The s-Step Conjugate Gradient Method in Finite Precision

Erin C. Carson
Charles University
Prague, Czech Republic

SIAM CSE '19

February 25, 2019

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory
Manufacturer:	IBM
Cores:	$2,282,544$
Memory:	$2,801,664$ GB
Processor:	IBM POWER9 22C 3.07 GHz
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Theoretical peak:	187,659 TFlops/s
LINPACK benchmark:	122,300 Tflops/s
HPCG benchmark:	2,926 Tflops/s

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory
Manufacturer:	IBM
Cores:	$2,282,544$
Memory:	$2,801,664$ GB
Processor:	IBM POWER9 22C $3.07 G H z$
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Theoretical peak:	187,659 TFlops/s
LINPACK benchmark:	122,300 Tflops/s
HPCG benchmark:	2,926 Tflops/s

current \#1 on top500

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory
Manufacturer:	IBM
Cores:	$2,282,544$
Memory:	$2,801,664$ GB
Processor:	IBM POWER9 22C 3.07 GHz
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Theoretical peak:	187,659 TFlops/s
LINPACK benchmark:	122,300 Tflops/s
HPCG benchmark:	2,926 Tflops/s

current \#1 on top500

LINPACK benchmark (dense $A x=b$, direct) 65% efficiency

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory	LINPACK benchmark (dense $A x=b$, direct) 65% efficiency - HPCG benchmark (sparse $A x=b$, iterative) 1.5% efficiency
Manufacturer:	IBM	
Cores:	2,282,544	
Memory:	2,801,664 GB	
Processor:	IBM POWER9 22C 3.07 GHz	
Interconnect:	Dual-rail Mellanox EDR Infiniband	
Performance		
Theoretical peak:	187,659 TFlops/s	
LINPACK benchmark:	122,300 Tflops/s	
HPCG benchmark:	2,926 Tflops/s \leftarrow	

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\\
\qquad \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\text { end }
\end{array} p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{aligned}
$$

The Conjugate Gradient (HSCG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\text { end } \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array}
\end{aligned}
$$

Iteration Loop

Sparse Matrix \times Vector

The Conjugate Gradient (HSCG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end }
\end{array}
\end{aligned}
$$

The Conjugate Gradient (HSCG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\qquad \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end }
\end{array} \text { }
\end{aligned}
$$

The Conjugate Gradient (HSCG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\\
\qquad \begin{array}{l}
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
\text { end }
\end{array} \text { } l
\end{aligned}
$$

The Conjugate Gradient (HSCG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

The Conjugate Gradient (HSCG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

\Rightarrow Communication bottleneck!

s-step Krylov subspace methods

- Idea: Compute blocks of s iterations at once
- Compute updates in a different basis
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
- Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)
- Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

s-step CG

$r_{0}=b-A x_{0}, p_{0}=r_{0}$
for $k=0: n \max / s$
Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

$$
\mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k}
$$

$$
x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1}
$$

$$
\text { for } j=1: s
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$
end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s
\end{aligned}
$$

Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

Outer Loop

Compute basis
O(s) SPMVs

$$
\mathcal{G}_{k}=y_{k}^{T} \mathcal{Y}_{k}
$$

$$
x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1}
$$

$$
\text { for } j=1: s
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$
end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}}
$$

$$
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime}
$$

$$
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime}
$$

$$
\beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}
$$

$$
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \text { nmax } / s
\end{aligned}
$$

Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

$$
\begin{aligned}
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s
\end{aligned}
$$

Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

$$
\begin{aligned}
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal Minimization of $\left\|x-x_{i}\right\|_{A}$ no longer exact

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

A: bcsstk03 from SuiteSparse, b : equal components in the eigenbasis of $A,\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal Minimization of $\left\|x-x_{i}\right\|_{A}$ no longer exact

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated

A : bcsstk03 from SuiteSparse, b : equal components in the eigenbasis of $A,\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$ residual r_{i} deviate!

