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Talk overview
• Coarse grid solver (“bottom solver”) often the bottleneck in geometric 

multigrid methods due to high cost of global communication

• Replacing classical solver with communication-avoiding variant can 

asymptotically reduce global communication

• Implementation, evaluation, and optimization of a communication-

avoiding formulation of the Krylov solver routine (CA-BICGSTAB) as a 

high-performance, distributed-memory bottom solve routine for 

geometric multigrid

• Bottom solver speedups: 4.2x in miniGMG benchmark, up to 2.5x in real 

applications

• First use of communication-avoiding Krylov subspace methods for 
improving multigrid bottom solve performance 
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Geometric multigrid
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• Numerical simulations in a wide array of scientific disciplines require 
solving elliptic/parabolic PDEs on a hierarchy of adaptively refined meshes

• Geometric multigrid (GMG) is a good choice for many problems

• Krylov subspace methods commonly used for bottom solve routines

– Only require approximate solve, matrix-free representation

– GMG + Krylov method available as solver option in many available 
software packages (e.g., BoxLib, Chombo, PETSc, hypre)

• Consists of a series of V-cycles (“U-cycles”)

– When further coarsening becomes 
infeasible, solve distributed coarse grid 
problem

– Other options: agglomerate and solve 
local coarse grid problem, switch to 
algebraic, etc.  

bottom-solve



Krylov subspace methods

• Iterative methods based on projection onto expanding subspaces

• In iteration 𝑚, approximate solution 𝑥𝑚 to 𝐴𝑥 = 𝑏 chosen from the 
expanding Krylov Subspace:

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑚−1𝑟0

where 𝑟0 = 𝑏 − 𝐴𝑥0, subject to orthogonality constraints

• Main computational kernels in each iteration:

– Sparse matrix-vector multiplication (SpMV) : Compute new basis 
vector to increase the dimension of the Krylov subspace

• P2P communication (nearest neighbors)

– Inner products: orthogonalization to select “best” solution

• MPI_Allreduce (global synchronization)

• Examples: Conjugate Gradient (CG), Generalized Minimum Residual 
Methods (GMRES), Biconjugate Gradient (BICG), BICG Stabilized (BICGSTAB)
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The miniGMG benchmark

• Geometric multigrid benchmark from (Williams, et al., 2012)

• Designed to mimic key computational characteristics of applications, 
present a challenge for exascale architectures

• Uses hybrid MPI+OpenMP

• Finite-volume discretization of variable-coefficient Helmholtz 
equation (𝐿𝑢 = 𝑎𝛼𝑢 − 𝑏𝛻 ∙ 𝛽𝛻𝑢 = 𝑓) on a cube, periodic boundary 
conditions

• Global 3D domain, partitioned into subdomains: one 643 box per MPI 
process (reflects memory capacity challenges of real AMR MG 
combustion applications)

• Piecewise constant interpolation, GSRB smoothing in V-cycle

• When box size reduced to 43, restriction terminates, BICGSTAB used 
as bottom solve routine 
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miniGMG benchmark results
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• miniGMG benchmark with 
BICGSTAB bottom solve

• Machine: Hopper at NERSC (Cray 
XE6),  4  6-core Opteron chips per 
node, Gemini network, 3D torus

• Weak scaling: Up to 4096 MPI 
processes (1 per chip, 24,576
cores total)

– 643 points per process (𝑁 =
1283 over 48 cores, 𝑁 =
10243 over 24,576 cores)

 Scales poorly compared to other parts of the V-cycle

 Bottom solve time dominates the 
runtime of the overall GMG method
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The communication bottleneck
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• Same miniGMG benchmark with 
BICGSTAB on Hopper

• Top: MPI_AllReduce clearly 
dominates bottom solve time

• Bottom: Increase in 
MPI_AllReduce time due to two 
effects:

1. # iterations required by 
solver increases with 
problem size

2. MPI_AllReduce time 
increases with machine 
scale (no guarantee of 
compact subtorus)

• Poor scalability: Increasing 
number of increasingly slower 
iterations!
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Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏
Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0
Pick arbitrary  𝑟 such that (  𝑟, 𝑟0) ≠ 0
for 𝑗 = 0,1, … , until convergence do

