Exploiting Low-Rank Structure in Computing Matrix Powers with Applications to Preconditioning

Erin C. Carson
Nicholas Knight, James Demmel, Ming Gu U.C. Berkeley

Motivation: The Cost of an Algorithm

- Algorithms have 2 costs: Arithmetic (flops) and movement of data (communication)
- Assume simple model with 3 parameters:
- α-Latency, β - Reciprocal Bandwidth, γ - Flop Rate
- Time to move n words of data is $\alpha+\mathrm{n} \beta$

Sequential

- Problem: Communication is the bottleneck on modern architectures
$-\alpha$ and β improving at much slower rate than γ
- Solution: Reorganize algorithms to avoid communication

Parallel

Motivation: Krylov Subspace Methods

- Krylov Subspace Methods (KSMs) are iterative methods commonly used in solving large, sparse linear systems of equations
- Krylov Subspace of dimension k with matrix A and vector v :

$$
\mathcal{K}_{k}(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{k-1} v\right\}
$$

- Work by iteratively adding a dimension to the expanding Krylov Subspace (SpMV) and then choosing the "best" solution from that subspace (vector operations)
- Problem: Krylov Subspace Methods are communication-bound
- SpMV and global vector operations in every iteration

Avoiding Communication in Krylov Subspace Methods

- We need to break the dependency between communication bound kernels and KSM iterations
- Idea: Expand the subspace s dimensions (s SpMVs with A), then do s steps of refinement
- To do this we need two new Communication-Avoiding kernels
- "Matrix Powers Kernel" replaces SpMV

- "Tall Skinny QR" (TSQR) replaces orthogonalization operations

The Matrix Powers Kernel

- Given A, v, s, and degree j polynomials $\rho_{j}, j=0: s$ defined by a 3-term recurrence, the matrix powers kernel computes

$$
\left\{\rho_{0}(A) v, \rho_{1}(A) v, \rho_{2}(A) v, \ldots, \rho_{s}(A) v\right\}
$$

- The matrix powers kernel computes these basis vectors only reading/communicating $A o(1)$ times!
- Parallel case: Reduces latency by a factor of s at the cost of redundant computations

Parallel Matrix Powers algorithm for tridiagonal matrix example. 4 processors, $n=40, s=3$

Matrix Powers Kernel Limitations

- Asymptotic reduction in communication requires that A is wellpartitioned
- "Well-partitioned"- number of redundant entries required by each partition is small - the graph of our matrix has a good cover
- With this matrix powers algorithm, we can't handle matrices with dense components
- Matrices with dense low-rank components appear in many linear systems (e.g., circuit simulations, power law graphs), as well as preconditioners (e.g., Hierarchical Semiseparable (HSS) matrices)
- Can we exploit low-rank structure to avoid communication in the matrix powers algorithm?

Blocking Covers Approach to Increasing Temporal Locality

- Relevant work:
- Leiserson, C.E. and Rao, S. and Toledo, S. Efficient out-of-core algorithms for linear relaxation using blocking covers. Journal of Computer and System Sciences, 1997.
- Blocking Covers Idea:
- According to Hong and Kung's Red-Blue Pebble game, we can't avoid data movement if we can't find a good graph cover
- What if we could find a good cover by removing a subset of vertices from the graph? (i.e., connections are locally dense but globally sparse)
- Relax the assumption that the DAG must be executed in order
- Artificially restrict information from passing through removed vertices ("blockers") by treating their state variables symbolically, maintain dependencies among symbolic variables as matrix

Blocking Covers Matrix Powers Algorithm

- Split A into sparse and low-rank dense parts, $A=D+U V^{T}$
- In our matrix powers algorithm, the application of V^{T} requires communication, so we want to limit the number these operations
- Then we want to compute (assume monomial basis for simplicity)

$$
\left\{v, A v, \ldots, A^{s} v\right\}=\left\{v,\left(D+U V^{T}\right) v, \ldots,\left(D+U V^{T}\right)^{s} v\right\}
$$

