# High-Performance Variants of Krylov Subspace Methods: I/II

Erin C. Carson

Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

SNA '19 January 21-25, 2019

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16\_027/0008495



EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education



# Lecture Outline

- Parallel computers and performance modeling
  - Architecture trends
- Krylov subspace methods
  - Properties
  - Performance bottlenecks at scale
- High-performance variants of Krylov subspace methods
  - Early approaches
  - Pipelined methods
  - s-step methods
- Practical implementation issues and challenges

# Computational and Data Science at Scale

- Why are we interested in solving larger and larger problems?
- Enables new frontiers in computational science and engineering
   ⇒ Finer-grained simulation, over longer time scales, processing huge
   amounts of available data

# Computational and Data Science at Scale

- Why are we interested in solving larger and larger problems?
- Enables new frontiers in computational science and engineering
   ⇒ Finer-grained simulation, over longer time scales, processing huge
   amounts of available data
  - Atmosphere, Earth, Environment
  - Physics applied, nuclear, particle, fusion, photonics
  - Bioscience, Biotechnology, Genetics
  - Chemistry, Molecular Sciences
  - Geology, Seismology
  - Electrical Engineering, Circuit Design, Microelectronics
  - Mechanical Engineering from prosthetics to spacecraft

# Computational and Data Science at Scale

- Why are we interested in solving larger and larger problems?
- Enables new frontiers in computational science and engineering
   ⇒ Finer-grained simulation, over longer time scales, processing huge
   amounts of available data
  - Atmosphere, Earth, Environment
  - Physics applied, nuclear, particle, fusion, photonics
  - Bioscience, Biotechnology, Genetics
  - Chemistry, Molecular Sciences
  - Geology, Seismology
  - Electrical Engineering, Circuit Design, Microelectronics
  - Mechanical Engineering from prosthetics to spacecraft
- Also industrial and commercial interests
  - "Big Data", databases, data mining
  - Artificial Intelligence (AI)
  - Medical imaging and diagnosis
  - Pharmaceutical design
  - Financial and economic modeling
  - Advanced graphics and virtual reality
  - Oil exploration

### Technology Trends: Microprocessor Capacity



"Moore's Law"

Microprocessors have become smaller, denser, and more powerful.



Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

### Microprocessor Transistors / Clock (1970-2000)



• What happens when the feature size (transistor size) shrinks by a factor of x?

- What happens when the feature size (transistor size) shrinks by a factor of x?
- Clock rate goes up by x because wires are shorter
  - actually less than x, because of power consumption

- What happens when the feature size (transistor size) shrinks by a factor of x?
- Clock rate goes up by x because wires are shorter
  - actually less than x, because of power consumption
- Transistors per unit area goes up by  $x^2$

- What happens when the feature size (transistor size) shrinks by a factor of  $\times$ ?
- Clock rate goes up by x because wires are shorter
  - actually less than x, because of power consumption
- Transistors per unit area goes up by  $\mathsf{x}^2$
- Die size has also increased
  - typically another factor of  $\sim x$

- What happens when the feature size (transistor size) shrinks by a factor of x?
- Clock rate goes up by x because wires are shorter
  - actually less than x, because of power consumption
- Transistors per unit area goes up by  $\chi^2$
- Die size has also increased
  - typically another factor of  $\sim x$
- Raw computing power of the chip goes up by  $\sim x^4$  !
  - typically  $x^3$  is devoted to either on-chip
    - parallelism: hidden parallelism such as ILP
    - locality: caches
- So most programs  $x^3$  times faster, without changing them

### Power Density Limits Serial Performance

#### Scaling clock speed (business as usual) will not work



# Power Density Limits Serial Performance

- Concurrent systems are more power efficient
  - Dynamic power is proportional to V<sup>2</sup>fC
  - Increasing frequency (f) also increases supply voltage (V)
     → cubic effect
  - Increasing cores increases capacitance (C) but only linearly
  - Save power by lowering clock speed

#### Scaling clock speed (business as usual) will not work



# Power Density Limits Serial Performance

- Concurrent systems are more power efficient
  - Dynamic power is proportional to V<sup>2</sup>fC
  - Increasing frequency (f) also increases supply voltage (V)
     → cubic effect
  - Increasing cores increases capacitance (C) but only linearly
  - Save power by lowering clock speed

#### Scaling clock speed (business as usual) will not work



- High performance serial processors waste power
  - Speculation, dynamic dependence checking, etc. burn power
  - Implicit parallelism discovery
- More transistors, but not faster serial processors

# Revolution in Processors



- Chip density is continuing increase  $\sim 2x$  every 2 years
- Clock speed is not
- Number of processor cores may double instead
- Power is under control, no longer growing

# Parallel Computer Architectures

- Takeaway: all programs that need to run faster will have to become parallel programs
- Since mid 2000s not only are fastest computers parallel, but nearly *all* computers are parallel



1995 Single CPU per node with main memory

Cache





https://str.llnl.gov/march-2015/still



2000-2010 Accelerators usher in era of heterogeneity

#### New programming models



2000-2010 Accelerators usher in era of heterogeneity

2014 Accelerators share common view of memory with CPU





### Summit (Oak Ridge National Lab, Tennessee)

• current #1 on the TOP500



One Processor: 22 SIMD processing cores, on-chip accelerators

- Each core supports 4 hardware threads
- Each core has separate L1 cache; pairs of cores share L2 and L3 cache



One GPU (NVIDIA V100): 80 streaming multiprocessors (SMs), 16 GB of highbandwidth memory (HBM2), 6 MB L2 cache shared by SMs



https://www.olcf.ornl.gov/for-users/system-userguides/summit/summit-user-guide/#nvidia-v100-gpus

One SM:

32 FP64 (double-precision) cores, 64 FP32 (single-precision) cores, 64 INT32 cores,

8 tensor cores,

128-KB shared memory/L1 cache



#### One Socket: 1 CPU, 3 GPUs



One Node: 2 sockets

Summit Node





https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Rack: 18 nodes

- Dual-rail EDR InfiniBand network with non-blocking fat-tree topology
- Node bandwidth of 23 GB/s





https://en.wikichip.org/wiki/supercomputers/summit

### Designing High-Performance Parallel Algorithms

- To design an efficient parallel algorithm, must first model physical costs ---runtime or energy consumption --- of executing a program on a machine
- Tradeoff:
  - More detailed model: more accurate results for a particular machine, but results may not apply to other machines
  - Less detailed model: results applicable to a variety of machines, but may not be accurate for any
    - but abstracting machine details can still give us a general sense of an efficient implementation

A simplified runtime model:

- Time to perform a floating point operation:  $\boldsymbol{\gamma}$
- Time to move a message of n words:  $\alpha$  +  $\beta n$ 
  - $\alpha = \text{latency (seconds)}, \beta = 1/\text{bandwidth (seconds/word)}$

Runtime = 
$$\gamma$$
 (# flops) +  $\beta$  (# words) +  $\alpha$  (# msgs)

#flops,words,msgs are counted along a critical path in the schedule:



- $\gamma$  is per-flop:
  - To improve: more parallelism (no longer increase clock frequency)

- $\gamma$  is per-flop:
  - To improve: more parallelism (no longer increase clock frequency)
- $\beta$  is per-word:
  - Models bandwidth: maximum amount of data that can be inflight simultaneously
  - To improve: add more ports/wires/etc.