𝛼𝑗 = (  𝑟, 𝑟𝑗)/(  𝑟, 𝐴𝑝𝑗)

𝑥𝑗+1 = 𝑥𝑗 + 𝛼𝑗𝑝𝑗
𝑞𝑗 = 𝑟𝑗 − 𝛼𝑗𝐴𝑝𝑗

Check 𝑞𝑗 2
= 𝑞𝑗 , 𝑞𝑗

1/2
for convergence

𝜔𝑗 = (𝑞𝑗 , 𝐴𝑞𝑗)/(𝐴𝑞𝑗 , 𝐴𝑞𝑗)

𝑥𝑗+1 = 𝑥𝑗+1 + 𝜔𝑗𝑞𝑗
𝑟𝑗+1 = 𝑞𝑗 − 𝜔𝑗𝐴𝑞𝑗

Check 𝑟𝑗+1 2
= 𝑟𝑗+1, 𝑟𝑗+1

1/2
for convergence

𝛽𝑗 = (  𝛼𝑗 𝜔𝑗)(  𝑟, 𝑟𝑗+1)/(  𝑟, 𝑟𝑗)

𝑝𝑗+1 = 𝑟𝑗+1 + 𝛽𝑗(𝑝𝑗 − 𝜔𝑗𝐴𝑝𝑗)
end for

The BICGSTAB method
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Inner products in 
each iteration 
require global 

synchronization 
(MPI_AllReduce)



Communication-avoiding Krylov methods
• Communication-avoiding Krylov subspace methods (CA-KSMS) can 

asymptotically reduce parallel latency 

• First known reference: 𝑠-step CG (Van Rosendale, 1983)

– Many methods and variations created since; see Hoemmen’s 2010 PhD 
thesis for thorough overview

• Main idea: Block iterations by groups of 𝑠

• Outer loop (communication step):

– Precompute Krylov basis 𝑉 (dimension 𝑁-by-𝑂(𝑠) ) required to compute 
next 𝑠 iterations (𝑂(𝑠) SpMVs, P2P communication)

– Encode inner products using Gram matrix 𝐺 = 𝑉𝑇𝑉

• Requires only one MPI_AllReduce to compute information needed 
for 𝑠 iterations -> decreases global synchronizations by 𝑶(𝒔)!

• Inner loop (computation steps): 

– Update length-𝑂(𝑠) vectors that represent coordinates of BICGSTAB 
vectors in 𝑉 for the next 𝑠 iterations, use 𝐺 to recover inner products 
locally- no further communication required!
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𝑉 𝐺 = 𝑉𝑇𝑉

= ×

𝑟 2 =

= × =

𝑟𝑇𝑟 = 𝑟′𝑇𝐺𝑟′
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𝑉 𝐺 = 𝑉𝑇𝑉

= ×

𝑟 2 =

= × =

𝑟𝑇𝑟 = 𝑟′𝑇𝐺𝑟′

𝑂(𝑠)

𝑁/𝑝

𝑁

𝑂(𝑠)

𝑂(𝑠)

Computed locally on each 
processor – no communication!



Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏

Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0, pick arbitrary  𝑟 such that (  𝑟, 𝑟0) ≠ 0

Construct (4𝑠 + 1)-by-(4𝑠 + 1) matrix 𝑇

for m = 0, 𝑠, 2𝑠, … , until convergence do

Compute 𝑉 w/columns a basis for 𝒦2𝑠+1 𝐴, 𝑝𝑚 +𝒦2𝑠 𝐴, 𝑟𝑚
Compute 𝐺, 𝑔 = 𝑉𝑇[𝑉,  𝑟]

for 𝑗 = 0,1, … , 𝑠 − 1 do

𝛼𝑚+𝑗 = (𝑔, 𝑟𝑗
′)/(  𝑟, 𝑇𝑝𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗𝑇𝑝𝑗
′

Check 𝑞𝑗 2
= 𝑞𝑗

′ , 𝐺𝑞𝑗
′ 1/2

for convergence

𝜔𝑚+𝑗 = (𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′)/(𝑇𝑞𝑗
′ , 𝑇𝑞𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗+1

