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Floating Point Formats
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exponent (11 bits) fraction (52 bits)

IEEE double (FP64)

IEEE single (FP32)

IEEE half (FP16)

exponent (8 bits) fraction (23 bits)

exponent (5 bits) fraction (10 bits)

−1 sign × 2(exponent−offset) × 1. fraction

size 
(bits) range 𝑢

perf. (NVIDIA 
H100)

FP64 64 10±308 1 × 10−16 60 Tflops/s

FP32 32 10±38 6 × 10−8 1 Pflop/s

FP16 16 10±5 5 × 10−4
2 Pflops/s

bfloat16 16 10±38 4 × 10−3

FP8-e5m2 8 10±5 3 × 10−1
4 Pflops/s

FP8-e4m3 8 10±2 1 × 10−1

exponent (8 bits) fraction (7 bits)

bfloat16

FP8

e5m2

e4m3



Hardware Support for Multiprecision Computation
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• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017: 

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision; 

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU)

• NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16, 
FP64, Binary, INT4, INT8, bfloat16

• NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores 

• Exascale supercomputers: Expected extensive support for reduced-precision 
arithmetic (Frontier: FP64, FP32, FP16, bfloat16, INT8, INT4)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:



Mixed precision in NLA

• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018] 

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., 
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], 
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015] 

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, 
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, 
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et 
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

3For survey and references, see [Abdelfattah et al., IJHPC, 2021]



HPL-AI Benchmark

• Supercomputers traditionally ranked by performance on high-performance 
LINPACK (HPL) benchmark

• Solves dense 𝐴𝑥 = 𝑏 via Gaussian elimination with partial pivoting

• HPL-AI: Like HPL, solves dense 𝐴𝑥 = 𝑏, results still to double precision 
accuracy

• But achieves this via mixed-precision iterative refinement
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff
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Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏



Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Traditional"

(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision 
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Traditional"

(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision 
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1, 
• relative forward error is 𝑂 𝑢
• relative normwise and componentwise backward errors are 𝑂(𝑢)

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1, 
• relative forward error is 𝑂(𝑢)𝐜𝐨𝐧𝐝 𝑨, 𝒙
• relative normwise and componentwise backward errors are 𝑂(𝑢)

6

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞



Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝒖−𝟏/𝟐, 
• relative forward error is 𝑂(𝑢)cond 𝐴, 𝑥
• relative normwise and componentwise backward errors are 𝑂(𝑢)
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

𝑢𝑓 = factorization precision, 𝑢 = working precision,   𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

𝒖𝒔 is the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

3-precision iterative refinement [C. and Higham, 2018]

7



Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a 
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

Analogous traditional bounds: 𝜙𝑖 ≡ 3𝑛𝒖𝒇𝜅∞ 𝐴

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a 
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is less than 1, then the residual is reduced on the 𝑖th iteration by a factor 
≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑏 − 𝐴ො𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞ ො𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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Effective Solve Precision

10

Allow for general solver:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇



Effective Solve Precision

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

10



Effective Solve Precision

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

10

example: LU solve: 



Effective Solve Precision

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

2.   Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

10

example: LU solve: 



Effective Solve Precision

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

2.   Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 𝐿 𝑈

∞

𝐴 ∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

10

example: LU solve: 



Effective Solve Precision

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve: 

3.    Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2.   Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 𝐿 𝑈

∞

𝐴 ∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

10𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔



Effective Solve Precision

Allow for general solver:

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve: 

3.    Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2.   Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 𝐿 𝑈

∞

𝐴 ∞

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐿 𝑈
∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

10𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔



Effective Solve Precision

Allow for general solver:

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve: 

𝒖𝒔 = 𝒖𝒇

𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 𝐿 𝑈

∞

𝐴 ∞

3.    Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2.   Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐿 𝑈
∞

10



IR3: Summary
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Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16
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IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error
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LP fact. 

LP fact. 
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Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error
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H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16
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IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

11

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower  
precision factorization w/no loss of accuracy! 

New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 



GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

12



GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

12

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.



GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

12

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.



GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝒖𝒔 = 𝒖

12

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.



GMRES-IR: Summary

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

12

GMRES-based IR in three precisions (𝒖𝒔 = 𝒖)

GMRES-IR: Solve for 𝑑𝑖 via GMRES on 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1 𝑟𝑖
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Recent work: 5-precision GMRES-IR [Amestoy, et al., 2021]
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• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use approximate preconditioners (ILU, 
SPAI, etc.)