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

s-step CG

s-step CG

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

s-step CG

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

s-step CG

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

s-step CG

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Convergence delay and attainable accuracy worse with increasing s!

s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra SpMVs and inner products), already at $s=4$ we are worse than HSCG in terms of number of synchronizations!

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \widehat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$
- Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

$$
f_{i}=b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i}
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)
\end{aligned}
$$

$\left\|f_{i}\right\| \leq O(\varepsilon) \sum_{m=0}^{i} N_{A}\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\| \quad$ van der Vorst and $\mathrm{Ye}, 2000$
$\left\|f_{i}\right\| \leq O(\varepsilon)\|A\|\left(\|x\|+\max _{m=0, \ldots, i}\left\|\hat{x}_{m}\right\|\right) \quad$ Greenbaum, 1997
$\left\|f_{i}\right\| \leq O(\varepsilon) N_{A}\||A|\|\left\|A^{-1}\right\| \sum_{m=0}^{i}\left\|\hat{r}_{m}\right\| \quad$ Sleijpen and van der Vorst, 1995

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \underline{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Updating coordinate vectors in the inner loop:

$$
\begin{aligned}
& \hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} \\
& \hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} \\
& \quad \text { with } \quad \hat{q}_{k, j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{k, j-1}^{\prime}\right)
\end{aligned}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{y}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$
\begin{aligned}
& \hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} \\
& \hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} \\
& \quad \text { with } \quad \hat{q}_{k, j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{k, j-1}^{\prime}\right)
\end{aligned}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$
\begin{array}{cc}
\hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} & \begin{array}{c}
\text { Error in updating } \\
\text { coordinate vectors }
\end{array} \\
\hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} & \\
\text { with } \quad \hat{q}_{k, j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{k, j-1}^{\prime}\right) &
\end{array}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{y}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$
\begin{array}{cc}
\hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} & \begin{array}{c}
\text { Error in updating } \\
\text { coordinate vectors }
\end{array} \\
\left.\hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} \longleftarrow \hat{p}_{k, j-1}^{\prime}\right) &
\end{array}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Attainable accuracy of s-step CG

$f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$
For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

Attainable accuracy of s-step CG

$f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$
For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

For s-step CG: $i \equiv s k+j$

$$
\left\|f_{s k+j}\right\| \leq\left\|f_{0}\right\|+\varepsilon \Gamma_{k} \sum_{m=1}^{s k+j}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

where

$$
\Gamma_{k}=\max _{\ell \leq k} c \cdot\left\|\hat{y}_{\ell}^{+}\right\|\left\|\hat{y}_{\ell}\right\|
$$

where c is a low-degree polynomial in s

Attainable accuracy of s-step CG

$f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$
For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

For s-step CG: $i \equiv s k+j$

$$
\left\|f_{s k+j}\right\| \leq\left\|f_{0}\right\|+\varepsilon \Gamma_{k} \sum_{m=1}^{s k+j}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

where

$$
\Gamma_{k}=\max _{\ell \leq k} c \cdot\left\|\hat{y}_{\ell}^{+}\right\|\left\|\hat{y}_{\ell}\right\|
$$

where c is a low-degree polynomial in s
Conditioning of computed "s-step basis" plays a huge role in determining numerical behavior!

Choosing a Polynomial Basis

- Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}\left(A, p_{i}\right)=\operatorname{span}\left\{p_{i}, A p_{i}, \ldots, A^{s} p_{i}\right\}$

Choosing a Polynomial Basis

- Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}\left(A, p_{i}\right)=\operatorname{span}\left\{p_{i}, A p_{i}, \ldots, A^{s} p_{i}\right\}$
- Simple loop unrolling gives monomial basis, e.g., $\mathcal{Y}_{k}=\left[p_{m}, A p_{m}, \ldots, A^{s} p_{m}\right]$
- Condition number can grow exponentially with s
- Recognized early on that this negatively affects convergence and accuracy (Leland, 1989), (Chronopoulous \& Swanson, 1995)

