
Exploiting Low-Rank Structure in

Computing Matrix Powers

 with Applications to Preconditioning

Erin C. Carson

Nicholas Knight, James Demmel, Ming Gu

U.C. Berkeley

Motivation: The Cost of an Algorithm

• Algorithms have 2 costs: Arithmetic (flops)

and movement of data (communication)

• Assume simple model with 3 parameters:

– α – Latency, β – Reciprocal Bandwidth,

𝛾 − Flop Rate

– Time to move n words of data is α + nβ

• Problem: Communication is the bottleneck on

modern architectures

– α and β improving at much slower rate

than 𝛾

• Solution: Reorganize algorithms to

 avoid communication
2

CPU

Cache

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

Sequential

Parallel

Motivation: Krylov Subspace Methods

• Krylov Subspace Methods (KSMs) are iterative methods

commonly used in solving large, sparse linear systems of

equations

– Krylov Subspace of dimension 𝑘 with matrix 𝐴 and vector 𝑣:

– Work by iteratively adding a dimension to the expanding

Krylov Subspace (SpMV) and then choosing the “best”

solution from that subspace (vector operations)

• Problem: Krylov Subspace Methods are communication-bound

– SpMV and global vector operations in every iteration

3

Avoiding Communication in Krylov Subspace Methods

• We need to break the dependency

between communication bound kernels

and KSM iterations

• Idea: Expand the subspace 𝑠 dimensions

(𝑠 SpMVs with 𝐴), then do 𝑠 steps of

refinement

• To do this we need two new

Communication-Avoiding kernels

– “Matrix Powers Kernel” replaces

SpMV

– “Tall Skinny QR” (TSQR) replaces

orthogonalization operations

Avk
vk+1

SpMV

Orthogonalize

4

The Matrix Powers Kernel

• Given 𝐴, 𝑣, 𝑠, and degree 𝑗 polynomials 𝜌𝑗 , 𝑗 = 0: 𝑠 defined by

a 3-term recurrence, the matrix powers kernel computes

𝜌0 𝐴 𝑣, 𝜌1 𝐴 𝑣, 𝜌2 𝐴 𝑣,… , 𝜌𝑠 𝐴 𝑣

• The matrix powers kernel computes these basis vectors only

reading/communicating 𝐴 𝑜(1) times!

– Parallel case: Reduces latency by a factor of 𝑠 at the cost of

redundant computations

5

Parallel Matrix Powers algorithm for tridiagonal matrix example.
4 processors, 𝑛 = 40, 𝑠 = 3

A3v

A2v

Av

v

Matrix Powers Kernel Limitations

• Asymptotic reduction in communication requires that 𝐴 is well-

partitioned

– “Well-partitioned”- number of redundant entries required by each

partition is small – the graph of our matrix has a good cover

• With this matrix powers algorithm, we can’t handle matrices with

dense components

– Matrices with dense low-rank
components appear in many linear
systems (e.g., circuit simulations, power
law graphs), as well as preconditioners
(e.g., Hierarchical Semiseparable (HSS)
matrices)

– Can we exploit low-rank structure to
avoid communication in the matrix
powers algorithm?

ASIC_680k: circuit

simulation matrix.

Sandia.

webbase: web

connectivity

matrix. Williams

et al.

6

Blocking Covers Approach to Increasing Temporal Locality

• Relevant work:

– Leiserson, C.E. and Rao, S. and Toledo, S. Efficient out-of-core
algorithms for linear relaxation using blocking covers. Journal of
Computer and System Sciences, 1997.

• Blocking Covers Idea:

• According to Hong and Kung’s Red-Blue Pebble game, we can’t

avoid data movement if we can’t find a good graph cover

• What if we could find a good cover by removing a subset of vertices

from the graph? (i.e., connections are locally dense but globally

sparse)

• Relax the assumption that the DAG must be executed in order

• Artificially restrict information from passing through removed

vertices (“blockers”) by treating their state variables symbolically,

maintain dependencies among symbolic variables as matrix

7

Blocking Covers Matrix Powers Algorithm

• Split 𝐴 into sparse and low-rank dense parts, 𝐴 = 𝐷 + 𝑈𝑉𝑇

• In our matrix powers algorithm, the application of 𝑉𝑇 requires

communication, so we want to limit the number these operations

• Then we want to compute (assume monomial basis for simplicity)

𝑣, 𝐴𝑣,… , 𝐴𝑠𝑣 = 𝑣, (𝐷 + 𝑈𝑉𝑇)𝑣, … , (𝐷 + 𝑈𝑉𝑇)𝑠𝑣

• We can write the 𝑗𝑡ℎ basis vector as

 𝑐𝑗 = (𝐷 + 𝑈𝑉
𝑇)𝑗𝑣 = 𝐷𝑐𝑗−1 + 𝑈𝑉

𝑇𝑐𝑗−1 = 𝐷
𝑗𝑣 + 𝐷𝑘−1𝑈𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1

• Where the 𝑉𝑇𝑐𝑗−𝑘 quantities will be the values of the “blockers” at

each step.

