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Lecture Outline

• Parallel computers and performance modeling

• Architecture trends

• Krylov subspace methods

• Properties

• Performance bottlenecks at scale

• High-performance variants of Krylov subspace methods

• Early approaches

• Pipelined methods

• s-step methods

• Practical implementation issues and challenges
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Computational and Data Science at Scale
• Why are we interested in solving larger and larger problems?

• Enables new frontiers in computational science and engineering

⇒ Finer-grained simulation, over longer time scales, processing huge 
amounts of available data
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• Atmosphere, Earth, Environment
• Physics - applied, nuclear, particle, fusion, photonics
• Bioscience, Biotechnology, Genetics
• Chemistry, Molecular Sciences
• Geology, Seismology
• Electrical Engineering, Circuit Design, Microelectronics
• Mechanical Engineering - from prosthetics to spacecraft
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• Atmosphere, Earth, Environment
• Physics - applied, nuclear, particle, fusion, photonics
• Bioscience, Biotechnology, Genetics
• Chemistry, Molecular Sciences
• Geology, Seismology
• Electrical Engineering, Circuit Design, Microelectronics
• Mechanical Engineering - from prosthetics to spacecraft

• Also industrial and commercial interests

• "Big Data", databases, data mining
• Artificial Intelligence (AI)
• Medical imaging and diagnosis
• Pharmaceutical design
• Financial and economic modeling
• Advanced graphics and virtual reality
• Oil exploration



Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years
“Moore's Law”

Moore’s Law

Microprocessors have become 
smaller, denser, and more 
powerful.

Gordon Moore (co-founder of Intel) 
predicted in 1965 that the transistor 
density of semiconductor chips would 
double roughly every 18 months. 

Slide source: Jack Dongarra
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Microprocessor Transistors / Clock (1970-2000)
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Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a factor of x?
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Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a factor of x?

• Clock rate goes up by x because wires are shorter

• actually less than x, because of power consumption

• Transistors per unit area goes up by x2

• Die size has also increased 

• typically another factor of ~ x

• Raw computing power of the chip goes up by ~ x4 !

• typically x3 is devoted to either on-chip

• parallelism: hidden parallelism such as ILP

• locality: caches

• So most programs x3 times faster, without changing them

6Slide source: Kathy Yelick



Power Density Limits Serial Performance
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Scaling clock speed (business as usual) will not work
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Scaling clock speed (business as usual) will not work

• Concurrent systems are more 
power efficient 

– Dynamic power is 
proportional to 𝑉2𝑓𝐶

– Increasing frequency (𝑓) also 
increases supply voltage (𝑉) 
 cubic effect

– Increasing cores increases 
capacitance (𝐶) but only 
linearly

– Save power by lowering 
clock speed
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Scaling clock speed (business as usual) will not work

• High performance serial processors waste power
- Speculation, dynamic dependence checking, etc. burn power
- Implicit parallelism discovery

• More transistors, but not faster serial processors

• Concurrent systems are more 
power efficient 

– Dynamic power is 
proportional to 𝑉2𝑓𝐶

– Increasing frequency (𝑓) also 
increases supply voltage (𝑉) 
 cubic effect

– Increasing cores increases 
capacitance (𝐶) but only 
linearly

– Save power by lowering 
clock speed
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Revolution in Processors

• Chip density is continuing increase ~2x every 2 years

• Clock speed is not

• Number of processor cores may double instead

• Power is under control, no longer growing
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Parallel Computer Architectures

• Takeaway: all programs that need to run faster will have to become parallel 
programs

• Since mid 2000s - not only are fastest computers parallel, but nearly all
computers are parallel 

17



Evolution of HPC Nodes
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Evolution of HPC Nodes
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HPC Architectures Today
Summit (Oak Ridge National Lab, Tennessee)

• current #1 on the TOP500

24



HPC Architectures Today
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https://www.olcf.ornl.gov/wp-content/uploads/2018/12/summit_workshop_thompto.pdf