′ + 𝜔𝑚+𝑗𝑞𝑗
′

𝑟𝑗+1
′ = 𝑞𝑗

′ − 𝜔𝑚+𝑗𝑇𝑞𝑗
′

Check 𝑟𝑗+1 2
= 𝑟𝑗+1

′ , 𝐺𝑟𝑗+1
′ 1/2

for convergence

𝛽𝑚+𝑗 = (  𝛼𝑚+𝑗 𝜔𝑚+𝑗)(𝑔, 𝑟𝑗+1
′ )/(𝑔, 𝑟𝑗

′)

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗(𝑝𝑗
′ − 𝜔𝑚+𝑗𝑇𝑝𝑗

′)

end for

[𝑝𝑚+𝑠, 𝑟𝑚+𝑠, 𝑥𝑚+𝑠 − 𝑥𝑚] = 𝑉[𝑝𝑠
′ , 𝑟𝑠

′, 𝑥𝑠
′]

end for

The CA-BICGSTAB method
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[C., Knight, Demmel. SISC 35(5), 2013.]
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The CA-BICGSTAB method
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P2P communication

[C., Knight, Demmel. SISC 35(5), 2013.]
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The CA-BICGSTAB method
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P2P communication

One MPI_AllReduce 

[C., Knight, Demmel. SISC 35(5), 2013.]
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𝛼𝑚+𝑗 = (𝑔, 𝑟𝑗
′)/(  𝑟, 𝑇𝑝𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗𝑇𝑝𝑗
′

Check 𝑞𝑗 2
= 𝑞𝑗

′ , 𝐺𝑞𝑗
′ 1/2

for convergence

𝜔𝑚+𝑗 = (𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′)/(𝑇𝑞𝑗
′ , 𝑇𝑞𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗+1

′ + 𝜔𝑚+𝑗𝑞𝑗
′

𝑟𝑗+1
′ = 𝑞𝑗

′ − 𝜔𝑚+𝑗𝑇𝑞𝑗
′

Check 𝑟𝑗+1 2
= 𝑟𝑗+1

′ , 𝐺𝑟𝑗+1
′ 1/2

for convergence

𝛽𝑚+𝑗 = (  𝛼𝑚+𝑗 𝜔𝑚+𝑗)(𝑔, 𝑟𝑗+1
′ )/(𝑔, 𝑟𝑗

′)

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗(𝑝𝑗
′ − 𝜔𝑚+𝑗𝑇𝑝𝑗

′)

end for

[𝑝𝑚+𝑠, 𝑟𝑚+𝑠, 𝑥𝑚+𝑠 − 𝑥𝑚] = 𝑉[𝑝𝑠
′ , 𝑟𝑠

′, 𝑥𝑠
′]

end for

The CA-BICGSTAB method
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P2P communication

One MPI_AllReduce 

Vector updates for 𝑠
iterations computed 

locally

[C., Knight, Demmel. SISC 35(5), 2013.]



Speedups for synthetic benchmark
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• Time (left) and performance (right) of miniGMG benchmark with 
BICGSTAB vs. CA-BICGSTAB with 𝑠 = 4 (monomial basis) on Hopper

• At 24K cores, CA-BICGSTAB’s asymptotic reduction of calls to 
MPI_AllReduce improves bottom solver by 4.2x, overall multigrid solve 
by nearly 2.5x 
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Speedups for synthetic benchmark
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• Time (left) and performance (right) of miniGMG benchmark with 
BICGSTAB vs. CA-BICGSTAB with 𝑠 = 4 (monomial basis) on Hopper

• Aggregate MG solve performance using CA-BICGSTAB much closer to 
linear in DOF/s 
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Benchmark timing breakdown
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• Plot: Net time spent across all bottom solves at 24,576 cores, for 
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB 

– Less than theoretical 24x 
since messages in CA-
BICGSTAB are larger, not 
always latency-limited

• P2P (blue) communication 
doubles for CA-BICGSTAB

– Basis computation 
requires twice as many 
SpMVs (P2P) per iteration 
as BICGSTAB 0.000
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Speedups for real applications
• CA-BICGSTAB bottom-solver 

implemented in BoxLib (AMR 
framework from LBL)