GMRES-IR with Inexact Preconditioners
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• In practice, often want to use approximate preconditioners (ILU, 
SPAI, etc.)

• [Amestoy et al., 2022]

• Analysis of block low-rank (BLR) LU within GMRES-IR 

• Analysis of use of static pivoting in LU within GMRES-IR

• [C., Khan, 2022]

• Analysis of sparse approximate inverse (SPAI) 
preconditioners within GMRES-IR

GMRES-IR with Inexact Preconditioners
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Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜀

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜀

break;

Else

add select nonzeros to 𝐽, repeat. 

SPAI Preconditioners
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Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜀

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜀

break;

Else

add select nonzeros to 𝐽, repeat. 

Benefits: Highly parallelizable

But construction can still be costly, esp. for large-scale problems

[Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tůma, 1999], [He, Yin, Gao, 2020]

SPAI Preconditioners



SPAI Preconditioners in Low Precision

What is the effect of using low precision in SPAI construction?

Notes and assumptions:

• We will assume that the SPAI construction is performed in some precision 𝑢𝑓

• We will denote quantities computed in finite precision with hats

• In our application, we want a left preconditioner, so we will run the algorithm 
on 𝐴𝑇 and set 𝑀 ← 𝑀𝑇.

• We will assume that the QR factorization of the submatrix of 𝐴𝑇 is computed 
fully using HouseholderQR/TSQR

15



SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝑢𝑓 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜀, with Ƹ𝑟𝑘 = 𝑓𝑙𝑢𝑓(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?
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SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝑢𝑓 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜀, with Ƹ𝑟𝑘 = 𝑓𝑙𝑢𝑓(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?

2. Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜀. For 𝑀 computed in precision 𝑢𝑓 with the same sparsity pattern 

as 𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?
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SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS 
problems, we have

Ƹ𝑟𝑘 2 ≤ 𝑛3𝑢𝑓 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜀, we 
need

𝑛3𝑢𝑓 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜀.
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Ƹ𝑟𝑘 2 ≤ 𝑛3𝑢𝑓 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜀, we 
need

𝑛3𝑢𝑓 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜀.

→ problem must not be so ill-conditioned WRT 𝑢𝑓 that we incur an error 
greater than 𝜀 just computing the residual

17



SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜀𝑢𝑓
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.
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Another view: with a given matrix 𝐴 and a given precision 𝑢𝑓, one must set 𝜀
such that 

𝜀 ≥ 𝑢𝑓cond2 𝐴𝑇 .

Confirms intuition: The more approximate the inverse, the lower the 
precision we can us. 
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SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜀𝑢𝑓
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.

Another view: with a given matrix 𝐴 and a given precision 𝑢𝑓, one must set 𝜀
such that 

𝜀 ≥ 𝑢𝑓cond2 𝐴𝑇 .

Confirms intuition: The more approximate the inverse, the lower the 
precision we can us. 

Resulting bounds for 𝑀: 

𝐼 − 𝐴𝑇 𝑀𝑇
𝐹
≤ 2 𝑛𝜀,           𝐼 − 𝑀𝐴

∞
≤ 2𝑛𝜀

18



Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in 𝑀?

19
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Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in 𝑀?
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Second Question

Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜀. For 𝑀 computed in precision 𝑢𝑓 with the same sparsity pattern as 
𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘

𝑇
2
?
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Second Question

Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜀. For 𝑀 computed in precision 𝑢𝑓 with the same sparsity pattern as 
𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘

𝑇
2
?

In this case, we obtain the bound

𝐼 − 𝑀𝐴
∞
≤ 𝑛 𝜀 + 𝑛 Τ7 2𝑢𝑓𝜅∞ 𝐴 .

→ If 𝜅∞ 𝐴 ≫ 𝜀𝑢𝑓
−1, then computed 𝑀 with same sparsity structure as 𝑀 can 

be of much lower quality. 

20



Low Precision SPAI within GMRES-IR

Using 𝑀 computed in precision 𝑢𝑓, for the preconditioned system ሚ𝐴 = 𝑀𝐴,

𝜅∞ ሚ𝐴 ≲ 1 + 2𝑛𝜀 2.

21
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝑢𝑓cond2 𝐴𝑇 ≲ 𝑛𝜀 ≲ 𝑢− Τ1 2.
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝑢𝑓cond2 𝐴𝑇 ≲ 𝑛𝜀 ≲ 𝑢− Τ1 2.