Choosing a Polynomial Basis

- Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}\left(A, p_{i}\right)=\operatorname{span}\left\{p_{i}, A p_{i}, \ldots, A^{s} p_{i}\right\}$
- Simple loop unrolling gives monomial basis, e.g., $\mathcal{Y}_{k}=\left[p_{m}, A p_{m}, \ldots, A^{s} p_{m}\right]$
- Condition number can grow exponentially with s
- Recognized early on that this negatively affects convergence and accuracy (Leland, 1989), (Chronopoulous \& Swanson, 1995)
- Improve basis condition number to improve numerical behavior: Use different polynomials to compute a basis for the same subspace.

Choosing a Polynomial Basis

- Recall: in each outer loop of s-step CG, we compute bases for some Krylov subspaces, e.g., $\mathcal{K}_{s+1}\left(A, p_{i}\right)=\operatorname{span}\left\{p_{i}, A p_{i}, \ldots, A^{s} p_{i}\right\}$
- Simple loop unrolling gives monomial basis, e.g., $\mathcal{Y}_{k}=\left[p_{m}, A p_{m}, \ldots, A^{s} p_{m}\right]$
- Condition number can grow exponentially with s
- Recognized early on that this negatively affects convergence and accuracy (Leland, 1989), (Chronopoulous \& Swanson, 1995)
- Improve basis condition number to improve numerical behavior: Use different polynomials to compute a basis for the same subspace.
- Two choices based on spectral information that usually lead to wellconditioned bases:
- Newton polynomials
- Chebyshev polynomials

"Backwards-like" analysis of Greenbaum

- Anne Greenbaum (1989): finite precision CG with matrix A behaves like exact CG run on a larger matrix \tilde{A} whose eigenvalues lie in tight clusters around the eigenvalues of A

"Backwards-like" analysis of Greenbaum

- Anne Greenbaum (1989): finite precision CG with matrix A behaves like exact CG run on a larger matrix \tilde{A} whose eigenvalues lie in tight clusters around the eigenvalues of A
- Based on work of Chris Paige for finite precision Lanczos (1976, 1980):
- Complete rounding error analysis
- Computed eigenvalues lie between extreme eigenvalues of A to within a small multiple of machine precision
- At least one small interval containing an eigenvalue of A is found by the Nth iteration
- The algorithm behaves as if it used full reorthogonalization until a close eigenvalue approximation is found
- Loss of orthogonality among basis vectors follows a rigorous pattern and implies that some eigenvalue approximation has converged

"Backwards-like" analysis of Greenbaum

- Anne Greenbaum (1989): finite precision CG with matrix A behaves like exact CG run on a larger matrix \tilde{A} whose eigenvalues lie in tight clusters around the eigenvalues of A
- Based on work of Chris Paige for finite precision Lanczos (1976, 1980):
- Complete rounding error analysis
- Computed eigenvalues lie between extreme eigenvalues of A to within a small multiple of machine precision
- At least one small interval containing an eigenvalue of A is found by the Nth iteration
- The algorithm behaves as if it used full reorthogonalization until a close eigenvalue approximation is found
- Loss of orthogonality among basis vectors follows a rigorous pattern and implies that some eigenvalue approximation has converged
- Can we make similar statements for s-step variants?

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$
\begin{gathered}
A \widehat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \widehat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{ccccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

for $i \in\{1, \ldots, m\}$,

$$
\begin{aligned}
\left\|\delta \hat{v}_{i}\right\|_{2} & \leq \varepsilon_{1} \sigma \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| & \leq 2 \varepsilon_{0} \sigma \\
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| & \leq \varepsilon_{0} / 2 \\
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| & \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
\end{aligned}
$$

Lanczos [Paige, 1976]

$$
\begin{aligned}
& \varepsilon_{0}=O(\varepsilon N) \\
& \varepsilon_{1}=O(\varepsilon n \theta)
\end{aligned}
$$

