van der Vorst and Ye (1999)
- Choose when to replace \hat{r}_i with $b A\hat{x}_i$ to meet two constraints:
 - 1. $||f_i|| = ||b A\hat{x}_i \hat{r}_i||$ is small (relative to $\varepsilon N ||A|| ||\hat{x}_{m+1}||$)
 - 2. Convergence rate is maintained (avoid large perturbations to finite precision CG recurrence)
- Based on derived bound on deviation of residuals, can devise a residual replacement strategy for s-step CG
- Implementation has negligible cost

- Use computable bound for $||b A\hat{x}_i \hat{r}_i||$ to update d_i , an estimate of error in computing r_i , in each iteration
- Set threshold $\hat{\varepsilon} \approx \sqrt{\varepsilon}$, replace whenever $d_i / ||r_i||$ reaches threshold

- Use computable bound for $||b A\hat{x}_i \hat{r}_i||$ to update d_i , an estimate of error in computing r_i , in each iteration
- Set threshold $\hat{\varepsilon} \approx \sqrt{\varepsilon}$, replace whenever $d_i / ||r_i||$ reaches threshold

if
$$d_{i-1} \leq \hat{\varepsilon} ||r_{i-1}||$$
 and $d_i > \hat{\varepsilon} ||r_i||$ and $d_i > 1.1d_{init}$
 $z = z + \mathcal{Y}_k x'_{k,j} + x_{sk}$
 $x_i = 0$
 $r_i = b - Az$
 $d_{init} = d_i = \varepsilon ((1 + 2N')||A|| ||z|| + ||r_i||)$
 $p_i = \mathcal{Y}_k p'_{k,j}$
break from inner loop and begin new outer loop
end

- Use computable bound for $||b A\hat{x}_i \hat{r}_i||$ to update d_i , an estimate of error in computing r_i , in each iteration
- Set threshold $\hat{\varepsilon} \approx \sqrt{\varepsilon}$, replace whenever $d_i / ||r_i||$ reaches threshold

if
$$d_{i-1} \leq \hat{\varepsilon} ||r_{i-1}||$$
 and $d_i > \hat{\varepsilon} ||r_i||$ and $d_i > 1.1d_{init}$
 $z = z + \mathcal{Y}_k x'_{k,j} + x_{sk}$ group update of approximate solution
 $x_i = 0$
 $r_i = b - Az$
 $d_{init} = d_i = \varepsilon ((1 + 2N')||A||||z|| + ||r_i||)$
 $p_i = \mathcal{Y}_k p'_{k,j}$
break from inner loop and begin new outer loop
end

- Use computable bound for $||b A\hat{x}_i \hat{r}_i||$ to update d_i , an estimate of error in computing r_i , in each iteration
- Set threshold $\hat{\varepsilon} \approx \sqrt{\varepsilon}$, replace whenever $d_i / ||r_i||$ reaches threshold

if
$$d_{i-1} \leq \hat{\varepsilon} ||r_{i-1}||$$
 and $d_i > \hat{\varepsilon} ||r_i||$ and $d_i > 1.1d_{init}$
 $z = z + \mathcal{Y}_k x'_{k,j} + x_{sk}$ group update of approximate solution
 $x_i = 0$
 $r_i = b - Az$ set residual to true residual
 $d_{init} = d_i = \varepsilon((1 + 2N')||A||||z|| + ||r_i||)$
 $p_i = \mathcal{Y}_k p'_{k,j}$
break from inner loop and begin new outer loop
end

- Use computable bound for $||b A\hat{x}_i \hat{r}_i||$ to update d_i , an estimate of error in computing r_i , in each iteration
- Set threshold $\hat{\varepsilon} \approx \sqrt{\varepsilon}$, replace whenever $d_i / ||r_i||$ reaches threshold

if
$$d_{i-1} \leq \hat{\varepsilon} ||r_{i-1}||$$
 and $d_i > \hat{\varepsilon} ||r_i||$ and $d_i > 1.1d_{init}$
 $z = z + \mathcal{Y}_k x'_{k,j} + x_{sk}$ group update of approximate solution
 $x_i = 0$
 $r_i = b - Az$ set residual to true residual
 $d_{init} = d_i = \varepsilon((1 + 2N')||A||||z|| + ||r_i||)$
 $p_i = \mathcal{Y}_k p'_{k,j}$
break from inner loop and begin new outer loop
end