One Processor: 22 SIMD processing cores, on-chip accelerators
• Each core supports 4 hardware threads
• Each core has separate L1 cache; pairs of cores share L2 and L3 cache



26

https://www.olcf.ornl.gov/for-users/system-user-
guides/summit/summit-user-guide/#nvidia-v100-gpus

HPC Architectures Today

One GPU (NVIDIA V100): 80 streaming multiprocessors (SMs), 16 GB of high-
bandwidth memory (HBM2), 6 MB L2 cache shared by SMs



27https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/#nvidia-v100-gpus

One SM:

32 FP64 (double-precision) cores, 
64 FP32 (single-precision) cores, 
64 INT32 cores, 
8 tensor cores,
128-KB shared memory/L1 cache

HPC Architectures Today



HPC Architectures Today

28https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Socket: 1 CPU, 3 GPUs



HPC Architectures Today

29https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Node: 2 sockets



HPC Architectures Today
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One Rack: 18 nodes
• Dual-rail EDR InfiniBand network with non-blocking fat-tree topology
• Node bandwidth of 23 GB/s



HPC Architectures Today

31https://en.wikichip.org/wiki/supercomputers/summit



Designing High-Performance Parallel Algorithms

• To design an efficient parallel algorithm, must first model physical costs ---
runtime or energy consumption --- of executing a program on a machine

• Tradeoff: 

• More detailed model: more accurate results for a particular machine, but 
results may not apply to other machines

• Less detailed model: results applicable to a variety of machines, but may 
not be accurate for any

• but abstracting machine details can still give us a general sense of an 
efficient implementation

12



Performance Modeling: Latency-Bandwidth Model

A simplified runtime model: 

• Time to perform a floating point operation: γ 

• Time to move a message of n words: α + βn

• α = latency (seconds), β = 1/bandwidth (seconds/word)

Runtime = γ (# flops) + β (# words) + α (# msgs)

#flops,words,msgs are counted along a critical path in the schedule:  

13



Performance Modeling: Latency-Bandwidth Model

𝛾 is per-flop: 

• To improve: more parallelism (no longer increase clock 
frequency)
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Performance Modeling: Latency-Bandwidth Model

𝛾 is per-flop: 

• To improve: more parallelism (no longer increase clock 
frequency)

𝛽 is per-word: 

• Models bandwidth: maximum amount of data that can be in-
flight simultaneously

• To improve: add more ports/wires/etc. 

𝛼 is per-message and independent of message size

• Models latency: time for data to travel across machine

• Difficult to improve, due to fundamental limits (speed of light, 
atomic radius,...)

“Bandwidth is money, but latency is physics”
14



Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

Today's Systems
Predicted Exascale

Systems*
Factor 

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect 
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

15
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Exascale System Projections

• Gaps will only grow larger

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Reducing time spent moving data/waiting for data will be essential for 
applications at exascale! 

Today's Systems
Predicted Exascale

Systems*
Factor 

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect 
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

• Movement of data (communication) is much more expensive than floating 
point operations (computation), in terms of both time and energy

15



Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• with maximum energy consumption around 20-40 MWatts

16

Nothing tends so much to the 
advancement of knowledge as the 
application of a new instrument. 

- Sir Humphry Davy

• Advancing knowledge, addressing social 
challenges, improving quality of life, 
influencing policy, economic 
competitiveness 

• Large investment in HPC worldwide
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• Large investment in HPC worldwide



An Exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the LINPACK 
benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial pivoting
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benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial pivoting

• Summit supercomputer has already exceeded exaflop performance for a certain 
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

• Does that mean we are done?

• LINPACK benchmark is typically a compute-bound problem ("BLAS-3")

• Not a good indication of performance for a large number of scientific applications!

• Lots of remaining work even after exascale performance is achieved

• Has led to incorporation of other benchmarks into the TOP500 ranking

• e.g., HPCG: Solving sparse 𝐴𝑥 = 𝑏 iteratively using the conjugate gradient 
method

17
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Krylov subspace methods

• In each iteration, 

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 +𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual 
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc. 

• Krylov Subspace Method is a projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

• Linear systems 𝐴𝑥 = 𝑏, eigenvalue problems, singular value problems, least squares, etc. 
• Best for: 𝐴 large & very sparse, stored implicitly, or only approximation needed 

18



Krylov Subspace Methods in the Wild

Climate Modeling 

Computational Cosmology
(Dark Matter Simulation, 
Almgren et al., LBNL)

Medical Treatment

Computer Vision
(Contour Detection, Berkeley 

Computer Vision Group)

Power Grid Modeling

Chemical Engineering
(Low-Emission Combustion 
Simulation, CCSE, LBNL)

Financial Portfolio 
Optimization 

Latent Semantic Analysis

20



The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)
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𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that 

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model 

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖
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• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

21



The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that 
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• CG approximation 𝑥𝑖 is obtained by solving the reduced model 
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Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

⇒ CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis 21



Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

22



Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
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𝑟𝑖
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𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1
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minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

𝑥0 +𝒦𝑖 𝐴, 𝑟0 = 𝑥0 + span{𝑝0, … 𝑝𝑖−1}

If 

𝑝𝑖 ⊥𝐴 𝑝𝑗 for 𝑖 ≠ 𝑗, 

1-dimensional minimizations in each 
iteration give 𝑖-dimensional 
minimization over the whole subspace
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Conjugate Gradient on the World's Fastest Computer
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Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922
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Summit - IBM Power System AC922

HPCG benchmark 
(sparse 𝐴𝑥 = 𝑏, iterative)

1.5% efficiency



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24



×

Cost Per Iteration
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 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring 

processors (nearest neighbor MPI collective)
• Must read A/vector from slow memory



 Inner products
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• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for 
all communication to finish before proceeding

• Multiple reads/writes to slow memory
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Low computation/communication ratio 

⇒ Performance is communication-bound

SpMV

orthogonalize

Cost Per Iteration
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General Strategy GuideRoofline Model (Williams, Waterman, 
Patterson, 2009)

• Provides estimates of performance for 
various applications (based on arithmetic 
intensity) for given machine

• attainable flop/s = min(peak flop/s, peak 
bandwidth × arithmetic intensity)

• "ceilings" give peak bandwidth or peak 
flops in absence of possible optimizations

Peak Flop/s

No FMA

A
tt

ai
n

ab
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p
/s

Arithmetic Intensity (Flop:Byte)

Roofline Model Example
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General Strategy Guide

Generally three approaches to improving 
performance:

• Maximize in-core performance (e.g. 
get compiler to vectorize)

• Maximize memory bandwidth (e.g. 
NUMA-aware allocation)

• Minimize data movement (increase AI)

Peak Flop/s

No FMA

A
tt

ai
n

ab
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Roofline Model (Williams, Waterman, 
Patterson, 2009)

• Provides estimates of performance for 
various applications (based on arithmetic 
intensity) for given machine

• attainable flop/s = min(peak flop/s, peak 
bandwidth × arithmetic intensity)

• "ceilings" give peak bandwidth or peak 
flops in absence of possible optimizations

Roofline Model Example

27Image source: Sam Williams



Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of 
computation to communication) in CG:
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• Using auxiliary vectors
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Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of 
computation to communication) in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG 

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points 
to 1 per iteration 

• Modifications also allow decoupling of SpMV and inner products - enables 
overlapping (MPI non-blocking collectives)

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations
28



High Performance Krylov Subspace Methods

• To improve performance of Krylov subspace methods, we must reduce the cost of 
data movement

• Communication "hiding" approaches

• Use non-blocking MPI communication

• Do useful computation while waiting for communication (overlapping)

• "Pipelined" Krylov subspace methods

• Historical background, derivation

• Performance results

• Recent work on "deep pipelined" methods

• Communication "avoiding" approaches

• Mathematically unroll iteration loop, allows all communication for multiple 
iterations to be done in one step

• "s-step" Krylov subspace methods

• Historical background, derivation

• Implementation details (matrix powers kernel, TSQR)

• Performance results

• Other approaches: enlarged KSMs, combination of pipelined and s-step approaches

80



Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in (HS)CG 
to 1 synchronization point per iteration
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Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in (HS)CG 
to 1 synchronization point per iteration

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Can then also merge the updates of 𝑥𝑖, 𝑟𝑖, and 𝑝𝑖
• Developed independently by Johnson (1983, 1984), van 

Rosendale (1983, 1984), Saad (1985)

• Many other similar approaches
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𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Can then also merge the updates of 𝑥𝑖, 𝑟𝑖, and 𝑝𝑖
• Developed independently by Johnson (1983, 1984), van 

Rosendale (1983, 1984), Saad (1985)

• Many other similar approaches

• Could also compute 𝛼𝑖−1 from 𝛽𝑖−1:

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1
𝛼𝑖−2

−1
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CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as 

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖
we can combine these to obtain a 3-term recurrence for the residuals (STCG):

𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖
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𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young 
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end
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Can be accomplished with 
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point on parallel 
computers (Strakoš 1985, 
1987)
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Can be accomplished with 
a single synchronization 
point on parallel 
computers (Strakoš 1985, 
1987)

• Similar approach (computing 𝛼𝑖 using 𝛽𝑖−1) used by D'Azevedo, Eijkhout, Romaine 
(1992, 1993)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young 
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end
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Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989) 

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and 
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(  𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1
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Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖
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22



Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and 𝐴2𝑟𝑖 to remove sequential 
dependency between SpMV and inner products

• Allows the use of nonblocking (asynchronous) MPI communication to
overlap SpMV and inner products

• Hides the latency of global communications
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GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax 

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖−  𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
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MPI Non-Blocking Communication

• "Non-blocking" or "asynchronous" collectives available since MPI 3

34

MPI_Iallreduce(...,MPI_Request,...)

// ...other work (SpMV, precond., etc)

MPI_Wait(...,MPI_Request)

call to MPI_Iallreducecall to MPI_Wait

PETSc provides a construct for asynchronous dot-
products: 
VecDotBegin (...,&dot); 

PetscCommSplitReductionBegin (comm); 

// ...other work 

VecDotEnd (...,&dot); P. Ghysels, et al. SIAM J. Scientific Computing, 
35(1):C48C71, (2013).



Deep Pipelining

• Motivation: want to have perfect overlap of computation of inner products 
and SpMVs/preconditioner application

• But this depends on the machine, matrix, etc. 

• If inner products take much longer than 1 SpMV, do ℓ SpMVs instead

• ⇒ "deep" pipelined method with pipeline length ℓ

• ℓ should be chosen to be the number of SpMV/precond. operations 
that can be done in the time it takes for one Allreduce

• Deep pipelined GMRES variant [Ghysels, Ashby, Meerbergen, Vanroose, 
SIAM J. Sci. Comput, 35(1), 2013]

• Deep pipelined CG variant [Cornelis, Cools, Vanroose, arXiv:1801.04728, 
2018]

35



Available Software

• Implementations in PETSc:

• KSPPGMRES: pipelined GMRES

• KSPPIPECG: pipelined CG

• KSPPIPECR: pipelined CR

• KSPGROPPCG: Gropp asynchronous variant

• KSPPIPEBCGS: pipelined BiCGSTAB

• KSPPIPELCG: deep pipelined CG

36



Performance of (Deep) Pipelined CG

37(Cornelis, Cools, Vanroose, arXiv: 1801.04728, 2018)

48 compute nodes, each with two 14-core Intel E5-2680v4, 
Broadwell generation CPUs; EDR InfiniBand

20 compute nodes, each with two 6-
core Intel Xeon X5660 Nehalem 
2:80 GHz processors each (12 cores 
per node); 4QDR InfiniBand



s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once 

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s
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s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once 

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68) 
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van 

Rosendale (1983);   Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes; 
growing relative cost of communication
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History of 𝑠-step Krylov Subspace Methods

39

1983

Van 
Rosendale: 

CG

1988

Walker: 
GMRES

Chronopoulos
and Gear: CG

1990 1991 1992

First termed 
“s-step 

methods”

de Sturler: 
GMRES

1989

Bai, Hu, and Reichel:
GMRES

Chronopoulos
and Kim: 

Nonsymm. 
Lanczos

Joubert and 
Carey: GMRES

Erhel:
GMRES

Toledo: CG

de Sturler and 
van der Vorst: 

GMRES

1995 2001

Chronopoulos
and Kinkaid: 

Orthodir

Chronopoulos and 
Kim: Orthomin, 

GMRES Chronopoulos: 
MINRES, GCR, 

Orthomin

Kim and 
Chronopoulos:  
Arndoli, Symm. 

Lanczos

Leland: 
CG



Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},
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the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization 
𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates
Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′
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s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be 
computed by independently by each processor without communication: 

30
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s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and 

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1 ] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
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s-step CG

Outer Loop

Compute basis 
O(s) SPMVs

O(𝑠2) Inner 
Products (one 

synchronization)

Inner Loop

Local Vector 
Updates (no 

comm.)

End Inner Loop
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s 
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′
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′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
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′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
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′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
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s-step CG
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Compute basis 
O(s) SPMVs

O(𝑠2) Inner 
Products (one 
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Inner Loop

Local Vector 
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comm.)
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Local Vector 
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′
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′
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𝑟𝑗
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′
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′
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end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1 ] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
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Sparse Matrix Computations

• Sparse Matrix x Vector (SpMV) (𝑦 = 𝐴𝑥)

• Very communication-bound; no reuse

• Lower bound depends on sparsity
structure, algorithm used (1D 
rowwise/colwise, 2D, etc.)

• Communication cost depends on partition

• Hypergraph models capture 
communication dependencies 
(Catalyurek, Aykanat, 1999)

• minimize hypergraph cut = minimize 
words moved

44
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• Repeated SpMVs (𝑌 = [𝐴𝑥, 𝐴2𝑥, … , 𝐴𝑘𝑥])

• Naive approach: k repeated SpMVs

• Communication-avoiding approach: "matrix powers kernel"

• see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008)



Example: Tridiagonal matrix

SpMV Dependency Graph

𝐺 = (𝑉, 𝐸) where 𝑉 = 𝑦0, … , 𝑦𝑛−1 ∪ {𝑥0, … , 𝑥𝑛−1} and 𝑦𝑖 , 𝑥𝑗 ∈ 𝐸 if 𝐴𝑖𝑗 ≠ 0
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Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase 
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’ 
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Sequential

Parallel

A3v
A2v
Av
v

A3v
A2v
Av
v

46



Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase 
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’ 
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Sequential

Parallel

A3v
A2v
Av
v

A3v
A2v
Av
v

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Also works for 
general graphs!
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Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥
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𝐴2𝑥

𝐴3𝑥
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Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel
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Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Matrix powers 
optimization:

1 message per neighbor

Parallel Matrix Powers Kernel
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Complexity comparison

Example of parallel (per processor) complexity for 𝑠 iterations of  CG vs. s-step 
CG for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑁/𝑝 rows of the matrix and 𝑠 ≤ 𝑁/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms 
and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical 
CG

𝑠𝑁

𝑝

𝑠𝑁

𝑝
𝑠  𝑁 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

s-step CG
𝑠𝑁

𝑝

𝑠2𝑁

𝑝
𝑠  𝑁 𝑝 𝑠2 log2 𝑝 1 log2 𝑝
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s-step GMRES

49

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑣0 = 𝑟0/‖𝑟0‖
for 𝑖 = 1: 𝑘

𝑤 = 𝐴𝑣𝑖−1
Orthogonalize 𝑤 against [𝑣0, … , 𝑣𝑖−1]
Update vector 𝑣𝑖, matrix 𝐻

end
Use 𝐻, [𝑣0, … , 𝑣𝑘] to construct the solution

Classical GMRES

e.g., Modified Gram-Schmidt



s-step GMRES

49

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑣0 = 𝑟0/‖𝑟0‖
for 𝑖 = 1: 𝑘

𝑤 = 𝐴𝑣𝑖−1
Orthogonalize 𝑤 against [𝑣0, … , 𝑣𝑖−1]
Update vector 𝑣𝑖, matrix 𝐻

end
Use 𝐻, [𝑣0, … , 𝑣𝑘] to construct the solution

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑣0 = 𝑟0/‖𝑟0‖
for 𝑖 = 0: 𝑠: 𝑘 − 𝑠

Compute 𝑊 such that span([𝑣𝑖 ,𝑊]) = 𝒦𝑠+1 𝐴, 𝑣𝑖
Make 𝑊 orthogonal against [𝑣0, … , 𝑣𝑖]
Make 𝑊 orthogonal
Update [𝑣𝑖+1, … , 𝑣𝑖+𝑠], matrix 𝐻

end
Use 𝐻, [𝑣0, … , 𝑣𝑘] to construct the solution

Classical GMRES

s-step GMRES

e.g., Modified Gram-Schmidt

"matrix powers kernel"

Block Gram-Schmidt

"Tall-Skinny QR"



Tall-Skinny QR (TSQR)

• TSQR: QR factorization of a tall 
skinny matrix using Householder 
transformations

• QR decomposition of m x b matrix W, 
m >> b 

• P processors, block row layout 

50



Tall-Skinny QR (TSQR)

• TSQR: QR factorization of a tall 
skinny matrix using Householder 
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cores on Cray XE6 

• Performance studies

• s-step GMRES on hybrid CPU/GPU 
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Alternative Approaches

• Enlarged Krylov subspace methods (Grigori, Moufawad, Nataf, 2016)

• Split vector into t parts based on domain decomposition of A; enlarge 
Krylov subspace by t dimensions each iteration

• Faster convergence, more parallelizable

• Combined s-step pipelined methods 

• (ℓ, 𝑠)-GMRES (Yamazaki, Hoemmen, Luszczek, Dongarra, 2017)

• Hybrid approach which combines ideas of s-step and pipelined methods; 
reduces number of global synchronizations and also overlaps them with 
other work
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Practical Implementation Challenges

• How to pick parameters? (pipeline depth in pipelined method; s in s-step 
method)

• Choice must take into account matrix structure, machine, partition, as 
well as numerical properties (more on this next time!)

• Preconditioning

• Must consider overlap in pipelined methods (if enough to overlap with)

• For s-step, can diminish potential gain from matrix powers kernel if 
preconditioner is dense (but still win from savings in Allreduce)
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Choosing s

• How do we expect communication costs to change as s 
increases?

• Initially decrease, but at some point, start increasing

• Point depends on sparsity structure of matrix, 
partition of matrix, and latency/bandwidth 
parameters of the machine

• Bandwidth cost can start to dominate

• For s large enough, the extra entries we need go past 
our neighbors boundaries

• more messages required -> increased latency 
cost
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• How do we expect communication costs to change as s 
increases?

• Initially decrease, but at some point, start increasing

• Point depends on sparsity structure of matrix, 
partition of matrix, and latency/bandwidth 
parameters of the machine

• Bandwidth cost can start to dominate

• For s large enough, the extra entries we need go past 
our neighbors boundaries

• more messages required -> increased latency 
cost

• For GMRES, best s for matrix powers may not be best 
s for TSQR kernel

• Choice of s requires co-tuning 
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execution time which are dependent on the problem size but 
independent of the number of processors (assuming homogeneity) 
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• Goal: estimate best blocking factor 𝑏 for matrix powers 
computation

• Starting place for parameter selection – to get close to optimal 
answer, would need more accurate model of time, costs including 
constants

• Cost model:
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Matrix Partitioning

59

• For computing matrix powers (i.e., constructing the basis matrix in s-step 
methods, we really want to partition the structure of 𝐴𝑠 rather than 𝐴
• Analogous to single SpMV, can construct a hypergraph model such 

that the minimum cut gives a partition with minimum communication 
volume 

• Load balancing 
• The parallel matrix powers kernel involves redundantly computing 

entries of the vectors on different processors
• Entries which need to be redundantly computed determined by 

partition



Hypergraph Partitioning for Matrix Powers

• “s-level” row- and column-nets encode the structure of 𝐴𝑠

row-nets represent
domain of dependence

column-nets represent
domain of influence

Parallel communication for
𝑦 = 𝐴𝑠𝑥,

given 1D rowwise layout of 𝐴𝑠

Parallel communication for
𝑉 = [𝑥, 𝐴𝑥, 𝐴2𝑥,… , 𝐴𝑠𝑥],
given a sparse tiling of 𝐴 =

(assuming no 
cancellation and 

nonzero diagonal)
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• “s-level” row- and column-nets encode the structure of 𝐴𝑠

• But expensive to compute (s × Boolean sparse matrix-matrix multiplies)
• Only worth it if 𝐴 has particularly irregular sparsity structure (e.g., number of nonzeros

per column in 𝐴𝑖 grows at various rates) and same matrix will be reused
• Potential use of randomized algorithms to estimate nnz/column in 𝐴𝑖
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Preconditioning for s-step variants

• Preconditioners improve spectrum of system to improve convergence 
rate

• E.g., instead of 𝐴𝑥 = 𝑏, solve 𝑀−1𝐴𝑥 = 𝑀−1𝑏, where 𝑀−1 ≈ 𝐴−1

• Essential in practice
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• Essential in practice

• In s-step variants, general preconditioning is a challenge

• Except for very simple cases, ability to exploit temporal locality (in 
matrix powers computation) across iterations is diminished by 
preconditioning

• Still potential gain from blocking inner products/avoiding 
global synchronization

• If possible to avoid communication at all, usually necessitates 
significant modifications to the algorithm

• Tradeoff: speed up convergence, but increase time per iteration due to 
communication!

• For each specific app, must evaluate tradeoff between 
preconditioner quality and sparsity of the system 
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Preconditioning for s-step KSMs

• Much recent/ongoing work in developing communication-avoiding 
preconditioned methods 

• Many approaches shown to be compatible

• Diagonal

• Sparse Approx. Inverse (SPAI) – for s-step BICGSTAB by Mehri
(2014)

• HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, 
C., Demmel, 2014); same general technique for any system that can 
be written as sparse + low-rank

• Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step 
GMRES (Yamazaki et al., 2014) 

• CA-ILU(0) – Moufawad and Grigori (2013)

• Domain decomposition – avoid introducing additional communication 
by “underlapping” subdomains (Yamazaki et al., 2014)
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"Underlapping" Domain Decomposition

62

(Yamazaki et al., 2014)

• Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces 
between the subdomains without additional communication beyond what is required by 
sparsity structure of A

In order to "localize" effects of preconditioner,
• form "interior" by removing s-level "underlap"
• apply "local" preconditioner on "interior"

• ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
• apply diagonal Jacobi on "underlap"
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The effects of finite precision

Well-known that roundoff error has two 
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no 
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG

10
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Conjugate Gradient method for solving Ax = b
double precision (휀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖
𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖
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