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$
\begin{gathered}
A \widehat{V}_{m}=\hat{V}_{m} \widehat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \widehat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{ccccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

for $i \in\{1, \ldots, m\}$,

$$
\begin{aligned}
\left\|\delta \hat{v}_{i}\right\|_{2} & \leq \varepsilon_{1} \sigma \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| & \leq 2 \varepsilon_{0} \sigma \\
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| & \leq \varepsilon_{0} / 2 \\
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| & \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
\end{aligned}
$$

Lanczos [Paige, 1976]

$$
\begin{aligned}
& \varepsilon_{0}=O(\varepsilon N) \\
& \varepsilon_{1}=O(\varepsilon n \theta)
\end{aligned}
$$

s-step Lanczos [C., Demmel, 2015]:

$$
\begin{aligned}
& \varepsilon_{0}=O\left(\varepsilon N \Gamma^{2}\right) \\
& \varepsilon_{1}=O(\varepsilon n \theta \Gamma)
\end{aligned}
$$

$$
\Gamma=c \cdot \max _{\ell}\left\|\hat{\mathcal{Y}}_{\ell}^{+}\right\|\left\|\hat{\mathcal{Y}}_{\ell}\right\|
$$

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{\ell}\left\|\hat{\mathcal{Y}}_{\ell}^{+}\right\|\left\|\hat{\mathcal{y}}_{\ell}\right\|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{\ell}\left\|\hat{y}_{\ell}^{+}\right\|\left\|\hat{y}_{\ell}\right\|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{\ell}\left\|\hat{\mathcal{y}}_{\ell}^{+}\right\|\left\|\hat{\mathcal{y}}_{\ell}\right\|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{\ell}\left\|\hat{y}_{\ell}^{+}\right\|\left\|\hat{y}_{\ell}\right\|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{\ell}\left\|\hat{\mathcal{Y}}_{\ell}^{+}\right\|\left\|\hat{\mathcal{y}}_{\ell}\right\|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

If $\Gamma \approx 1$:
s-step Lanczos behaves the same numerically as classical Lanczos

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
s=2
$$

Top plots:

$-\quad$	Computed $\Gamma_{k, j}^{2}$
	$\left(24(\varepsilon(n+11 s+15))^{-1}\right.$

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\text {max }}=100$; random starting vector

$$
s=2
$$

Top plots:

-	Computed $\Gamma_{k, j}^{2}$
$-\quad$	$\left(24(\varepsilon(n+11 s+15))^{-1}\right.$

Bottom Plots:

+ True eigenvalues
- Computed Ritz values

Bounds on range of computed Ritz values

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
s=12
$$

Top plots:

$-\quad$ Computed $\Gamma_{k, j}^{2}$
$-\quad\left(24(\varepsilon(n+11 s+15))^{-1}\right.$

Bottom Plots:

- True eigenvalues
- Computed Ritz values

Bounds on range of computed Ritz values

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\min }=0.1$ and $\lambda_{\max }=100$; random starting vector

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\min }=0.1$ and $\lambda_{\max }=100$; random starting vector

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\min }=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
\Gamma \leq 2 \times 10^{6}
$$

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\min }=0.1$ and $\lambda_{\max }=100$; random starting vector

A different problem...

A : nos4 from UFSMC,
b : equal components in the eigenbasis
of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from UFSMC,
b : equal components in the eigenbasis of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

If application only requires

$$
\left\|x-x_{i}\right\|_{A} \approx 10^{-10}
$$

finite precision effects negligible relative to classical method!

A different problem...

A : nos4 from UFSMC,
b : equal components in the eigenbasis
of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

If application only requires

$$
\left\|x-x_{i}\right\|_{A} \approx 10^{-10}
$$

finite precision effects negligible relative to classical method!

Need adaptive, problem-dependent approach based on understanding of finite precision behavior!