If 𝜀 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝑢𝑓cond2 𝐴𝑇 ≲ 𝑛𝜀 ≲ 𝑢− Τ1 2.

If 𝜀 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 

Compared to GMRES-IR with full LU factorization, in general expect slower 
convergence, but much sparser preconditioner. 
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Low Precision SPAI within GMRES-IR

𝑀 can be 
constructed

𝑀 is a good enough 
preconditioner



SPAI-GMRES-IR Example

nnz(𝐿 + 𝑈) = 21,657

𝑢𝑓 , 𝑢, 𝑢𝑟 = (single, double, quad)

23

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



SPAI-GMRES-IR Example

nnz(𝐿 + 𝑈) = 21,657

𝑢𝑓 , 𝑢, 𝑢𝑟 = (single, double, quad)

nnz(𝑀) = 2,248
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Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103
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Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜀 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜀 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

Full LU 2.9𝑒 + 00 347828 7 (3,4)

None 6.8𝑒 + 03 0 379 (172, 207)

𝑢𝑓 , 𝑢, 𝑢𝑟 = (half, single, double)

Is there a point in using precision higher than that dictated by 𝑢𝑓cond2 𝐴𝑇 ≤ 𝜀?
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Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜀 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜀 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

Full LU 2.9𝑒 + 00 347828 7 (3,4)

None 6.8𝑒 + 03 0 379 (172, 207)

𝑢𝑓 , 𝑢, 𝑢𝑟 = (half, single, double)

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜀 = 0.2) 2.2𝑒 + 02 26801 69 (32, 37)

SPAI (𝜀 = 0.5) 9.7𝑒 + 02 7529 153 (71, 82)

Full LU 1.0𝑒 + 00 347828 1 (1)

None 6.8𝑒 + 03 0 379 (172, 207)

𝑢𝑓 , 𝑢, 𝑢𝑟 = (single, single, double)

Is there a point in using precision higher than that dictated by 𝑢𝑓cond2 𝐴𝑇 ≤ 𝜀?

Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103



Randomized Limited Memory Preconditioners

Let 𝐴 ∈ ℝ𝑛×𝑛 be a symmetric positive semidefinite matrix. Want to solve

𝐴 + 𝜇𝐼 𝑥 = 𝑏

where 𝜇 ≥ 0 is set so that 𝐴 + 𝜇𝐼 is positive definite. Assume 𝐴 has rapidly decreasing 

eigenvalues or cluster of large eigenvalues. 
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Randomized Limited Memory Preconditioners

Let 𝐴 ∈ ℝ𝑛×𝑛 be a symmetric positive semidefinite matrix. Want to solve

𝐴 + 𝜇𝐼 𝑥 = 𝑏

where 𝜇 ≥ 0 is set so that 𝐴 + 𝜇𝐼 is positive definite. Assume 𝐴 has rapidly decreasing 

eigenvalues or cluster of large eigenvalues. 

Want to solve using PCG using spectral limited memory preconditioner [Gratton, 
Sartenaer, Tshimanga, 2011], [Tshimanga et al., 2008]:

𝑃 = 𝐼 − 𝑈𝑈𝑇 +
1

𝛼+𝜇
𝑈 Θ + 𝜇𝐼 𝑈𝑇

𝑃−1 = 𝐼 − 𝑈𝑈𝑇 + 𝛼 + 𝜇 𝑈 Θ + 𝜇𝐼 −1𝑈𝑇

where columns of 𝑈 ∈ ℝ𝑛×𝑘 are 𝑘 approximate eigenvectors of 𝐴 and 𝑈𝑇𝑈 = 𝐼, Θ is 

diagonal with approximations to eigenvalues of 𝐴, and 𝛼 ≥ 0.

Used in data assimilation [Laloyaux et al., 2018], [Mogensen, Alonso Balmaseda, 

Weaver, 2012], [Moore et al., 2011], [Daužickaitė, Lawless, Scott, van Leeuwen, 2021]
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Randomized Nystrӧm Approximation

Want to compute a rank-𝑘 approximation 𝐴 ≈ 𝑈Θ𝑈𝑇 via the randomized 
Nystrӧm method.

Nystrӧm approximation:

𝐴𝑁 = 𝐴𝑄 𝑄𝑇𝐴𝑄 + 𝐴𝑄 𝑇

where 𝑄 is an 𝑛 × 𝑘 sampling matrix (random projection). 
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Randomized Nystrӧm Approximation

In the case that 𝐴 is very large, matrix-matrix products with 𝐴 are the bottleneck.