- $\gamma$  is per-flop:
  - To improve: more parallelism (no longer increase clock frequency)
- $\beta$  is per-word:
  - Models bandwidth: maximum amount of data that can be inflight simultaneously
  - To improve: add more ports/wires/etc.
- $\alpha$  is per-message and independent of message size
  - Models latency: time for data to travel across machine
  - Difficult to improve, due to fundamental limits (speed of light, atomic radius,...)

"Bandwidth is money, but latency is physics"

#### Exascale System Projections

|                           | Today's Systems          | Predicted Exascale<br>Systems* |
|---------------------------|--------------------------|--------------------------------|
| System Peak               | 10 <sup>16</sup> flops/s | 10 <sup>18</sup> flops/s       |
| Node Memory<br>Bandwidth  | 10 <sup>2</sup> GB/s     | 10 <sup>3</sup> GB/s           |
| Interconnect<br>Bandwidth | 10 <sup>1</sup> GB/s     | 10 <sup>2</sup> GB/s           |
| Memory Latency            | $10^{-7} { m s}$         | $5\cdot 10^{-8}$ s             |
| Interconnect Latency      | 10 <sup>-6</sup> s       | $5\cdot10^{-7}$ s              |

\*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)



#### Exascale System Projections

|                           | Today's Systems          | Predicted Exascale<br>Systems* | Factor<br>Improvement |
|---------------------------|--------------------------|--------------------------------|-----------------------|
| System Peak               | 10 <sup>16</sup> flops/s | 10 <sup>18</sup> flops/s       | 100                   |
| Node Memory<br>Bandwidth  | 10 <sup>2</sup> GB/s     | 10 <sup>3</sup> GB/s           | 10                    |
| Interconnect<br>Bandwidth | 10 <sup>1</sup> GB/s     | 10 <sup>2</sup> GB/s           | 10                    |
| Memory Latency            | $10^{-7} { m s}$         | $5\cdot 10^{-8}$ s             | 2                     |
| Interconnect Latency      | 10 <sup>-6</sup> s       | $5\cdot 10^{-7}$ s             | 2                     |

\*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

# Exascale System Projections

|                           | Today's Systems          | Predicted Exascale<br>Systems* | Factor<br>Improvement |
|---------------------------|--------------------------|--------------------------------|-----------------------|
| System Peak               | 10 <sup>16</sup> flops/s | 10 <sup>18</sup> flops/s       | 100                   |
| Node Memory<br>Bandwidth  | 10 <sup>2</sup> GB/s     | 10 <sup>3</sup> GB/s           | 10                    |
| Interconnect<br>Bandwidth | 10 <sup>1</sup> GB/s     | 10 <sup>2</sup> GB/s           | 10                    |
| Memory Latency            | $10^{-7} { m s}$         | $5\cdot 10^{-8}$ s             | 2                     |
| Interconnect Latency      | 10 <sup>-6</sup> s       | $5\cdot 10^{-7}$ s             | 2                     |

\*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Movement of data (communication) is much more expensive than floating point operations (computation), in terms of both time and energy
- Gaps will only grow larger
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!

#### Exascale Computing: The Modern Space Race

- "Exascale": 10<sup>18</sup> floating point operations per second
  - with maximum energy consumption around 20-40 MWatts
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness

Nothing tends so much to the advancement of knowledge as the application of a new instrument. - Sir Humphry Davy

• Large investment in HPC worldwide



#### Exascale Computing: The Modern Space Race

- "Exascale": 10<sup>18</sup> floating point operations per second
  - with maximum energy consumption around 20-40 MWatts
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness

Nothing tends so much to the advancement of knowledge as the application of a new instrument. - Sir Humphry Davy

• Large investment in HPC worldwide



• Technical challenges at all levels

hardware to algorithms to applications

#### Exascale Computing: The Modern Space Race

- "Exascale": 10<sup>18</sup> floating point operations per second
  - with maximum energy consumption around 20-40 MWatts
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness

Nothing tends so much to the advancement of knowledge as the application of a new instrument. - Sir Humphry Davy

• Large investment in HPC worldwide



• Technical challenges at all levels



- When will victory be declared?
  - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
    - Solving dense Ax = b using Gaussian elimination with partial pivoting

- When will victory be declared?
  - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
    - Solving dense Ax = b using Gaussian elimination with partial pivoting
  - Summit supercomputer has already exceeded exaflop performance for a certain genomics code (<u>https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/</u>)

- When will victory be declared?
  - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
    - Solving dense Ax = b using Gaussian elimination with partial pivoting
  - Summit supercomputer has already exceeded exaflop performance for a certain genomics code (<u>https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/</u>)
- Does that mean we are done?

- When will victory be declared?
  - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
    - Solving dense Ax = b using Gaussian elimination with partial pivoting
  - Summit supercomputer has already exceeded exaflop performance for a certain genomics code (<u>https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/</u>)
- Does that mean we are done?
- LINPACK benchmark is typically a compute-bound problem ("BLAS-3")
- Not a good indication of performance for a large number of scientific applications!
  - Lots of remaining work even after exascale performance is achieved
  - Has led to incorporation of other benchmarks into the TOP500 ranking
    - e.g., HPCG: Solving sparse Ax = b iteratively using the conjugate gradient method

# Krylov subspace methods

- Linear systems Ax = b, eigenvalue problems, singular value problems, least squares, etc.
- Best for: A large & very sparse, stored implicitly, or only approximation needed
- Krylov Subspace Method is a projection process onto the Krylov subspace

$$\mathcal{K}_{i}(A, r_{0}) = \operatorname{span}\{r_{0}, Ar_{0}, A^{2}r_{0}, \dots, A^{i-1}r_{0}\}$$

where A is an  $N \times N$  matrix and  $r_0 = b - Ax_0$  is a length-N vector

- In each iteration,
  - Add a dimension to the Krylov subspace
    - Forms nested sequence of Krylov subspaces

 $\mathcal{K}_1(A,r_0) \subset \mathcal{K}_2(A,r_0) \subset \cdots \subset \mathcal{K}_i(A,r_0)$ 

- Orthogonalize (with respect to some  $C_i$ )
- Select approximate solution  $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using  $r_i = b - Ax_i \perp C_i$



• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

#### Krylov Subspace Methods in the Wild



#### Climate Modeling

#### Computer Vision





Chemical Engineering

#### Medical Treatment





Computational Cosmology

Power Grid Modeling





Latent Semantic Analysis

Financial Portfolio Optimization



#### A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

A is symmetric positive definite,  $C_i = \mathcal{K}_i(A, r_0)$ 

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

A is symmetric positive definite,  $C_i = \mathcal{K}_i(A, r_0)$ 

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies$$
  $r_{N+1} = 0$ 

A is symmetric positive definite,  $C_i = \mathcal{K}_i(A, r_0)$ 

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies$$
  $r_{N+1} = 0$ 

Connection with Lanczos

- With  $v_1 = r_0/||r_0||$ , *i* iterations of Lanczos produces  $N \times i$  matrix  $V_i = [v_1, ..., v_i]$ , and  $i \times i$  tridiagonal matrix  $T_i$  such that  $AV_i = V_iT_i + \delta_{i+1}v_{i+1}e_i^T$ ,  $T_i = V_i^*AV_i$
- CG approximation  $x_i$  is obtained by solving the reduced model  $T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$

A is symmetric positive definite,  $C_i = \mathcal{K}_i(A, r_0)$ 

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies r_{N+1} = 0$$

Connection with Lanczos

- With  $v_1 = r_0/||r_0||$ , *i* iterations of Lanczos produces  $N \times i$  matrix  $V_i = [v_1, ..., v_i]$ , and  $i \times i$  tridiagonal matrix  $T_i$  such that  $AV_i = V_iT_i + \delta_{i+1}v_{i+1}e_i^T$ ,  $T_i = V_i^*AV_i$
- CG approximation  $x_i$  is obtained by solving the reduced model  $T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$
- Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

A is symmetric positive definite,  $C_i = \mathcal{K}_i(A, r_0)$ 

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies r_{N+1} = 0$$

Connection with Lanczos

- With  $v_1 = r_0/||r_0||$ , *i* iterations of Lanczos produces  $N \times i$  matrix  $V_i = [v_1, ..., v_i]$ , and  $i \times i$  tridiagonal matrix  $T_i$  such that  $AV_i = V_iT_i + \delta_{i+1}v_{i+1}e_i^T$ ,  $T_i = V_i^*AV_i$
- CG approximation  $x_i$  is obtained by solving the reduced model  $T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$
- Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)
- ⇒ CG (and other Krylov subspace methods) are highly nonlinear
  - Good for convergence, bad for ease of finite precision analysis

# Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$
  
for  $i = 1$ :nmax  
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$
end

# Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

minimizes  $||x - x_i||_A$  along line  $r_0 = b - Ax_0, \ p_0 = r_0$  $z(\alpha) = x_{i-1} + \alpha p_{i-1}$ for i = 1:nmax  $\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$  $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$  $r_i = r_{i-1} - \alpha_{i-1}Ap_{i-1}$  $\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$  $p_i = r_i + \beta_i p_{i-1}$ end

# Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

 $r_0 = b - Ax_0, \ p_0 = r_0$ for i = 1:nmax  $\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$  $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$  $r_i = r_{i-1} - \alpha_{i-1}Ap_{i-1}$  $\beta_i = \frac{r_i^T r_i}{r_i^T r_i r_{i-1}}$  $p_i = r_i + \beta_i p_{i-1}$ end

minimizes  $||x - x_i||_A$  along line  $z(\alpha) = x_{i-1} + \alpha p_{i-1}$ 

lf

$$p_i \perp_A p_j$$
 for  $i \neq j$ ,

1-dimensional minimizations in each iteration give *i*-dimensional minimization over the whole subspace

 $x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{p_0, \dots p_{i-1}\}$ 

#### Summit - IBM Power System AC922

| Site:              | Oak Ridge National Laboratory     |
|--------------------|-----------------------------------|
| Manufacturer:      | IBM                               |
| Cores:             | 2,282,544                         |
| Memory:            | 2,801,664 GB                      |
| Processor:         | IBM POWER9 22C 3.07GHz            |
| Interconnect:      | Dual-rail Mellanox EDR Infiniband |
| Performance        |                                   |
| Theoretical peak:  | 187,659 TFlops/s                  |
| LINPACK benchmark: | 122,300 Tflops/s                  |
| HPCG benchmark:    | 2,926 Tflops/s                    |

| Summit - IBM Power System AC922 |                                   |  |
|---------------------------------|-----------------------------------|--|
| Site:                           | Oak Ridge National Laboratory     |  |
| Manufacturer:                   | IBM                               |  |
| Cores:                          | 2,282,544                         |  |
| Memory:                         | 2,801,664 GB                      |  |
| Processor:                      | IBM POWER9 22C 3.07GHz            |  |
| Interconnect:                   | Dual-rail Mellanox EDR Infiniband |  |
| Performance                     |                                   |  |
| Theoretical peak:               | 187,659 TFlops/s                  |  |
| LINPACK benchmark:              | 122,300 Tflops/s                  |  |
| HPCG benchmark:                 | 2,926 Tflops/s                    |  |



| Summit - IBM Po    | wer System AC922                  | $ \qquad \qquad$ |
|--------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Site:              | Oak Ridge National Laboratory     | on top500                                                                                                                               |
| Manufacturer:      | IBM                               |                                                                                                                                         |
| Cores:             | 2,282,544                         | -                                                                                                                                       |
| Memory:            | 2,801,664 GB                      |                                                                                                                                         |
| Processor:         | IBM POWER9 22C 3.07GHz            | LINPACK benchmark<br>(dense $Ax = b$ , direct)                                                                                          |
| Interconnect:      | Dual-rail Mellanox EDR Infiniband | 65% efficiency                                                                                                                          |
| Performance        |                                   |                                                                                                                                         |
| Theoretical peak:  | 187,659 TFlops/s                  |                                                                                                                                         |
| LINPACK benchmark: | 122,300 Tflops/s                  |                                                                                                                                         |
| HPCG benchmark:    | 2,926 Tflops/s                    |                                                                                                                                         |

| Summit - IBM Power System AC922 |                                   | 1 current #1<br>on top500                        |
|---------------------------------|-----------------------------------|--------------------------------------------------|
| Site:                           | Oak Ridge National Laboratory     |                                                  |
| Manufacturer:                   | IBM                               |                                                  |
| Cores:                          | 2,282,544                         |                                                  |
| Memory:                         | 2,801,664 GB                      |                                                  |
| Processor:                      | IBM POWER9 22C 3.07GHz            | LINPACK benchmark                                |
| Interconnect:                   | Dual-rail Mellanox EDR Infiniband | (dense Ax = b, direct) $65% efficiency$          |
| Performance                     |                                   |                                                  |
| Theoretical peak:               | 187,659 TFlops/s                  | -                                                |
| LINPACK benchmark:              | 122,300 Tflops/s                  | HPCG benchmark                                   |
| HPCG benchmark:                 | 2,926 Tflops/s                    | (sparse $Ax = b$ , iterative)<br>1.5% efficiency |