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

- If our application requires relative accuracy ε^{*}, we must have

$$
\Gamma_{k} \equiv c \cdot\left\|\hat{\mathcal{Y}}_{k}^{+}\right\|\left\|\left|\hat{y}_{k}\right|\right\| \lesssim \frac{\varepsilon^{*}}{\varepsilon \max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}
$$

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

- If our application requires relative accuracy ε^{*}, we must have

$$
\Gamma_{k} \equiv c \cdot\left\|\hat{y}_{k}^{+}\right\|\left\|\left|\hat{y}_{k}\right|\right\| \lesssim \frac{\varepsilon^{*}}{\varepsilon \max _{j \in\{0, \ldots, s\}}\left(\left\|\hat{r}_{m+j} \mid\right\|\right)}
$$

- $\left\|\hat{r}_{i}\right\|$ large $\rightarrow \Gamma_{k}$ must be small; $\left\|\hat{r}_{i}\right\|$ small $\rightarrow \Gamma_{k}$ can grow

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

- If our application requires relative accuracy ε^{*}, we must have

$$
\Gamma_{k} \equiv c \cdot\left\|\hat{y}_{k}^{+}\right\|\left\|\hat{y}_{k} \mid\right\| \lesssim \frac{\varepsilon^{*}}{\varepsilon \max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}
$$

- $\left\|\hat{r}_{i}\right\|$ large $\rightarrow \Gamma_{k}$ must be small; $\left\|\hat{r}_{i}\right\|$ small $\rightarrow \Gamma_{k}$ can grow
\Rightarrow adaptive s-step approach [C., 2018]
- s starts off small, increases at rate depending on $\left\|\hat{r}_{i}\right\|$ and ε^{*}

Improving Adaptive s-step CG

- Method of Meurant and Tichý (2018) for cheap approximation of extremal Ritz values
- Uses Cholesky factors of Lanczos tridiagonal $T_{i}, T_{i}=L_{i} L_{i}^{T}$
- Use α and β computed during each iteration to incrementally update estimates of $\left\|L_{i}\right\|_{2}^{2}=\lambda_{\max }\left(T_{i}\right) \approx \lambda_{\max }(A),\left\|L_{i}^{-1}\right\|_{2}^{-2}=\lambda_{\min }\left(T_{i}\right) \approx$ $\lambda_{\text {min }}(A)$
- Essentially no extra work, no extra communication

Improving Adaptive s-step CG

- Method of Meurant and Tichý (2018) for cheap approximation of extremal Ritz values
- Uses Cholesky factors of Lanczos tridiagonal $T_{i}, T_{i}=L_{i} L_{i}^{T}$
- Use α and β computed during each iteration to incrementally update estimates of $\left\|L_{i}\right\|_{2}^{2}=\lambda_{\max }\left(T_{i}\right) \approx \lambda_{\max }(A),\left\|L_{i}^{-1}\right\|_{2}^{-2}=\lambda_{\min }\left(T_{i}\right) \approx$ $\lambda_{\text {min }}(A)$
- Essentially no extra work, no extra communication
- Can be used in two ways in adaptive algorithm

1. Incrementally refine estimate of $\kappa(A)$ (used in determining which s to use)
2. Incrementally refine parameters used to construct Newton or Chebyshev polynomials
$A=494$ bus from SuiteSparse $b_{\mathrm{i}}=1 / \sqrt{N}$

$-s$-step CG

- adptv. s-step CG - N
- adptv. s-step CG - C
_ classical CG

Number of global synchronizations

Fixed s-step	Improved adaptive s-step w/Newton	Improved adaptive s-step w/Chebyshev	classical CG
-	59	53	414

Summary

- In order to truly claim that a modified variant of a Krylov subspace method is suitable for HPC/more efficient than the classical approach, we must understand its behavior in finite precision
- In s-step variants of Krylov subspace methods, local roundoff errors are amplified by a factor related to the conditioning of the computed "s-step bases"
- Bounds on maximum attainable accuracy
- Working towards understanding convergence delay
- Understanding finite precision behavior can allow us to develop adaptive approaches that are both accurate and efficient

Thank you!

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/~ carson