• Compared GMG with BICGSTAB vs. 
GMG with CA-BICGSTAB for two 
different applications:

Low Mach Number Combustion Code 
(LMC): gas-phase combustion 
simulation

• Up to 2.5x speedup in bottom 
solve; up to 1.5x in MG solve

Nyx: 3D N-body and gas dynamics code 
for cosmological simulations of dark 
matter particles

• Up to 2x speedup in bottom solve, 
1.15x in MG solve

26
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Discussion and challenges

• For practical purposes, choice of 𝑠 limited by finite precision error

– As 𝒔 is increased, convergence slows – more required iterations can 
negate any speedup per iteration gained

– Can use better-conditioned Krylov bases, but this can incur extra cost 
(esp. if 𝐴 changes b/t V-cycles); ongoing work

– In our tests,  𝑠 = 4 with the monomial basis gave similar 
convergence for BICGSTAB and CA-BICGSTAB

• Some bottom-solves are “harder” – take more iterations to converge –
than others

– Implemented “telescoping 𝒔” approach

• Outer loops begin using 𝑠 = 1, increase up in subsequent outer 
loops up to 𝑠 = 4

• Ensures that easy solves don’t incur extra costs of computing 𝑉
and 𝐺 = 𝑉𝑇𝑉, hard solves see asymptotic benefits
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Discussion and challenges

• Timing breakdown shows we must consider tradeoffs between 
bandwidth, latency, and computation when optimizing for particular 
problem/machine

– Blocking BICGSTAB inner products most beneficial when:

• MPI_AllReduces in bottom solve are dominant cost in GMG solve, 
GMG solves are dominant cost of application

• Bottom solve requires enough iterations to amortize extra costs 
(bigger MPI messages, more P2P communication)

– CA-BICGSTAB can also be optimized to reduce P2P communication 
or reduce vertical data movement when computing Krylov bases 
(“matrix powers kernel”)
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Design space and related approaches

31

• Parallelizing multigrid methods

– Concurrent iterations, multiple coarse corrections, full domain partitioning, 
block factorization, etc.

• Solving the coarse grid problem

– Type of solver: direct (e.g., LU), stationary iterative (e.g., Jacobi), Krylov, 
switch to algebraic

– Coarse grid agglomeration - use only a subset of available processors

• Reducing communication cost in Krylov subspace methods

– Pipelining: overlap nonblocking reductions with matrix-vector 
multiplications (Ghysels, Ashby, Meerbergen, Vanroose, 2013)

– Tiling approach to reduce communication bottleneck in Chebyshev iteration 
smoothers (Ghysels, Kłosiewicz, Vanroose, 2012)

– Overlap global synchronization points with SpMV and preconditioner
application (Gropp, 2010)

– Delayed reorthogonalization: avoid synchronization due to 
reorthogonalization (ADR in SLEPc) (Hernandez, Román, Tomás, 2007)



Summary and future work
• Implemented, evaluated, and optimized CA-BICGSTAB as a high-

performance, distributed-memory bottom solve routine for geometric 
multigrid solvers

– GMG+CABICGSTAB available as option in miniGMG, BoxLib, and 
CHOMBO frameworks

• Expands the design space: trade collective latency for bandwidth, 
trade 𝑠 fine-grained operations for one coarse-grained operation that 
expresses more parallelism

• Future work: 

– Exploration of design space for other Krylov solvers, other 
architectures, other applications

– Implementation of different polynomial bases for Krylov subspace to 
improve convergence for higher 𝑠 values

– Improve accessibility of communication-avoiding Krylov methods 
through scientific computing libraries and frameworks
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Thank you!
Email: erin@cs.berkeley.edu
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Communication is expensive!
• Algorithms have two costs: communication and computation

– Communication : moving data between levels of memory 
hierarchy (sequential), between processors (parallel)

38

sequential comm.
parallel comm.