This motivates the single-pass version of the Nystrӧm method.

Stabilized Single-Pass Nystrӧm method [Tropp et al., 2017]

Given sym. PSD matrix 𝐴, target rank 𝑘
𝐺 = randn(𝑛, 𝑘)
[𝑄,~]= qr(𝐺, 0)
𝒀 = 𝑨𝑸
Compute shift 𝜈; 𝑌𝜈 = 𝑌 + 𝜈𝑄
𝐵 = 𝑄𝑇𝑌𝜈
𝐶 = chol((𝐵 + 𝐵𝑇)/2)
Solve 𝐹 = 𝑌𝜈/𝐶
[𝑈, Σ, ~] = svd(𝐹, 0)
Θ = max 0, Σ2 − 𝜈𝐼
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Can we further reduce the cost of the matrix-matrix product with 𝐴 by using 
low precision?



Error Bounds

𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2
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Error Bounds

𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

Deterministic bound [Gittens, Mahoney, 2016]:

𝐴 − 𝐴𝑁 2 ≤ 𝜆𝑘+1 + Σ2
Τ1 2𝑈2

𝑇𝑄 𝑈1𝑄
+

2

2

with 𝐴 = 𝑈1 𝑈2
Σ1

Σ2
𝑈1 𝑈2

𝑇. 
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Error Bounds

𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

Deterministic bound [Gittens, Mahoney, 2016]:

𝐴 − 𝐴𝑁 2 ≤ 𝜆𝑘+1 + Σ2
Τ1 2𝑈2

𝑇𝑄 𝑈1𝑄
+

2

2

with 𝐴 = 𝑈1 𝑈2
Σ1

Σ2
𝑈1 𝑈2

𝑇. 

Expected value bound [Frangella, Tropp, Udell, 2021]:

𝔼 𝐴 − 𝐴𝑁 2 ≤ min
2≤𝑝≤𝑘−2

1 +
2(𝑘 − 𝑝)

𝑝 − 1
𝜆𝑘−𝑝+1 +

2𝑒2𝑘

𝑝2 − 1


𝑗=𝑘−𝑝+1

𝑛

𝜆𝑗

where 𝜆𝑖 ≥ 𝜆𝑖+1 are the eigenvalues of 𝐴. 28
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Finite Precision Error Bound

Finite precision error: 𝐴𝑁 − መ𝐴𝑁

Assumptions: 

• 𝐴 is stored in precision 𝑢𝑝 and matrix-matrix product 𝐴𝑄 is computed in 
precision 𝑢𝑝

• All other quantities stored and computed in precision 𝑢 ≪ 𝑢𝑝

29



Finite Precision Error Bound

Finite precision error: 𝐴𝑁 − መ𝐴𝑁

Assumptions: 

• 𝐴 is stored in precision 𝑢𝑝 and matrix-matrix product 𝐴𝑄 is computed in 
precision 𝑢𝑝

• All other quantities stored and computed in precision 𝑢 ≪ 𝑢𝑝

[C., Daužickaitė, 2022]:

𝐴𝑁 − መ𝐴𝑁 2
≤ 𝑂 𝑢𝑝 𝑛 Τ5 2 𝐴 2
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𝐴𝑁 − መ𝐴𝑁 2
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Interpretation: 𝐴𝑁 − መ𝐴𝑁 2
≳ 𝐴 − 𝐴𝑁 2 when 

𝜆𝑘+1
𝜆1

≲ 𝑛𝑢𝑝
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Finite Precision Error Bound

Finite precision error: 𝐴𝑁 − መ𝐴𝑁

Assumptions: 

• 𝐴 is stored in precision 𝑢𝑝 and matrix-matrix product 𝐴𝑄 is computed in 
precision 𝑢𝑝

• All other quantities stored and computed in precision 𝑢 ≪ 𝑢𝑝

[C., Daužickaitė, 2022]:

𝐴𝑁 − መ𝐴𝑁 2
≤ 𝑂 𝑢𝑝 𝑛 Τ5 2 𝐴 2

Interpretation: 𝐴𝑁 − መ𝐴𝑁 2
≳ 𝐴 − 𝐴𝑁 2 when 

𝜆𝑘+1
𝜆1

≲ 𝑛𝑢𝑝

29

The more approximate the 
low-rank representation, the 
lower the precision we can use!