• We can premultiply the previous equation by 𝑉𝑇 to write a recurrence:

𝑉𝑇𝑐𝑗 = 𝑉
𝑇𝐷𝑗𝑣 + 𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1

8

Blocking Covers Matrix Powers Algorithm

Phase 0: Compute 𝑈,𝐷𝑈, 𝐷2𝑈,… , 𝐷𝑠−2𝑈 using the matrix powers

kernel. Premultiply by 𝑉𝑇 .

𝑉𝑇𝑐𝑗 = 𝑉
𝑇𝐷𝑗𝑣 + 𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1

Phase 1: Compute 𝑣, 𝐷𝑣, 𝐷2𝑣,… , 𝐷𝑠−1𝑣 using the matrix powers kernel.

Premultiply by 𝑉𝑇 .

 𝑐𝑗 = 𝐷𝑐𝑗−1 + 𝑈𝑉
𝑇𝑐𝑗−1

Phase 3: Compute the 𝑐𝑗 vectors, interleaving the matrix powers kernel

with local 𝑈𝑉𝑇𝑐𝑗−1 multiplications

Phase 2: Using the computed quantities, each processor backsolves for

𝑉𝑇𝑐𝑗 for 𝑗 = 1: 𝑠 − 1

9

Asymptotic Costs

Phase Flops Words Moved Messages

0
𝐴𝑘𝑥(𝐷, 𝑈, 𝑠 − 2) + 𝑂(

s𝑟2𝑛

𝑝
)

𝑂(𝑠𝑟2 log 𝑝) +

 𝑟(ghost zones, 𝐷𝑠−2)

𝑂(log 𝑝)

1 𝐴𝑘𝑥(𝐷, 𝑣, 𝑠 − 1) + 𝑂(
s𝑟𝑛

𝑝
) 𝑂(𝑠𝑟 log 𝑝) +

 (ghost zones, 𝐷𝑠−1)

𝑂(log 𝑝)

2 𝑂(𝑠2𝑟2) 0 0

3 𝐴𝑘𝑥 𝐷, 𝑣, 𝑠 + 𝑂(
s𝑟𝑛

𝑝
) 0 0

Flops Words Moved Messages

Total Online

(CA)
2 × 𝐴𝑘𝑥 𝐷, 𝑣, 𝑠 + 𝑂(

s𝑟𝑛

𝑝
)

𝑂(𝑠𝑟 log 𝑝) +

 (ghost zones, 𝐷𝑠−1)

𝑂(log 𝑝)

Standard Alg. s × 𝐴𝑘𝑥(𝐷, 𝑣, 1) + 𝑂(
s𝑟𝑛

𝑝
) 𝑂(𝑠𝑟 log 𝑝) +

 𝑠(ghost zones, 𝐷)

𝑂(𝑠 log 𝑝)

10

 HSS Structure:

𝐷0;1 = 𝐴

𝐷𝑘;𝑖 =
𝐷𝑘+1;2𝑖−1 𝑈𝑘+1;2𝑖−1𝐵𝑘+1;2𝑖−1,2𝑖𝑉

𝑇
𝑘+1;2𝑖

𝑈𝑘+1;2𝑖𝐵𝑘+1;2𝑖,2𝑖−1𝑉
𝑇
𝑘+1;2𝑖−1 𝐷𝑘+1;2𝑖

• Can define translations for row and column bases, i.e:

 𝑈𝑘;𝑖 =
𝑈𝑘+1;2𝑖−1𝑅𝑘+1;2𝑖−1
𝑈𝑘+1;2𝑖𝑅𝑘+1;2𝑖

 𝑉𝑘;𝑖=
𝑉𝑘+1;2𝑖−1𝑊𝑘+1;2𝑖−1
𝑉𝑘+1;2𝑖𝑊𝑘+1;2𝑖

• 𝑙-level binary tree

• Off-diagonal blocks have

rank 𝑟

• Can write 𝐴 hierarchically:

Extending the Blocking Covers Matrix Powers Algorithm

to HSS Matrices

11

Exploiting Low-Rank Structure

• Matrix can be written as 𝐷 + 𝑈𝑆𝑉𝑇

• S composed of 𝑅,𝑊, 𝐵’s translation operations (𝑆 is not formed explicitly)

+

𝐷
𝑈

𝑆 𝑉𝑇

12

Parallel HSS Akx Algorithm

• Data Structures:

– Assume 𝑝 = 2𝑙 processors

– Each processor 𝑖 owns
• 𝐷𝑖 , dense diagonal block, dimension 𝑛/𝑝 × 𝑛/𝑝

• 𝑉𝑖, dimension 𝑟 × 𝑛/𝑝

• 𝑈𝑖, dimension 𝑟 × 𝑛/𝑝

• 𝑥𝑖, 𝑛/𝑝 × 1 piece of source vector

• All matrices 𝑅,𝑊, 𝐵,
– These are all small 𝑂(2𝑙𝑟2) sized matrices, assumed they fit on each proc.

+

13

Extending the Algorithm

• Only change needed is in Phase 2 (backsolving for 𝑉𝑇𝑐𝑗)

– Before, we computed, for 𝑗 = 1: 𝑠 − 1

𝑉𝑇𝑐𝑗 = 𝑉
𝑇𝐷𝑗𝑣 + 𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘

𝑗
𝑘=1

– Now, we can exploit hierarchical semiseparability:

– For 𝑗 = 1: 𝑠 − 1, first compute

𝑔𝑙 = 𝑉
𝑇𝐷𝑗𝑣 + 𝑉𝑇𝐷𝑘−1𝑈 𝑉𝑇𝑐𝑗−𝑘+1

𝑗

𝑘=1

14

Extending the Algorithm
• Then each processor locally performs upsweep and downsweep:

• At the end, each processor has locally computed the 𝑉𝑇𝑐𝑗 recurrence for

the 𝑗𝑡ℎ iteration (additional 𝑠𝑟2𝑝 flops in Phase 2)

for 𝑦 = 𝑙 − 1: 1

 𝑔𝑦 =

𝑊𝑇𝑦+1;1 𝑊
𝑇
𝑦+1;2

⋱
𝑊𝑇𝑦+1;2 2𝑦 −1 𝑊

𝑇
𝑦+1;2 2𝑦

𝑔𝑦+1

 𝑓0 = (0)

for 𝑦 = 0: 𝑙 − 1

𝑓𝑦+1 =

𝐵𝑦+1;1,2
⋱
𝐵𝑦+1;2𝑦+1,2𝑦+1−1

𝑔𝑦 +

𝑅𝑦+1;1
𝑅𝑦+1;2

⋱
𝑅𝑦+1;2𝑦+1 −1
𝑅𝑦+1;2𝑦+1

𝑓𝑦

 𝑉𝑇𝑐𝑗 = 𝑓𝑙

15

HSS Matrix Powers Communication and Computation Cost

• Offline (Phase 0)

– Flops: 𝐴𝑘𝑥 𝐷, 𝑈, 𝑠 + 𝑂(
𝑠𝑟2𝑛

𝑝
)

– Words Moved: 𝑂(𝑟2𝑠 log 𝑝)

– Messages: 𝑂(log 𝑝)

• Online (Phases 1, 2, 3)

– Flops: 2 × 𝐴𝑘𝑥 𝐷, 𝑥, 𝑠 + 𝑂(
𝑠𝑟𝑛

𝑝
)

– Words Moved: 𝑂(𝑟𝑠 log 𝑝)

– Messages: 𝑂(log 𝑝)

• Asymptotically reduces messages by factor of 𝒔! 16

• Same flops (asymptotically) as 𝒔 iterations of standard HSS

Matrix-Vector Multiply algorithm

Future Work

• Auto-tuning: Can we automate the decision of which matrix

powers kernel variant to use?

– What should be the criteria for choosing blockers?

• Stability

– How good is the resulting (preconditioned) Krylov basis?

• Performance studies

– How does actual performance of HSS matrix powers

compare to 𝑠 HSS matrix-vector multiplies?

• Extension to other classes of preconditioners

• Can we apply the blocking covers approach to other

algorithms with similar computational patterns?

17