• On modern computers, communication is expensive, computation is cheap

– Flop time << 1/bandwidth << latency

– Communication bottleneck a barrier to achieving scalability

– Communication is also expensive in terms of energy cost

• For scalability, we must redesign algorithms to avoid communication 



Coarse Grid Agglomeration

• Unite subdomains onto a subset of the available processors once ratio of interior 
nodes to boundary nodes falls below some threshold

• Pros: Reduces communication required to perform operations at this level and 
lower levels

• Cons: Leaves processors idle, requires lots of data movement (scatter/gather) to 
perform data redistribution

– Words moved = 𝟐 ⋅ 𝑶 𝒏𝟐 for scatter/gather, versus 
# 𝒊𝒕𝒔

𝒔
⋅ 𝑶(𝒔𝟐 𝐥𝐨𝐠𝒑) for 

MPI_AllReduce in CA coarse grid solves

• This approach could be combined with coarse grid solve – do agglomeration at 
some level, then coarse grid solve at this level or lower

– Expect CA-KSMs to have less speedup over KSMs in this case, since 
communication in bottom solve less expensive due to more processors

• But not clear that this would always be the winning approach in terms of 
overall runtime

• Best approach will depend on the parallel environment and application!
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Krylov Subspace Methods

• A Krylov Subspace is defined as

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑚−1𝑟0

• A Krylov Subspace Method is a projection process onto the subspace 
𝒦 orthogonal to ℒ

– The choice of ℒ distinguishes the various methods

• Examples: Conjugate Gradient (CG), Generalized Minimum 
Residual Methods (GMRES), Biconjugate Gradient (BICG), BICG 
Stabilized (BICGSTAB)

41

For linear systems, in iteration 𝑚, approximates 
solution 𝑥𝑚 to 𝐴𝑥 = 𝑏 by imposing the condition

𝑥𝑚 = 𝑥0 + 𝛿, 𝛿 ∈ 𝒦𝑚 and   𝑟0 − 𝐴𝛿 ⊥ ℒ𝑚, 

where 𝑟0 = 𝑏 − 𝐴𝑥0 ℒ

𝑟new

𝐴𝛿

𝑟0

0



Hopper

• Cray XE6 MPP at NERSC

• Each compute node that four 6-core Opteron chips each with 
two DDR3-1333 mem controllers

• Each superscalar out-of-order core: 64KB L1, 512KB L2. One 
6MB L3 cache per chip

• Pairs of compute nodes connected via HyperTransport to a 
high-speed Gemini network chip

• Gemini network chips connected to form high-BW low-latency 
3D torus
– Some asymmetry in torus

– No control over job placement

– Latency can be as low as 1.5 microseconds, but typically longer in 
practice

42



Convergence rates with 𝑠 = 4
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Authors KSM Basis Precond? Mtx Pwrs? TSQR?

Van Rosendale, 
1983

CG Monomial Polynomial No No

Leland, 1989 CG Monomial Polynomial No No

Walker, 1988 GMRES Monomial None No No

Chronopoulos and 
Gear, 1989

CG Monomial None No No

Chronopoulos and 
Kim, 1990

Orthomin, 
GMRES

Monomial None No No

Chronopoulos, 
1991

MINRES Monomial None No No

Kim and 
Chronopoulos, 

1991

Symm. 
Lanczos, 
Arnoldi

Monomial None No No

Sturler, 1991 GMRES Chebyshev None No No

Related Work: 𝑠-step methods
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Authors KSM Basis Precond? Mtx Pwrs? TSQR?

Joubert and 
Carey, 1992

GMRES Chebyshev No Yes* No

Chronopoulos and 
Kim, 1992

Nonsymm. 
Lanczos

Monomial No No No

Bai, Hu, and 
Reichel, 1991

GMRES Newton No No No

Erhel, 1995 GMRES Newton No No No

de Sturler and van 
der Vorst, 2005

GMRES Chebyshev General No No

Toledo, 1995 CG Monomial Polynomial Yes* No

Chronopoulos and 
Swanson, 1990

CGR, 
Orthomin

Monomial No No No

Chronopoulos and 
Kinkaid, 2001

Orthodir Monomial No No No

Related Work: 𝑠-step methods
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• Many previously derived 𝑠-step Krylov methods

– First known reference is (Van Rosendale, 1983) 

• Motivation: minimize I/O, increase parallelism

• Empirically found that monomial basis for 𝑠 > 5 causes instability

• Many found better convergence using better conditioned 
polynomials based on spectrum of 𝐴 (e.g., scaled monomial, 
Newton, Chebyshev)

• Hoemmen et al. (2009) first to produce CA implementations that also 
avoid communication for general sparse matrices (and use TSQR)

– Speedups for various matrices for a fixed number of iterations 

• Shows that 
time per 𝑠 iterations KSM

time per outer iteration CA−KSM
can be 𝑂(𝑠)

Related Work: 𝑠-step methods



Parallel Multigrid Methods

• Concurrent iterations

– Reduces time per multigrid iteration by performing relaxation 
sweeps on all grids simultaneously

• Multiple coarse corrections

– Accelerates convergence by projecting the fine grid system onto 
several different coarse grid spaces

• Full domain partitioning

– Reduces communication during refinement stage

• Block factorization

– Use a special selection of coarse and fine points to expose 
parallelism
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The BICGSTAB method

48

Inner products in 
each iteration 
require global 

synchronization 
(MPI_AllReduce)

Multiplication by A 
requires nearest 

neighbor 
communication 

(P2P)

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏
Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0
Pick arbitrary  𝑟 such that (  𝑟, 𝑟0) ≠ 0
for 𝑗 = 0,1, … , until convergence do

𝛼𝑗 = (  𝑟, 𝑟𝑗)/(  𝑟, 𝐴𝑝𝑗)

𝑥𝑗+1 = 𝑥𝑗 + 𝛼𝑗𝑝𝑗
𝑞𝑗 = 𝑟𝑗 − 𝛼𝑗𝐴𝑝𝑗

Check 𝑞𝑗 2
= 𝑞𝑗 , 𝑞𝑗

1/2
for convergence

𝜔𝑗 = (𝑞𝑗 , 𝐴𝑞𝑗)/(𝐴𝑞𝑗 , 𝐴𝑞𝑗)

𝑥𝑗+1 = 𝑥𝑗+1 + 𝜔𝑗𝑞𝑗
𝑟𝑗+1 = 𝑞𝑗 − 𝜔𝑗𝐴𝑞𝑗

Check 𝑟𝑗+1 2
= 𝑟𝑗+1, 𝑟𝑗+1

1/2
for convergence

𝛽𝑗 = (  𝛼𝑗 𝜔𝑗)(  𝑟, 𝑟𝑗+1)/(  𝑟, 𝑟𝑗)

𝑝𝑗+1 = 𝑟𝑗+1 + 𝛽𝑗(𝑝𝑗 − 𝜔𝑗𝐴𝑝𝑗)
end for



CA-BICGSTAB derivation: Basis change

49

= ×

Suppose we are at some iteration 𝑚. What are the dependencies on 𝑟𝑚, 𝑝𝑚, and 
𝑥𝑚 for computing the next 𝑠 iterations?

By induction, for 𝑗 = 0,1,… 𝑠 − 1

𝑝𝑚+𝑗+1, 𝑟𝑚+𝑗+1, 𝑥𝑚+𝑗+1 − 𝑥𝑚 ∈ 𝒦2𝑠+1 𝐴, 𝑝𝑚 + 𝒦2𝑠 𝐴, 𝑟𝑚

𝑞𝑚+𝑗 ∈ 𝒦2𝑠 𝐴, 𝑝𝑚 + 𝒦2𝑠−1 𝐴, 𝑟𝑚

𝑝𝑚+𝑗 ∈ 𝒦2𝑠−1 𝐴, 𝑝𝑚 + 𝒦2𝑠−2 𝐴, 𝑟𝑚

Let 𝑃 and 𝑅 be bases for 𝒦2𝑠+1 𝐴, 𝑝𝑚 and 𝒦2𝑠 𝐴, 𝑟𝑚 , respectively.

For the next 𝑠 iterations ( 𝑗 = 0,1,… 𝑠 − 1 ),

𝑟𝑚+𝑗+1 = 𝑃,𝑅 𝑟𝑗+1
′ 𝑝𝑚+𝑗+1 = 𝑃, 𝑅 𝑝𝑗+1

′

𝑥𝑚+𝑗+1 − 𝑥𝑚 = 𝑃, 𝑅 𝑥𝑗+1
′ 𝑞𝑚+𝑗 = 𝑃,𝑅 𝑞𝑗

′

i.e., length-(4𝑠 + 1) vectors 𝑟𝑗+1
′ , 𝑝𝑗+1

′ , 𝑥𝑗+1
′ , and 𝑞𝑗

′ are coordinates for the 

length-𝑁 vectors 𝑟𝑚+𝑗+1, 𝑝𝑚+𝑗+1, 𝑥𝑚+𝑗+1-𝑥𝑚, and 𝑞𝑚+𝑗 respectively, in bases 

[𝑃, 𝑅].



CA-BICGSTAB derivation: Coordinate updates 

50

Each process stores 𝑇
locally, redundantly 
compute coordinate 

updates

=
×

×

=
×

×
×

The bases 𝑃, 𝑅 are generated by polynomials satisfying 3-term recurrence 
represented by (4𝑠 + 1)-by-(4𝑠 + 1) tridiagonal matrix 𝑇 satisfying

𝐴 𝑃, 0𝑁,1, 𝑅, 0𝑁,1 = 𝑃, 𝑅 𝑇

where 𝑃, 𝑅 are 𝑃, 𝑅 resp. with last columns omitted

Multiplications by 𝐴 can then be written:

𝐴 𝑞𝑚+𝑗 , 𝑝𝑚+𝑗 = 𝐴 𝑃, 𝑅 𝑞𝑗
′ , 𝑝𝑗

′ = 𝑃, 𝑅 𝑇 𝑞𝑗
′ , 𝑝𝑗

′

Update BICGSTAB vectors by updating their coordinates in [𝑃, 𝑅]:

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗 𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗 𝑇𝑝𝑗
′

𝑥𝑗+1
′ = 𝑥𝑗+1

′ +𝜔𝑚+𝑗 𝑞𝑗
′

𝑟𝑗+1
′ = 𝑟𝑗

′ − 𝜔𝑚+𝑗 𝑇𝑞𝑗
′

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗 (𝑝𝑗
′ −𝜔𝑚+𝑗 𝑇𝑝𝑗

′)
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× × ×

×

= × = ×

Last step: rewriting length-𝑁 inner products in the new Krylov basis. Let 

𝐺 = 𝑃, 𝑅 𝑇[𝑃, 𝑅] 𝑔 = 𝑃, 𝑅 𝑇  𝑟

where the “Gram Matrix” 𝐺 is (4𝑠 + 1) -by-(4𝑠 + 1) and 𝑔 is a (4𝑠 + 1) vector. 
(Note: can be computed with one MPI_AllReduce by 𝑃, 𝑅 𝑇 𝑃, 𝑅,  𝑟 ).

Then all the dot products for s iterations of BICGSTAB can be computed locally in 
CA-BICGSTAB using 𝐺 and 𝑔 by the relations

 𝑟, 𝑟𝑚+𝑗 = (𝑔, 𝑟𝑗
′)

 𝑟, 𝑟𝑚+𝑗+1 = 𝑔, 𝑟𝑗
′

 𝑟, 𝐴𝑝𝑚+𝑗 = 𝑔, 𝑇𝑝𝑗
′

𝑞𝑚+𝑗 , 𝐴𝑞𝑚+𝑗 = 𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′

𝐴𝑞𝑚+𝑗 , 𝐴𝑞𝑚+𝑗 = 𝑇𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′

Note: norms for convergence checks can be estimated with no communication in 
a similar way, e.g., 𝑟𝑚+𝑗+1 2

= 𝑟𝑚+𝑗+1, 𝑟𝑚+𝑗+1 = 𝑟𝑗+1
′ , 𝐺𝑟𝑗+1

′ .
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𝑉 𝐺 = 𝑉𝑇𝑉

= ×

𝑟 2 =

= × =

𝑟𝑇𝑟 = 𝑟′𝑇𝐺𝑟′

𝑂(𝑠)

𝑁/𝑝

𝑁

𝑂(𝑠)

𝑂(𝑠)

Computed locally on each 
processor – no communication!