- We can write the $j t h$ basis vector as

$$
c_{j}=\left(D+U V^{T}\right)^{j} v=D c_{j-1}+U V^{T} c_{j-1}=D^{j} v+\sum_{k=1}^{j} D^{k-1} U V^{T} c_{j-k}
$$

- Where the $V^{T} c_{j-k}$ quantities will be the values of the "blockers" at each step.
- We can premultiply the previous equation by V^{T} to write a recurrence:

$$
V^{T} c_{j}=V^{T} D^{j} v+\sum_{k=1}^{j}\left(V^{T} D^{k-1} U\right)\left(V^{T} c_{j-k}\right)
$$

Blocking Covers Matrix Powers Algorithm

Phase 0: Compute $\left\{U, D U, D^{2} U, \ldots, D^{s-2} U\right\}$ using the matrix powers kernel. Premultiply by V^{T}.

Phase 1: Compute $\left\{v, D v, D^{2} v, \ldots, D^{s-1} v\right\}$ using the matrix powers kernel. Premultiply by V^{T}.

Phase 2: Using the computed quantities, each processor backsolves for $V^{T} c_{j}$ for $j=1: s-1$

Phase 3: Compute the c_{j} vectors, interleaving the matrix powers kernel with local $U V^{T} c_{j-1}$ multiplications

$$
\begin{aligned}
V^{T} c_{j} & =V^{T} D^{j} v+\sum_{k=1}^{j}\left(V^{T} D^{k-1} U\right)\left(V^{T} c_{j-k}\right) \\
c_{j} & =D c_{j-1}+U V^{T} c_{j-1}
\end{aligned}
$$

Asymptotic Costs

Phase	Flops	Words Moved	Messages
0	$A k x(D, U, s-2)+O\left(\frac{\mathrm{sr} r^{2} n}{p}\right)$	$O\left(s r^{2} \log p\right)+$ $r\left(\right.$ ghost zones, $\left.D^{s-2}\right)$	$O(\log p)$
1	$A k x(D, v, s-1)+O\left(\frac{\mathrm{~s} n}{p}\right)$	$O(s r \log p)+$ $\left(\right.$ ghost zones, $\left.D^{s-1}\right)$	$O(\log p)$
2	$O\left(s^{2} r^{2}\right)$	0	0
3	$A k x(D, v, s)+O\left(\frac{s r n}{p}\right)$	0	0

	Flops	Words Moved	Messages
Total Online (CA)	$2 \times \operatorname{Akx}(D, v, s)+O\left(\frac{\mathbf{S r n}}{p}\right)$	$O(\operatorname{sr} \log p)+$ $\left(\right.$ ghost zones,$\left.D^{s-1}\right)$	$O(\log p)$
Standard Alg.	$\mathrm{s} \times A k x(D, v, 1)+O\left(\frac{\mathrm{Srn}}{p}\right)$	$O(\operatorname{sr} \log p)+$ $s($ ghost zones, $D)$	$O(s \log p)$

Extending the Blocking Covers Matrix Powers Algorithm
 to HSS Matrices

HSS Structure:

- l-level binary tree
- Off-diagonal blocks have rank r
- Can write A hierarchically:

$$
\begin{aligned}
& D_{0 ; 1}=A \\
& D_{k ; i}=\left(\begin{array}{c}
D_{k+1 ; 2 i-1} \\
U_{k+1 ; 2 i} B_{k+1 ; 2 i, 2 i-1} V^{T}{ }_{k+1 ; 2 i-1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.U_{k+1 ; 2 i-1} B_{k+1 ; 2 i-1,2 i} V^{T}{ }_{k+1 ; 2 i}\right) \\
D_{k+1 ; 2 i}
\end{gathered}
$$

- Can define translations for row and column bases, i.e:

$$
U_{k ; i}=\binom{U_{k+1 ; 2 i-1} R_{k+1 ; 2 i-1}}{U_{k+1 ; 2 i} R_{k+1 ; 2 i}} \quad V_{k ; i}=\binom{V_{k+1 ; 2 i-1} W_{k+1 ; 2 i-1}}{V_{k+1 ; 2 i} W_{k+1 ; 2 i}}
$$

Exploiting Low-Rank Structure

- Matrix can be written as $D+U S V^{T}$
- S composed of R, W, B 's translation operations (S is not formed explicitly)

$$
+
$$

V^{T}

Parallel HSS Akx Algorithm

- Data Structures:
- Assume $p=2^{l}$ processors
- Each processor i owns
- D_{i}, dense diagonal block, dimension ($n / p \times n / p$)
- V_{i}, dimension $(r \times n / p)$
- U_{i}, dimension $(r \times n / p)$
- $x_{i},(n / p \times 1)$ piece of source vector
- All matrices R, W, B,
- These are all small $O\left(2^{l} r^{2}\right)$ sized matrices, assumed they fit on each proc.

Extending the Algorithm

- Only change needed is in Phase 2 (backsolving for $V^{T} c_{j}$)
- Before, we computed, for $j=1$: $s-1$

$$
V^{T} c_{j}=V^{T} D^{j} v+\sum_{k=1}^{j}\left(V^{T} D^{k-1} U\right)\left(V^{T} c_{j-k}\right)
$$

- Now, we can exploit hierarchical semiseparability:
- For $j=1: s-1$, first compute

$$
g_{l}=V^{T} D^{j} v+\sum_{k=1}^{j}\left(V^{T} D^{k-1} U\right)\left(V^{T} c_{j-k+1}\right)
$$

Extending the Algorithm

- Then each processor locally performs upsweep and downsweep:
for $y=l-1$: 1

$$
g_{y}=\left[\begin{array}{lllll}
{\left[\begin{array}{llll}
W^{T} & y+1 ; 1 & W^{T}{ }_{y+1 ; 2}
\end{array}\right]} & & \\
& & \ddots & & \\
& & & {\left[W^{T}{ }_{y+1 ; 2\left(2^{y}\right)-1}\right.} & \left.W^{T}{ }_{y+1 ; 2\left(2^{y}\right)}\right]
\end{array}\right] g_{y+1}
$$

$$
f_{0}=(0)
$$

for $y=0: l-1$

$$
f_{y+1}=\left[\begin{array}{lll}
B_{y+1 ; 1,2} & & \\
& \ddots & \\
& & B_{y+1 ; 2^{y+1}, 2^{y+1}-1}
\end{array}\right] g_{y}+\left[\begin{array}{|ccc}
{\left[\begin{array}{l}
y+1 ; 1 \\
R_{y+1 ; 2}
\end{array}\right]} & & \\
& \ddots & \\
& & {\left[\begin{array}{c}
R_{y+1 ; 2^{y+1}-1} \\
R_{y+1 ; 2^{y+1}}
\end{array}\right]}
\end{array}\right] f_{y}
$$

$$
V^{T} c_{j}=f_{l}
$$

- At the end, each processor has locally computed the $V^{T} c_{j}$ recurrence for the $j^{t h}$ iteration (additional $s r^{2} p$ flops in Phase 2)

HSS Matrix Powers Communication and Computation Cost

- Offline (Phase 0)
- Flops: $\operatorname{Akx}(D, U, s)+O\left(\frac{s r^{2} n}{p}\right)$
- Words Moved: $O\left(r^{2} s \log p\right)$
- Messages: $O(\log p)$
- Online (Phases 1, 2, 3)
- Flops: $2 \times \operatorname{Akx}(D, x, s)+O\left(\frac{s r n}{p}\right)$
- Words Moved: $O(r s \log p)$
- Messages: $O(\log p)$
- Same flops (asymptotically) as \boldsymbol{s} iterations of standard HSS Matrix-Vector Multiply algorithm
- Asymptotically reduces messages by factor of s !

Future Work

- Auto-tuning: Can we automate the decision of which matrix powers kernel variant to use?
- What should be the criteria for choosing blockers?
- Stability
- How good is the resulting (preconditioned) Krylov basis?
- Performance studies
- How does actual performance of HSS matrix powers compare to s HSS matrix-vector multiplies?
- Extension to other classes of preconditioners
- Can we apply the blocking covers approach to other algorithms with similar computational patterns?