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$
  
for  $i = 1$ :nmax  
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end



$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$
  
for  $i = 1$ :nmax  
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end



$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$
  
for  $i = 1$ :nmax  
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end



$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
  
for  $i = 1$ :nmax  
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end



$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
  
for  $i = 1$ :nmax  
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end



$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$
  
for  $i = 1$ :nmax  
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end



#### Cost Per Iteration

- $\rightarrow$  Sparse matrix-vector multiplication (SpMV)
  - O(nnz) flops
  - Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)
  - Must read A/vector from slow memory



# Cost Per Iteration

- $\rightarrow$  Sparse matrix-vector multiplication (SpMV)
  - O(nnz) flops
  - Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)
  - Must read A/vector from slow memory
- $\rightarrow$  Inner products
  - O(N) flops
  - **global synchronization** (MPI\_Allreduce)
    - all processors must exchange data and wait for *all* communication to finish before proceeding
  - Multiple reads/writes to slow memory





# Cost Per Iteration

- $\rightarrow$  Sparse matrix-vector multiplication (SpMV)
  - O(nnz) flops
  - Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)
  - Must read A/vector from slow memory
- $\rightarrow$  Inner products
  - O(N) flops
  - global synchronization (MPI\_Allreduce)
    - all processors must exchange data and wait for *all* communication to finish before proceeding
  - Multiple reads/writes to slow memory



#### Low computation/communication ratio

 $\Rightarrow$  Performance is communication-bound







#### Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations



#### Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations

Generally three approaches to improving performance:

• Maximize in-core performance (e.g. get compiler to vectorize)



#### Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations

Generally three approaches to improving performance:

- Maximize in-core performance (e.g. get compiler to vectorize)
- Maximize memory bandwidth (e.g. NUMA-aware allocation)



#### Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations

Generally three approaches to improving performance:

- Maximize in-core performance (e.g. get compiler to vectorize)
- Maximize memory bandwidth (e.g. NUMA-aware allocation)
- Minimize data movement (increase AI)



- Early work: CG with a single synchronization point per iteration
  - 3-term recurrence CG
  - Using modified computation of recurrence coefficients
  - Using auxiliary vectors

- Early work: CG with a single synchronization point per iteration
  - 3-term recurrence CG
  - Using modified computation of recurrence coefficients
  - Using auxiliary vectors
- Pipelined Krylov subspace methods
  - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
  - Modifications also allow decoupling of SpMV and inner products enables overlapping (MPI non-blocking collectives)

- Early work: CG with a single synchronization point per iteration
  - 3-term recurrence CG
  - Using modified computation of recurrence coefficients
  - Using auxiliary vectors
- Pipelined Krylov subspace methods
  - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
  - Modifications also allow decoupling of SpMV and inner products enables overlapping (MPI non-blocking collectives)
- s-step Krylov subspace methods
  - Compute iterations in blocks of s using a different Krylov subspace basis
  - Enables one synchronization per s iterations

# High Performance Krylov Subspace Methods

- To improve performance of Krylov subspace methods, we must reduce the cost of data movement
- Communication "hiding" approaches
  - Use non-blocking MPI communication
  - Do useful computation while waiting for communication (overlapping)
  - "Pipelined" Krylov subspace methods
    - Historical background, derivation
    - Performance results
    - Recent work on "deep pipelined" methods
- Communication "avoiding" approaches
  - Mathematically unroll iteration loop, allows all communication for multiple iterations to be done in one step
  - "s-step" Krylov subspace methods
    - Historical background, derivation
    - Implementation details (matrix powers kernel, TSQR)
    - Performance results
- Other approaches: enlarged KSMs, combination of pipelined and s-step approaches

#### Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in (HS)CG to 1 synchronization point per iteration

#### Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in (HS)CG to 1 synchronization point per iteration
- Compute  $\beta_i$  from  $\alpha_{i-1}$  and  $Ap_{i-1}$  using relation

$$||r_i||^2 = \alpha_{i-1}^2 ||Ap_{i-1}||^2 - ||r_{i-1}||^2$$

- Can then also merge the updates of  $x_i$ ,  $r_i$ , and  $p_i$
- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches

#### Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in (HS)CG to 1 synchronization point per iteration
- Compute  $\beta_i$  from  $\alpha_{i-1}$  and  $Ap_{i-1}$  using relation

$$||r_i||^2 = \alpha_{i-1}^2 ||Ap_{i-1}||^2 - ||r_{i-1}||^2$$

- Can then also merge the updates of  $x_i$ ,  $r_i$ , and  $p_i$
- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches
- Could also compute  $\alpha_{i-1}$  from  $\beta_{i-1}$ :  $\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$

• HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

• HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{aligned} r_0 &= b - Ax_0, \ p_0 = r_0, \ x_{-1} = x_0, \ r_{-1} = r_0, \ e_{-1} = 0 \\ \text{for } i &= 1:\text{nmax} \\ q_{i-1} &= \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2} \\ x_i &= x_{i-1} + \frac{1}{q_{i-1}} \left( r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2}) \right) \\ r_i &= r_{i-1} + \frac{1}{q_{i-1}} \left( -Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2}) \right) \\ e_{i-1} &= q_{i-1} \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})} \\ \end{aligned}$$
 end

HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \ x_{-1} = x_{0}, \ r_{-1} = r_{0}, \ e_{-1} = 0 \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} q_{i-1} &= \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2} \\ x_{i} &= x_{i-1} + \frac{1}{q_{i-1}} \left( r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2}) \right) \\ r_{i} &= r_{i-1} + \frac{1}{q_{i-1}} \left( -Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2}) \right) \\ e_{i-1} &= q_{i-1} \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \end{aligned}$$
end

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

• HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \ x_{-1} = x_{0}, \ r_{-1} = r_{0}, \ e_{-1} = 0 \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} q_{i-1} &= \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2} \\ x_{i} &= x_{i-1} + \frac{1}{q_{i-1}} \left( r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2}) \right) \\ r_{i} &= r_{i-1} + \frac{1}{q_{i-1}} \left( -Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2}) \right) \\ e_{i-1} &= q_{i-1} \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \end{aligned}$$
end

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

- Similar approach (computing  $\alpha_i$  using  $\beta_{i-1}$ ) used by D'Azevedo, Eijkhout, Romaine (1992, 1993)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and using an auxiliary recurrence for  $Ap_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and using an auxiliary recurrence for  $Ap_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and using an auxiliary recurrence for  $Ap_i$

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
s<sub>i</sub> = w<sub>i</sub> + \beta\_{i}s\_{i-1}
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and using an auxiliary recurrence for  $Ap_i$

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and using an auxiliary recurrence for  $Ap_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and • using an auxiliary recurrence for  $Ap_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \end{aligned}$$

$$\begin{aligned} w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and using an auxiliary recurrence for  $Ap_i$

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of  $\alpha_i$  and using an auxiliary recurrence for  $Ap_i$

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$
  

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
  
for  $i = 1$ :nmax  

$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
  

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$
  

$$w_{i} = Ar_{i}$$
  

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$
  

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$
  

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
  

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$



# Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
  - Uses auxiliary vector  $s_i \equiv Ap_i$  and same formula for  $\alpha_i$

# Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
  - Uses auxiliary vector  $s_i \equiv Ap_i$  and same formula for  $\alpha_i$
- Also uses auxiliary vectors for  $Ar_i$  and  $A^2r_i$  to remove sequential dependency between SpMV and inner products

# Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
  - Uses auxiliary vector  $s_i \equiv Ap_i$  and same formula for  $\alpha_i$
- Also uses auxiliary vectors for  $Ar_i$  and  $A^2r_i$  to remove sequential dependency between SpMV and inner products
  - Allows the use of nonblocking (asynchronous) MPI communication to overlap SpMV and inner products
  - Hides the latency of global communications

 $r_0 = b - Ax_0, \ p_0 = r_0$  $s_0 = Ap_0, w_0 = Ar_0, z_0 = Aw_0,$  $\alpha_0 = r_0^T r_0 / p_0^T s_0$ for i = 1:nmax  $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$  $r_i = r_{i-1} - \alpha_{i-1} S_{i-1}$  $w_i = w_{i-1} - \alpha_{i-1} Z_{i-1}$  $q_i = Aw_i$  $\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$  $\alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i / \alpha_{i-1}) r_i^T r_i}$  $p_i = r_i + \beta_i p_{i-1}$  $s_i = w_i + \beta_i s_{i-1}$  $z_i = q_i + \beta_i z_{i-1}$ 

 $r_0 = b - Ax_0, p_0 = r_0$  $s_0 = Ap_0, w_0 = Ar_0, z_0 = Aw_0,$  $\alpha_0 = r_0^T r_0 / p_0^T s_0$ for i = 1:nmax  $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$  $r_i = r_{i-1} - \alpha_{i-1} S_{i-1}$  $w_i = w_{i-1} - \alpha_{i-1} Z_{i-1}$  $q_i = Aw_i$  $\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$  $\alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i / \alpha_{i-1}) r_i^T r_i}$  $p_i = r_i + \beta_i p_{i-1}$  $s_i = w_i + \beta_i s_{i-1}$  $z_i = q_i + \beta_i z_{i-1}$ 

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$



$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$



23

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$



$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$



$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for  $i = 1$ :nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$



## MPI Non-Blocking Communication

"Non-blocking" or "asynchronous" collectives available since MPI 3

```
MPI_Iallreduce(...,MPI_Request,...)
// ...other work (SpMV, precond., etc)
MPI_Wait(...,MPI_Request)
```



#### Pipelined GMRES



P. Ghysels, et al. SIAM J. Scientific Computing, 35(1):C48C71, (2013).

PETSc provides a construct for asynchronous dotproducts:

```
VecDotBegin (...,&dot);
PetscCommSplitReductionBegin (comm);
// ...other work
VecDotEnd (...,&dot);
```



call to MPI\_Iallreduce

# Deep Pipelining

- Motivation: want to have perfect overlap of computation of inner products and SpMVs/preconditioner application
- But this depends on the machine, matrix, etc.
- If inner products take much longer than 1 SpMV, do  $\ell$  SpMVs instead
  - $\Rightarrow$  "deep" pipelined method with pipeline length  $\ell$
  - $\ell$  should be chosen to be the number of SpMV/precond. operations that can be done in the time it takes for one Allreduce
- Deep pipelined GMRES variant [Ghysels, Ashby, Meerbergen, Vanroose, SIAM J. Sci. Comput, 35(1), 2013]
- Deep pipelined CG variant [Cornelis, Cools, Vanroose, arXiv:1801.04728, 2018]

#### Available Software

- Implementations in PETSc:
  - KSPPGMRES: pipelined GMRES
  - KSPPIPECG: pipelined CG
  - KSPPIPECR: pipelined CR
  - KSPGROPPCG: Gropp asynchronous variant
  - KSPPIPEBCGS: pipelined BiCGSTAB
  - KSPPIPELCG: deep pipelined CG

# Performance of (Deep) Pipelined CG



FIG. 5. Strong scaling experiment on up to 20 nodes (240 processes) for a 5-point stencil 2D Poisson problem with 1.000.000 unknowns. Speedup over single-node classic CG for various pipeline lengths. All methods converged to  $||r_i||_2/||b||_2 = 1.0e-5$  in 1342 iterations.



FIG. 6. Strong scaling experiment on up to 48 nodes (672 processes) for a 5-point stencil 2D Poisson problem with 3.062.500 unknowns. Speedup over single-node classic CG for various pipeline lengths. All methods performed 1500 iterations with  $||r_i||_2/||b||_2 = 6.3e-4$ .



FIG. 7. Strong scaling experiment on up to 32 nodes (448 processes) for a block Jacobi preconditioned 2D Poisson problem with 3.062.500 unknowns. All methods performed 600 iterations with  $||r_i||_2/||b||_2 = 1.8e-4$  (on 1 node) and  $||r_i||_2/||b||_2 \leq 9.3e-4$  (on 32 nodes).

20 compute nodes, each with two 6core Intel Xeon X5660 Nehalem 2:80 GHz processors each (12 cores per node); 4QDR InfiniBand

48 compute nodes, each with two 14-core Intel E5-2680v4, Broadwell generation CPUs; EDR InfiniBand

- Idea: Compute blocks of s iterations at once
  - Compute updates in a different basis
  - Communicate every s iterations instead of every iteration
  - Reduces number of synchronizations per iteration by a factor of s

- Idea: Compute blocks of s iterations at once
  - Compute updates in a different basis
  - Communicate every s iterations instead of every iteration
  - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...

- Idea: Compute blocks of *s* iterations at once
  - Compute updates in a different basis
  - Communicate every s iterations instead of every iteration
  - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
  - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)

- Idea: Compute blocks of s iterations at once
  - Compute updates in a different basis
  - Communicate every s iterations instead of every iteration
  - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
  - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

- Idea: Compute blocks of s iterations at once
  - Compute updates in a different basis
  - Communicate every s iterations instead of every iteration
  - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
  - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

### History of *s*-step Krylov Subspace Methods





#### Key observation: After iteration i, for $j \in \{0, ..., s\}$ ,

#### $x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$



#### Key observation: After iteration i, for $j \in \{0, ..., s\}$ ,

 $x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$ 

s steps of s-step CG:

#### Key observation: After iteration i, for $j \in \{0, ..., s\}$ ,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

#### s steps of s-step CG:

#### Expand solution space s dimensions at once

Compute "basis" matrix  $\mathcal{Y}$  such that  $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$  according to the recurrence  $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$ 

#### Key observation: After iteration i, for $j \in \{0, ..., s\}$ ,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

#### s steps of s-step CG:

#### Expand solution space s dimensions at once

Compute "basis" matrix  $\mathcal{Y}$  such that  $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$  according to the recurrence  $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$ 

Compute inner products between basis vectors in one synchronization  $\mathcal{G} = \mathcal{Y}^T \mathcal{Y}$ 