A computable bound

• In each iteration, update error estimate d_i $(i \equiv sk + j)$ by:

$$\begin{aligned} d_{i} &\equiv d_{i-1} \\ &+ \varepsilon \big[(4+N') \big(\|A\| \| \| \hat{\mathcal{Y}}_{k} | \cdot | \hat{x}'_{k,j} | \| + \| \| \hat{\mathcal{Y}}_{k} | \cdot | \mathcal{B}_{k} | \cdot | \hat{x}'_{k,j} | \| \big) + \| | \hat{\mathcal{Y}}_{k} | \cdot | \hat{r}'_{k,j} | \| \big] \\ &+ \varepsilon \left\{ \begin{array}{c} \|A\| \| \hat{x}_{sk+s} \| + (2+2N') \|A\| \| \| \hat{\mathcal{Y}}_{k} | \cdot | \hat{x}'_{k,s} | \| + N' \| | \hat{\mathcal{Y}}_{k} | \cdot | \hat{r}'_{k,s} | \|, & j = s \\ 0, & \text{o.w.} \end{array} \right. \end{aligned}$$

where $N' = \max(N, 2s + 1)$.
• In each iteration, update error estimate d_i $(i \equiv sk + j)$ by:

Estimated only once

• In each iteration, update error estimate d_i $(i \equiv sk + j)$ by:

 $O(s^3)$ flops per *s* iterations; ≤ 1 reduction per *s* iterations to compute $(|\widehat{y}_k|^T |\widehat{y}_k|)$

$$\begin{aligned} d_{i} &\equiv d_{i-1} \\ &+ \varepsilon \big[(4+N') \big(\|A\| \| \| \hat{\mathcal{Y}}_{k} | \cdot | \hat{x}'_{k,j} | \| + \| | \hat{\mathcal{Y}}_{k} | \cdot | \mathcal{B}_{k} | \cdot | \hat{x}'_{k,j} | \| \big) + \| | \hat{\mathcal{Y}}_{k} | \cdot | \hat{r}'_{k,j} | \| \big] \\ &+ \varepsilon \bigg\{ \|A\| \| \hat{x}_{sk+s} \| + (2+2N') \|A\| \| \| \hat{\mathcal{Y}}_{k} | \cdot | \hat{x}'_{k,s} | \| + N' \| | \hat{\mathcal{Y}}_{k} | \cdot | \hat{r}'_{k,s} | \|, \quad j = s \\ 0, \text{ o.w.} \end{aligned}$$

• In each iteration, update error estimate d_i $(i \equiv sk + j)$ by:

$O(s^2)$ flops per *s* iterations; no communication

• In each iteration, update error estimate d_i $(i \equiv sk + j)$ by:

Extra computation all lower order terms, communication only increased by *at most* factor of 2

$$\begin{split} d_{i} &\equiv d_{i-1} \\ &+ \varepsilon \big[(4+N') \big(\|A\| \| \| \hat{\mathcal{Y}}_{k} | \cdot | \hat{x}'_{k,j} | \| + \| \| \hat{\mathcal{Y}}_{k} | \cdot | \mathcal{B}_{k} | \cdot | \hat{x}'_{k,j} | \| \big) + \| | \hat{\mathcal{Y}}_{k} | \cdot | \hat{r}'_{k,j} | \| \big] \\ &+ \varepsilon \bigg\{ \begin{bmatrix} \|A\| \| \hat{x}_{sk+s} \| + (2+2N') \|A\| \| \| \hat{\mathcal{Y}}_{k} | \cdot | \hat{x}'_{k,s} | \| + N' \| \| \hat{\mathcal{Y}}_{k} | \cdot | \hat{r}'_{k,s} | \|, & j = s \\ 0, & \text{o.w.} \end{bmatrix} \end{split}$$

Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)

20 nodes (two 6-core Intel Xeon X5660 Nehalem 2:80-GHz processors per node), 2D Poisson problem with 1e6 unknowns;

in pipelined CG with residual replacement, 39 replacements were performed.

Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)

20 nodes (two 6-core Intel Xeon X5660 Nehalem 2:80-GHz processors per node), 2D Poisson problem with 1e6 unknowns;

in pipelined CG with residual replacement, 39 replacements were performed.

• Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$\frac{\|f_{m+s} - f_m\|}{\|A\| \|x\|} \lesssim \varepsilon \left(1 + \kappa(A) \Gamma_k \frac{\max_{j \in \{0, \dots, s\}} \|\hat{r}_{m+j}\|}{\|A\| \|x\|} \right) \qquad f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$\frac{\|f_{m+s} - f_m\|}{\|A\| \|x\|} \lesssim \varepsilon \left(1 + \kappa(A) \Gamma_k \frac{\max_{j \in \{0, \dots, s\}} \|\hat{r}_{m+j}\|}{\|A\| \|x\|} \right)$$

$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

• If our application requires relative accuracy ε^* , we must have

$$\Gamma_k \equiv c \cdot \|\hat{\mathcal{Y}}_k^+\| \| \|\hat{\mathcal{Y}}_k\| \| \lesssim \frac{\varepsilon^*}{\varepsilon \max_{j \in \{0,\dots,s\}} \|\hat{r}_{m+j}\|}$$

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$\frac{\|f_{m+s} - f_m\|}{\|A\| \|x\|} \lesssim \varepsilon \left(1 + \kappa(A) \Gamma_k \frac{\max_{j \in \{0, \dots, s\}} \|\hat{r}_{m+j}\|}{\|A\| \|x\|} \right)$$

$$f_i \equiv b - A\hat{x}_i - \hat{r}_i$$

• If our application requires relative accuracy ε^* , we must have

$$\Gamma_{k} \equiv c \cdot \|\hat{\mathcal{Y}}_{k}^{+}\| \| |\hat{\mathcal{Y}}_{k}| \| \lesssim \frac{\varepsilon^{*}}{\varepsilon \max_{j \in \{0, \dots, s\}} \|\hat{r}_{m+j}\|}$$

• $\|\hat{r}_i\|$ large $\rightarrow \Gamma_k$ must be small; $\|\hat{r}_i\|$ small $\rightarrow \Gamma_k$ can grow

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$\frac{\|f_{m+s} - f_m\|}{\|A\| \|x\|} \lesssim \varepsilon \left(1 + \kappa(A)\Gamma_k \frac{\max_{j \in \{0,\dots,s\}} \|\hat{r}_{m+j}\|}{\|A\| \|x\|} \right)$$

 $f_i \equiv b - A \hat{x}_i - \hat{r}_i$

• If our application requires relative accuracy ε^* , we must have

$$\Gamma_k \equiv c \cdot \|\hat{\mathcal{Y}}_k^+\| \| \|\hat{\mathcal{Y}}_k\| \| \lesssim \frac{\varepsilon^*}{\varepsilon \max_{j \in \{0,\dots,s\}} \|\hat{r}_{m+j}\|}$$

- $\|\hat{r}_i\|$ large $\rightarrow \Gamma_k$ must be small; $\|\hat{r}_i\|$ small $\rightarrow \Gamma_k$ can grow
- \Rightarrow adaptive s-step approach [C., 2018]
 - s starts off small, increases at rate depending on $\|\hat{r}_i\|$ and $arepsilon^*$

Extensions to adaptive s-step CG

- Method of Meurant and Tichý (2018) for cheap approximation of extremal Ritz values
 - Uses Cholesky factors of Lanczos tridiagonal T_i , $T_i = L_i L_i^T$
 - Use α and β computed during each iteration to incrementally update estimates of $\|L_i\|_2^2 = \lambda_{max}(T_i) \approx \lambda_{max}(A)$, $\|L_i^{-1}\|_2^{-2} = \lambda_{min}(T_i) \approx \lambda_{min}(A)$
 - Essentially no extra work, no extra communication