Condition Number Bounds

Let 𝐸 = 𝐴 − 𝐴𝑁, ℰ = 𝐴𝑁 − መ𝐴𝑁, and assume (𝐴 + 𝜇𝐼) is SPD. 

Let 
𝑃−1 = 𝐼 − 𝑈𝑈𝑇 + መ𝜆𝑘 + 𝜇 𝑈 Θ + 𝜇𝐼

−1𝑈𝑇

be the LMP preconditioner constructed using the mixed precision Nystrӧm 
approximation መ𝐴𝑁 = 𝑈Θ𝑈𝑇.
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Condition Number Bounds

Let 𝐸 = 𝐴 − 𝐴𝑁, ℰ = 𝐴𝑁 − መ𝐴𝑁, and assume (𝐴 + 𝜇𝐼) is SPD. 

Let 
𝑃−1 = 𝐼 − 𝑈𝑈𝑇 + መ𝜆𝑘 + 𝜇 𝑈 Θ + 𝜇𝐼

−1𝑈𝑇

be the LMP preconditioner constructed using the mixed precision Nystrӧm 
approximation መ𝐴𝑁 = 𝑈Θ𝑈𝑇.

Then

max 1,
መ𝜆𝑘 + 𝜇 − ℰ 2

𝜇 + 𝜆𝑚𝑖𝑛(𝐴)
≤ 𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ 1 +

መ𝜆𝑘 + 𝐸 2 + 2 ℰ 2

𝜇 − ℰ 2

where the upper bound holds if 𝜇 > ℰ 2. 

Regardless of this constraint, if 𝐴 is positive definite, then 

𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ መ𝜆𝑘 + 𝜇 + 𝐸 2 + ℰ 2

1

መ𝜆𝑘 + 𝜇
+

ℰ 2 + 1

𝜆𝑚𝑖𝑛 𝐴 + 𝜇
.
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Condition Number Bounds

Let 𝐸 = 𝐴 − 𝐴𝑁, ℰ = 𝐴𝑁 − መ𝐴𝑁, and assume (𝐴 + 𝜇𝐼) is SPD. 

Let 
𝑃−1 = 𝐼 − 𝑈𝑈𝑇 + መ𝜆𝑘 + 𝜇 𝑈 Θ + 𝜇𝐼

−1𝑈𝑇

be the LMP preconditioner constructed using the mixed precision Nystrӧm 
approximation መ𝐴𝑁 = 𝑈Θ𝑈𝑇.

Then

max 1,
መ𝜆𝑘 + 𝜇 − ℰ 2

𝜇 + 𝜆𝑚𝑖𝑛(𝐴)
≤ 𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ 1 +

መ𝜆𝑘 + 𝐸 2 + 2 ℰ 2

𝜇 − ℰ 2

where the upper bound holds if 𝜇 > ℰ 2. 

Regardless of this constraint, if 𝐴 is positive definite, then 

𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ መ𝜆𝑘 + 𝜇 + 𝐸 2 + ℰ 2

1

መ𝜆𝑘 + 𝜇
+

ℰ 2 + 1

𝜆𝑚𝑖𝑛 𝐴 + 𝜇
.
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If ℰ = 0, reduces to bounds of [Frangella, 
Tropp, Udell, 2021] for exact case.



Numerical Experiment

Matrix: bcsstm07, 𝑛 = 420

31

𝜆𝑘+1/𝜆1

𝑛𝑢𝑝, 𝑢𝑝 = half

𝑛𝑢𝑝, 𝑢𝑝 = single

𝑘



Numerical Experiment
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Matrix: bcsstm07, 𝑛 = 420

total error, 𝐴 − መ𝐴𝑁 2

mean finite prec. error, 𝐴𝑁 − መ𝐴𝑁 2

exact 

mixed, 𝑢𝑝 = half

mixed, 𝑢𝑝 = single

mixed, 𝑢𝑝 = double



Numerical Experiment
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unpreconditioned

exact 

mixed, 𝑢𝑝 = half

mixed, 𝑢𝑝 = single

mixed, 𝑢𝑝 = double

𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2

PCG iteration count



Summary and Takeaway

• We now have a multi-precision ecosystem 

• Huge opportunities for using mixed precision in matrix 
computations

• But also big challenges! 
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carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

Thank You!



Quarter precision?
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