#### Key observation: After iteration i, for $j \in \{0, ..., s\}$ ,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

#### s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix  $\mathcal{Y}$  such that  $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$  according to the recurrence  $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$ 

Compute inner products between basis vectors in one synchronization  $\mathcal{G} = \mathcal{Y}^T \mathcal{Y}$ 

#### Compute s iterations of vector updates

Perform s iterations of vector updates by updating coordinates in basis  $\mathcal{Y}$ :

 $x_{i+j} - x_i = \mathcal{Y}x'_j, \qquad r_{i+j} = \mathcal{Y}r'_j, \qquad p_{i+j} = \mathcal{Y}p'_j$ 



$$\begin{array}{rcl} Ap_{i+j} &=& A\underline{\mathcal{Y}}p_j'\\ n\\ n\\ & & \\ \end{array} \times \end{array}$$





 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$  $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$  $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$  $x'_{j} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$  $r_j' = r_{j-1}' - \alpha_{sk+j-1} \mathcal{B}_k p_{j-1}'$  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$
  
end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$  $G_k = Y_k^T Y_k$  $x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$  $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$  $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{i-1}^{\prime T} \mathcal{G}_k r_{i-1}^{\prime}}$  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$
  
end



 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$  $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$  $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$  $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$  $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

 $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$ 



end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$  $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$  $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$  $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$  $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end  $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$ 



 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$  $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$  $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$  $x'_{j} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$  $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$
  
end



## Sparse Matrix Computations

- Sparse Matrix x Vector (SpMV) (y = Ax)
  - Very communication-bound; no reuse
  - Lower bound depends on sparsity structure, algorithm used (1D rowwise/colwise, 2D, etc.)
  - Communication cost depends on partition
  - Hypergraph models capture communication dependencies (Catalyurek, Aykanat, 1999)
    - minimize hypergraph cut = minimize words moved



# Sparse Matrix Computations

- Sparse Matrix x Vector (SpMV) (y = Ax)
  - Very communication-bound; no reuse
  - Lower bound depends on sparsity structure, algorithm used (1D rowwise/colwise, 2D, etc.)
  - Communication cost depends on partition
  - Hypergraph models capture communication dependencies (Catalyurek, Aykanat, 1999)
    - minimize hypergraph cut = minimize words moved



- Repeated SpMVs  $(Y = [Ax, A^2x, ..., A^kx])$ 
  - Naive approach: k repeated SpMVs
  - Communication-avoiding approach: "matrix powers kernel"
    - see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008)

#### SpMV Dependency Graph

$$G = (V, E)$$
 where  $V = \{y_0, \dots, y_{n-1}\} \cup \{x_0, \dots, x_{n-1}\}$  and  $(y_i, x_j) \in E$  if  $A_{ij} \neq 0$ 

#### Example: Tridiagonal matrix



#### SpMV Dependency Graph

$$G = (V, E)$$
 where  $V = \{y_0, \dots, y_{n-1}\} \cup \{x_0, \dots, x_{n-1}\}$  and  $(y_i, x_j) \in E$  if  $A_{ij} \neq 0$ 

#### Example: Tridiagonal matrix



#### The Matrix Powers Kernel (Demmel et al., 2007)

#### Avoids communication:

- In serial, by exploiting temporal locality:
  - Reading A, reading vectors
- In parallel, by doing only 1 'expand' phase (instead of *s*).
- Requires sufficiently low 'surface-to-volume' ratio

#### Tridiagonal Example:



#### The Matrix Powers Kernel (Demmel et al., 2007)

#### Avoids communication:

- In serial, by exploiting temporal locality:
  - Reading A, reading vectors
- In parallel, by doing only 1 'expand' phase (instead of *s*).
- Requires sufficiently low 'surface-to-volume' ratio



Also works for general graphs!

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Tridiagonal Example:







































Example of parallel (per processor) complexity for *s* iterations of CG vs. s-step CG for a 2D 9-point stencil:

(Assuming each of p processors owns N/p rows of the matrix and  $s \leq \sqrt{N/p}$ )

|                 | Flops          |                  | Words Moved   |                | Messages |              |
|-----------------|----------------|------------------|---------------|----------------|----------|--------------|
|                 | SpMV           | Orth.            | SpMV          | Orth.          | SpMV     | Orth.        |
| Classical<br>CG | $\frac{sN}{p}$ | $\frac{sN}{p}$   | $s\sqrt{N/p}$ | $s \log_2 p$   | S        | $s \log_2 p$ |
| s-step CG       | $\frac{sN}{p}$ | $\frac{s^2N}{p}$ | $s\sqrt{N/p}$ | $s^2 \log_2 p$ | 1        | $\log_2 p$   |

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Example of parallel (per processor) complexity for *s* iterations of CG vs. s-step CG for a 2D 9-point stencil:

(Assuming each of p processors owns N/p rows of the matrix and  $s \leq \sqrt{N/p}$ )

|                 | Flops          |                  | Words Moved   |                | Messages |              |
|-----------------|----------------|------------------|---------------|----------------|----------|--------------|
|                 | SpMV           | Orth.            | SpMV          | Orth.          | SpMV     | Orth.        |
| Classical<br>CG | $\frac{sN}{p}$ | $\frac{sN}{p}$   | $s\sqrt{N/p}$ | $s \log_2 p$   | S        | $s \log_2 p$ |
| s-step CG       | $\frac{sN}{p}$ | $\frac{s^2N}{p}$ | $s\sqrt{N/p}$ | $s^2 \log_2 p$ | 1        | $\log_2 p$   |

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Example of parallel (per processor) complexity for *s* iterations of CG vs. s-step CG for a 2D 9-point stencil:

(Assuming each of p processors owns N/p rows of the matrix and  $s \leq \sqrt{N/p}$ )

|                 | Flops          |                  | Words Moved   |                | Messages |              |
|-----------------|----------------|------------------|---------------|----------------|----------|--------------|
|                 | SpMV           | Orth.            | SpMV          | Orth.          | SpMV     | Orth.        |
| Classical<br>CG | $\frac{sN}{p}$ | $\frac{sN}{p}$   | $s\sqrt{N/p}$ | $s \log_2 p$   | S        | $s \log_2 p$ |
| s-step CG       | $\frac{sN}{p}$ | $\frac{s^2N}{p}$ | $s\sqrt{N/p}$ | $s^2 \log_2 p$ | 1        | $\log_2 p$   |

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

## s-step GMRES

#### **Classical GMRES**



## s-step GMRES

#### **Classical GMRES**



#### s-step GMRES



- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
  - P processors, block row layout

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
  - P processors, block row layout
- Classic Parallel Algorithm
  - Compute Householder vector for each column
  - Number of messages  $\propto$  b log P

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
  - P processors, block row layout
- Classic Parallel Algorithm
  - Compute Householder vector for each column
  - Number of messages  $\propto$  b log P
- Communication Avoiding Algorithm
  - Reduction operation, with QR as operator
  - Number of messages  $\propto \log P$

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
  - P processors, block row layout
- Classic Parallel Algorithm
  - Compute Householder vector for each column
  - Number of messages  $\propto$  b log P
- Communication Avoiding Algorithm
  - Reduction operation, with QR as operator
  - Number of messages  $\propto \log P$











- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
  - P processors, block row layout
- Classic Parallel Algorithm
  - Compute Householder vector for each column
  - Number of messages  $\propto$  b log P
- Communication Avoiding Algorithm
  - Reduction operation, with QR as operator
  - Number of messages  $\propto \log P$

TSQR implementations in Intel MKL library, GNU Scientific Library, ScaLAPACK, Spark









## Performance Results



## Performance and Applications

- Performance studies
  - s-step GMRES on hybrid CPU/GPU arch. (Yamazaki et al., 2014)
  - comparison of s-step and pipelined GMRES (Yamazaki et al., 2017)



Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120 distributed GPUs (over GMRES on one GPU), for the G3\_Circuit matrix.

## Performance and Applications

- Performance studies
  - s-step GMRES on hybrid CPU/GPU arch. (Yamazaki et al., 2014)
  - comparison of s-step and pipelined GMRES (Yamazaki et al., 2017)



Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120 distributed GPUs (over GMRES on one GPU), for the G3\_Circuit matrix.

- Example applications: s-step BICGSTAB used in
  - combustion, cosmology [Williams, C., et al., IPDPS, 2014]
  - geoscience dynamics [Anciaux-Sedrakian et al., 2016]
  - far-field scattering [Zhang et al., 2016]
  - wafer defect detection [Zhang et al., 2016]

## Performance and Applications

- Performance studies
  - s-step GMRES on hybrid CPU/GPU arch. (Yamazaki et al., 2014)
  - comparison of s-step and pipelined GMRES (Yamazaki et al., 2017)



Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120 distributed GPUs (over GMRES on one GPU), for the G3\_Circuit matrix.

- Example applications: s-step BICGSTAB used in
  - combustion, cosmology [Williams, C., et al., IPDPS, 2014]
  - geoscience dynamics [Anciaux-Sedrakian et al., 2016]
  - far-field scattering [Zhang et al., 2016]
  - wafer defect detection [Zhang et al., 2016]



## Alternative Approaches

- Enlarged Krylov subspace methods (Grigori, Moufawad, Nataf, 2016)
  - Split vector into t parts based on domain decomposition of A; enlarge Krylov subspace by t dimensions each iteration
    - Faster convergence, more parallelizable
- Combined s-step pipelined methods
  - $(\ell, s)$ -GMRES (Yamazaki, Hoemmen, Luszczek, Dongarra, 2017)
  - Hybrid approach which combines ideas of s-step and pipelined methods; reduces number of global synchronizations and also overlaps them with other work

## Practical Implementation Challenges

- How to pick parameters? (pipeline depth in pipelined method; s in s-step method)
  - Choice must take into account matrix structure, machine, partition, as well as numerical properties (more on this next time!)
- Preconditioning
  - Must consider overlap in pipelined methods (if enough to overlap with)
  - For s-step, can diminish potential gain from matrix powers kernel if preconditioner is dense (but still win from savings in Allreduce)

## Choosing s

- How do we expect communication costs to change as s increases?
- Initially decrease, but at some point, start increasing
  - Point depends on sparsity structure of matrix, partition of matrix, and latency/bandwidth parameters of the machine
- Bandwidth cost can start to dominate
- For s large enough, the extra entries we need go past our neighbors boundaries
  - more messages required -> increased latency cost



| C |
|---|
| 3 |
|   |

|              | Flops          |                  | Words Moved   |                | Messages |              |
|--------------|----------------|------------------|---------------|----------------|----------|--------------|
|              | SpMV           | Orth.            | SpMV          | Orth.          | SpMV     | Orth.        |
| Classical CG | $\frac{sN}{p}$ | $\frac{sN}{p}$   | $s\sqrt{N/p}$ | $s \log_2 p$   | S        | $s \log_2 p$ |
| s-step CG    | $\frac{sN}{p}$ | $\frac{s^2N}{p}$ | $s\sqrt{N/p}$ | $s^2 \log_2 p$ | 1        | $\log_2 p$   |

## Choosing s

- How do we expect communication costs to change as s increases?
- Initially decrease, but at some point, start increasing
  - Point depends on sparsity structure of matrix, partition of matrix, and latency/bandwidth parameters of the machine
- Bandwidth cost can start to dominate
- For s large enough, the extra entries we need go past our neighbors boundaries
  - more messages required -> increased latency cost
- For GMRES, best s for matrix powers may not be best s for TSQR kernel
  - Choice of s requires co-tuning

|              | Flops          |                  | Words Moved   |                | Messages |              |
|--------------|----------------|------------------|---------------|----------------|----------|--------------|
|              | SpMV           | Orth.            | SpMV          | Orth.          | SpMV     | Orth.        |
| Classical CG | $\frac{sN}{p}$ | $\frac{sN}{p}$   | $s\sqrt{N/p}$ | $s \log_2 p$   | S        | $s \log_2 p$ |
| s-step CG    | $\frac{sN}{p}$ | $\frac{s^2N}{p}$ | $s\sqrt{N/p}$ | $s^2 \log_2 p$ | 1        | $\log_2 p$   |





Basis Length, s

#### Lower Bound Tradeoffs for Matrix Powers

- Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost.
- By considering critical path, tradeoffs give lower bounds on the execution time which are dependent on the problem size but independent of the number of processors (assuming homogeneity)

### Lower Bound Tradeoffs for Matrix Powers

- Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost.
- By considering critical path, tradeoffs give lower bounds on the execution time which are dependent on the problem size but independent of the number of processors (assuming homogeneity)
- Theorem: Any parallel execution of an s-dimensional Krylov basis computation for a  $(2m + 1)^d$ -point stencil on a d-dimensional regular mesh requires

$$\Omega(m^d b^d s)$$
 flops,  $\Omega(m^d b^{d-1} s)$  words,  $\Omega(s/b)$  messages,  
for some  $b \in \{1, ..., s\}$ 

### Lower Bound Tradeoffs for Matrix Powers

- Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost.
- By considering critical path, tradeoffs give lower bounds on the execution time which are dependent on the problem size but independent of the number of processors (assuming homogeneity)
- Theorem: Any parallel execution of an s-dimensional Krylov basis computation for a  $(2m + 1)^d$ -point stencil on a d-dimensional regular mesh requires

 $\Omega(m^d b^d s)$  flops,  $\Omega(m^d b^{d-1} s)$  words,  $\Omega(s/b)$  messages,

for some  $b \in \{1, \dots, s\}$ 

• Matrix powers kernel attains this lower bound when  $n^d/p \geq m^d b^d$  where  $n^d$  is # mesh points

#### Performance Modeling to Estimate Parameters

• Goal: estimate best blocking factor *b* for matrix powers computation

#### Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor *b* for matrix powers computation
- Cost model:

Time =  $\gamma \times$  flops +  $\beta \times$  words moved +  $\alpha \times$  # messages

#### Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor *b* for matrix powers computation
- Cost model:

Time =  $\gamma \times \text{flops} + \beta \times \text{words moved} + \alpha \times \# \text{messages}$ 

• Choose *b* to minimize

Time ~ 
$$\gamma m^d b^d s + \beta m^d b^{d-1} s + \alpha s/b$$

#### Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor b for matrix powers computation
- Cost model:

Time =  $\gamma \times \text{flops} + \beta \times \text{words moved} + \alpha \times \# \text{messages}$ 

• Choose *b* to minimize

Time ~ 
$$\gamma m^d b^d s + \beta m^d b^{d-1} s + \alpha s/b$$

• Latency/BW tradeoff point :  $b \sim \frac{\alpha^{1/d}}{m\beta^{1/d}}$ 

#### Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor b for matrix powers computation
- Cost model:

Time =  $\gamma \times \text{flops} + \beta \times \text{words moved} + \alpha \times \# \text{messages}$ 

• Choose *b* to minimize

Time ~ 
$$\gamma m^d b^d s + \beta m^d b^{d-1} s + \alpha s/b$$

- Latency/BW tradeoff point :  $b \sim \frac{\alpha^{1/d}}{m\beta^{1/d}}$
- Starting place for parameter selection to get close to optimal answer, would need more accurate model of time, costs including constants

# Matrix Partitioning

- For computing matrix powers (i.e., constructing the basis matrix in s-step methods, we really want to partition the structure of  $A^s$  rather than A
  - Analogous to single SpMV, can construct a hypergraph model such that the minimum cut gives a partition with minimum communication volume
- Load balancing
  - The parallel matrix powers kernel involves redundantly computing entries of the vectors on different processors
  - Entries which need to be redundantly computed determined by partition

### Hypergraph Partitioning for Matrix Powers



"s-level" row- and column-nets encode the structure of A<sup>s</sup>

## Hypergraph Partitioning for Matrix Powers



- "s-level" row- and column-nets encode the structure of  $A^s$
- But expensive to compute (s × Boolean sparse matrix-matrix multiplies)
  - Only worth it if A has particularly irregular sparsity structure (e.g., number of nonzeros per column in A<sup>i</sup> grows at various rates) and same matrix will be reused
  - Potential use of randomized algorithms to estimate nnz/column in  $A^i$

## Preconditioning for s-step variants

- Preconditioners improve spectrum of system to improve convergence rate
  - E.g., instead of Ax = b, solve  $M^{-1}Ax = M^{-1}b$ , where  $M^{-1} \approx A^{-1}$
  - Essential in practice

## Preconditioning for s-step variants

- Preconditioners improve spectrum of system to improve convergence rate
  - E.g., instead of Ax = b, solve  $M^{-1}Ax = M^{-1}b$ , where  $M^{-1} \approx A^{-1}$
  - Essential in practice
- In s-step variants, general preconditioning is a challenge
  - Except for very simple cases, ability to exploit temporal locality (in matrix powers computation) across iterations is diminished by preconditioning
    - Still potential gain from blocking inner products/avoiding global synchronization
  - If possible to avoid communication at all, usually necessitates significant modifications to the algorithm

## Preconditioning for s-step variants

- Preconditioners improve spectrum of system to improve convergence rate
  - E.g., instead of Ax = b, solve  $M^{-1}Ax = M^{-1}b$ , where  $M^{-1} \approx A^{-1}$
  - Essential in practice
- In s-step variants, general preconditioning is a challenge
  - Except for very simple cases, ability to exploit temporal locality (in matrix powers computation) across iterations is diminished by preconditioning
    - Still potential gain from blocking inner products/avoiding global synchronization
  - If possible to avoid communication at all, usually necessitates significant modifications to the algorithm
- Tradeoff: speed up convergence, but increase time per iteration due to communication!
  - For each specific app, must evaluate tradeoff between preconditioner quality and sparsity of the system

# Preconditioning for s-step KSMs

- Much recent/ongoing work in developing communication-avoiding preconditioned methods
- Many approaches shown to be compatible
  - Diagonal
  - Sparse Approx. Inverse (SPAI) for s-step BICGSTAB by Mehri (2014)
  - HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, C., Demmel, 2014); same general technique for any system that can be written as sparse + low-rank
  - **Deflation** for s-step CG (C., Knight, Demmel, 2014), for s-step GMRES (Yamazaki et al., 2014)
  - CA-ILU(0) Moufawad and Grigori (2013)
  - **Domain decomposition** avoid introducing additional communication by "underlapping" subdomains (Yamazaki et al., 2014)

# "Underlapping" Domain Decomposition

#### (Yamazaki et al., 2014)

• Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces between the subdomains without additional communication beyond what is required by sparsity structure of A



Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains. The underlap and the overlap relative to subdomain 1 are shown.



In order to "localize" effects of preconditioner,

- form "interior" by removing s-level "underlap"
- apply "local" preconditioner on "interior"
  - ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
- apply diagonal Jacobi on "underlap"

# "Underlapping" Domain Decomposition

#### (Yamazaki et al., 2014)

• Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces between the subdomains without additional communication beyond what is required by sparsity structure of A



Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains. The underlap and the overlap relative to subdomain 1 are shown.











In order to "localize" effects of preconditioner,

- form "interior" by removing s-level "underlap"
- apply "local" preconditioner on "interior"
  - ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
- apply diagonal Jacobi on "underlap"

# The effects of finite precision

Well-known that roundoff error has two effects:

- 1. Delay of convergence
  - No longer have exact Krylov subspace
  - Can lose numerical rank deficiency
  - Residuals no longer orthogonal -Minimization of  $||x - x_i||_A$  no longer exact
- 2. Loss of attainable accuracy
  - Rounding errors cause true residual b – Ax<sub>i</sub> and updated residual r<sub>i</sub> deviate!

A: bcsstk03 from SuiteSparse, b: equal components in the eigenbasis of A, ||b|| = 1N = 112,  $\kappa(A) \approx 7e6$ 

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG



# The effects of finite precision

Well-known that roundoff error has two effects:

- Delay of convergence 1.
  - No longer have exact Krylov subspace
  - Can lose numerical rank deficiency •
  - Residuals no longer orthogonal -٠ Minimization of  $||x - x_i||_A$  no longer exact
- 2. Loss of attainable accuracy
  - Rounding errors cause true residual  $b - Ax_i$  and updated residual  $r_i$  deviate!

Iteration A: bcsstk03 from SuiteSparse, b: equal components in the eigenbasis of A, ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$ 

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG



Conjugate Gradient method for solving Ax = b double precision ( $\varepsilon = 2^{-53}$ )

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A (x_i - x)}$$



Conjugate Gradient method for solving Ax = b double precision ( $\varepsilon = 2^{-53}$ )

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