Extensions to adaptive s-step CG

- Method of Meurant and Tichý (2018) for cheap approximation of extremal Ritz values
 - Uses Cholesky factors of Lanczos tridiagonal T_i , $T_i = L_i L_i^T$
 - Use α and β computed during each iteration to incrementally update estimates of $\|L_i\|_2^2 = \lambda_{max}(T_i) \approx \lambda_{max}(A)$, $\|L_i^{-1}\|_2^{-2} = \lambda_{min}(T_i) \approx \lambda_{min}(A)$
 - Essentially no extra work, no extra communication
- Can be used in two ways in adaptive algorithm
 - 1. Incrementally refine estimate of $\kappa(A)$ (used in determining which s to use)
 - 2. Incrementally refine parameters used to construct Newton or Chebyshev polynomials

Number of global synchronizations

Fixed s-step	Old adaptive s-step	Improved adaptive s-step w/Newton	Improved adaptive s-step w/Chebyshev	classical CG
-	132	59	53	414

Number of global synchronizations

Fixed s-step	Old adaptive s-step	Improved adaptive s-step w/Newton	Improved adaptive s-step w/Chebyshev	classical CG
111	111	43	43	407

• Solve constitutes a bottleneck within the application (Amdahl's law)

- Solve constitutes a bottleneck within the application (Amdahl's law)
- Krylov solve is communication-bound (particularly latency bound due to global synchronization)

- Solve constitutes a bottleneck within the application (Amdahl's law)
- Krylov solve is communication-bound (particularly latency bound due to global synchronization)
- Extremal eigenvalues are known or easy to estimate

- Solve constitutes a bottleneck within the application (Amdahl's law)
- Krylov solve is communication-bound (particularly latency bound due to global synchronization)
- Extremal eigenvalues are known or easy to estimate
- Accuracy much less than machine epsilon required by the application

- Solve constitutes a bottleneck within the application (Amdahl's law)
- Krylov solve is communication-bound (particularly latency bound due to global synchronization)
- Extremal eigenvalues are known or easy to estimate
- Accuracy much less than machine epsilon required by the application
- s-step methods
 - The matrix is well-partitioned into domains with low surface-to-volume ratio
 - Simple preconditioning is sufficient/the preconditioner is amenable to communication avoidance
 - The same coefficient matrix (or at least a coefficient matrix with the same nonzero structure) will be reused over multiple solves
 - improvement even for small numbers of nodes (reduces both intra- and interprocessor communication)

- Solve constitutes a bottleneck within the application (Amdahl's law)
- Krylov solve is communication-bound (particularly latency bound due to global synchronization)
- Extremal eigenvalues are known or easy to estimate
- Accuracy much less than machine epsilon required by the application
- s-step methods
 - The matrix is well-partitioned into domains with low surface-to-volume ratio
 - Simple preconditioning is sufficient/the preconditioner is amenable to communication avoidance
 - The same coefficient matrix (or at least a coefficient matrix with the same nonzero structure) will be reused over multiple solves
 - improvement even for small numbers of nodes (reduces both intra- and interprocessor communication)
- (deep) pipelined methods
 - cost of applying preconditioner + SpMV is less than or the same as a global synchronization
 - improvement only for large numbers of nodes

Looking Forward

- Better understanding of finite precision behavior
- Improved usability
 - More adaptivity, autotuning; less left to the user
- Hybrid methods?
 - stationary iterative method + Krylov subspace method
- Fault tolerance?
 - MTTF=0 on an exascale machine
 - A problem to be handled at the algorithm level, or...?
- Making use of specialized hardware
 - accelerators, GPUs, etc.
 - multiple precisions?
 - new performance model, new programming model, bigger tuning space

Thank you!

carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson