
Avoiding communication
in geometric multigrid
Erin C. Carson1

Samuel Williams2, Michael Lijewski2, Nicholas Knight1, Ann S.
Almgren2, James Demmel1, and Brian Van Straalen1,2

1University of California, Berkeley, USA
2Lawrence Berkeley National Laboratory, USA

PMAA, Wednesday, July 2, 2014

Talk overview
• Coarse grid solver (“bottom solver”) often the bottleneck in geometric

multigrid methods due to high cost of global communication

• Replacing classical solver with communication-avoiding variant can

asymptotically reduce global communication

• Implementation, evaluation, and optimization of a communication-

avoiding formulation of the Krylov solver routine (CA-BICGSTAB) as a

high-performance, distributed-memory bottom solve routine for

geometric multigrid

• Bottom solver speedups: 4.2x in miniGMG benchmark, up to 2.5x in real

applications

• First use of communication-avoiding Krylov subspace methods for
improving multigrid bottom solve performance

2

Geometric multigrid

3

• Numerical simulations in a wide array of scientific disciplines require
solving elliptic/parabolic PDEs on a hierarchy of adaptively refined meshes

• Geometric multigrid (GMG) is a good choice for many problems

• Krylov subspace methods commonly used for bottom solve routines

– Only require approximate solve, matrix-free representation

– GMG + Krylov method available as solver option in many available
software packages (e.g., BoxLib, Chombo, PETSc, hypre)

• Consists of a series of V-cycles (“U-cycles”)

– When further coarsening becomes
infeasible, solve distributed coarse grid
problem

– Other options: agglomerate and solve
local coarse grid problem, switch to
algebraic, etc.

bottom-solve

Krylov subspace methods

• Iterative methods based on projection onto expanding subspaces

• In iteration 𝑚, approximate solution 𝑥𝑚 to 𝐴𝑥 = 𝑏 chosen from the
expanding Krylov Subspace:

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑚−1𝑟0

where 𝑟0 = 𝑏 − 𝐴𝑥0, subject to orthogonality constraints

• Main computational kernels in each iteration:

– Sparse matrix-vector multiplication (SpMV) : Compute new basis
vector to increase the dimension of the Krylov subspace

• P2P communication (nearest neighbors)

– Inner products: orthogonalization to select “best” solution

• MPI_Allreduce (global synchronization)

• Examples: Conjugate Gradient (CG), Generalized Minimum Residual
Methods (GMRES), Biconjugate Gradient (BICG), BICG Stabilized (BICGSTAB)

4

The miniGMG benchmark

• Geometric multigrid benchmark from (Williams, et al., 2012)

• Designed to mimic key computational characteristics of applications,
present a challenge for exascale architectures

• Uses hybrid MPI+OpenMP

• Finite-volume discretization of variable-coefficient Helmholtz
equation (𝐿𝑢 = 𝑎𝛼𝑢 − 𝑏𝛻 ∙ 𝛽𝛻𝑢 = 𝑓) on a cube, periodic boundary
conditions

• Global 3D domain, partitioned into subdomains: one 643 box per MPI
process (reflects memory capacity challenges of real AMR MG
combustion applications)

• Piecewise constant interpolation, GSRB smoothing in V-cycle

• When box size reduced to 43, restriction terminates, BICGSTAB used
as bottom solve routine

5

miniGMG benchmark results

6

• miniGMG benchmark with
BICGSTAB bottom solve

• Machine: Hopper at NERSC (Cray
XE6), 4 6-core Opteron chips per
node, Gemini network, 3D torus

• Weak scaling: Up to 4096 MPI
processes (1 per chip, 24,576
cores total)

– 643 points per process (𝑁 =
1283 over 48 cores, 𝑁 =
10243 over 24,576 cores)

 Scales poorly compared to other parts of the V-cycle

 Bottom solve time dominates the
runtime of the overall GMG method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

MG Solve Time on Hopper
(Weak Scaling)

MG Solver (w/BiCGStab)

BiCGStab time

V-Cycle Time

miniGMG benchmark results

7

• miniGMG benchmark with
BICGSTAB bottom solve

• Machine: Hopper at NERSC (Cray
XE6), 4 6-core Opteron chips per
node, Gemini network, 3D torus

• Weak scaling: Up to 4096 MPI
processes (1 per chip, 24,576
cores total)

– 643 points per process (𝑁 =
1283 over 48 cores, 𝑁 =
10243 over 24,576 cores)

 Scales poorly compared to other parts of the V-cycle

 Bottom solve time dominates the
runtime of the overall GMG method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

MG Solve Time on Hopper
(Weak Scaling)

MG Solver (w/BiCGStab)

BiCGStab time

V-Cycle Time

The communication bottleneck

8

• Same miniGMG benchmark with
BICGSTAB on Hopper

• Top: MPI_AllReduce clearly
dominates bottom solve time

• Bottom: Increase in
MPI_AllReduce time due to two
effects:

1. # iterations required by
solver increases with
problem size

2. MPI_AllReduce time
increases with machine
scale (no guarantee of
compact subtorus)

• Poor scalability: Increasing
number of increasingly slower
iterations!

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

Bottom Solver Time (total)

MPI_AllReduce Time (total)

0

50

100

150

200

250

300

350

400

450

500

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0 512 1024 1536 2048 2560 3072 3584 4096

It
e

ra
ti

o
n

s

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

Time per Iteration in MPI_AllReduce

BiCGStab Iterations (summed over all v-cycles)

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏
Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0
Pick arbitrary 𝑟 such that (𝑟, 𝑟0) ≠ 0
for 𝑗 = 0,1, … , until convergence do

𝛼𝑗 = (𝑟, 𝑟𝑗)/(𝑟, 𝐴𝑝𝑗)

𝑥𝑗+1 = 𝑥𝑗 + 𝛼𝑗𝑝𝑗
𝑞𝑗 = 𝑟𝑗 − 𝛼𝑗𝐴𝑝𝑗

Check 𝑞𝑗 2
= 𝑞𝑗 , 𝑞𝑗

1/2
for convergence

𝜔𝑗 = (𝑞𝑗 , 𝐴𝑞𝑗)/(𝐴𝑞𝑗 , 𝐴𝑞𝑗)

𝑥𝑗+1 = 𝑥𝑗+1 + 𝜔𝑗𝑞𝑗
𝑟𝑗+1 = 𝑞𝑗 − 𝜔𝑗𝐴𝑞𝑗

Check 𝑟𝑗+1 2
= 𝑟𝑗+1, 𝑟𝑗+1

1/2
for convergence

𝛽𝑗 = (𝛼𝑗 𝜔𝑗)(𝑟, 𝑟𝑗+1)/(𝑟, 𝑟𝑗)

𝑝𝑗+1 = 𝑟𝑗+1 + 𝛽𝑗(𝑝𝑗 − 𝜔𝑗𝐴𝑝𝑗)
end for

The BICGSTAB method

9

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏
Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0
Pick arbitrary 𝑟 such that (𝑟, 𝑟0) ≠ 0
for 𝑗 = 0,1, … , until convergence do

𝛼𝑗 = (𝑟, 𝑟𝑗)/(𝑟, 𝐴𝑝𝑗)

𝑥𝑗+1 = 𝑥𝑗 + 𝛼𝑗𝑝𝑗
𝑞𝑗 = 𝑟𝑗 − 𝛼𝑗𝐴𝑝𝑗

Check 𝑞𝑗 2
= 𝑞𝑗 , 𝑞𝑗

1/2
for convergence

𝜔𝑗 = (𝑞𝑗 , 𝐴𝑞𝑗)/(𝐴𝑞𝑗 , 𝐴𝑞𝑗)

𝑥𝑗+1 = 𝑥𝑗+1 + 𝜔𝑗𝑞𝑗
𝑟𝑗+1 = 𝑞𝑗 − 𝜔𝑗𝐴𝑞𝑗

Check 𝑟𝑗+1 2
= 𝑟𝑗+1, 𝑟𝑗+1

1/2
for convergence

𝛽𝑗 = (𝛼𝑗 𝜔𝑗)(𝑟, 𝑟𝑗+1)/(𝑟, 𝑟𝑗)

𝑝𝑗+1 = 𝑟𝑗+1 + 𝛽𝑗(𝑝𝑗 − 𝜔𝑗𝐴𝑝𝑗)
end for

The BICGSTAB method

10

Inner products in
each iteration
require global

synchronization
(MPI_AllReduce)

Communication-avoiding Krylov methods
• Communication-avoiding Krylov subspace methods (CA-KSMS) can

asymptotically reduce parallel latency

• First known reference: 𝑠-step CG (Van Rosendale, 1983)

– Many methods and variations created since; see Hoemmen’s 2010 PhD
thesis for thorough overview

• Main idea: Block iterations by groups of 𝑠

• Outer loop (communication step):

– Precompute Krylov basis 𝑉 (dimension 𝑁-by-𝑂(𝑠)) required to compute
next 𝑠 iterations (𝑂(𝑠) SpMVs, P2P communication)

– Encode inner products using Gram matrix 𝐺 = 𝑉𝑇𝑉

• Requires only one MPI_AllReduce to compute information needed
for 𝑠 iterations -> decreases global synchronizations by 𝑶(𝒔)!

• Inner loop (computation steps):

– Update length-𝑂(𝑠) vectors that represent coordinates of BICGSTAB
vectors in 𝑉 for the next 𝑠 iterations, use 𝐺 to recover inner products
locally- no further communication required!

11

Communication-avoiding Krylov methods
• Communication-avoiding Krylov subspace methods (CA-KSMS) can

asymptotically reduce parallel latency

• First known reference: 𝑠-step CG (Van Rosendale, 1983)

– Many methods and variations created since; see Hoemmen’s 2010 PhD
thesis for thorough overview

• Main idea: Block iterations by groups of 𝑠

• Outer loop (communication step):

– Precompute Krylov basis 𝑉 (dimension 𝑁-by-𝑂(𝑠)) required to compute
next 𝑠 iterations (𝑂(𝑠) SpMVs, P2P communication)

– Encode inner products using Gram matrix 𝐺 = 𝑉𝑇𝑉

• Requires only one MPI_AllReduce to compute information needed
for 𝑠 iterations -> decreases global synchronizations by 𝑶(𝒔)!

• Inner loop (computation steps):

– Update length-𝑂(𝑠) vectors that represent coordinates of BICGSTAB
vectors in 𝑉 for the next 𝑠 iterations, use 𝐺 to recover inner products
locally- no further communication required!

12

Communication-avoiding Krylov methods
• Communication-avoiding Krylov subspace methods (CA-KSMS) can

asymptotically reduce parallel latency

• First known reference: 𝑠-step CG (Van Rosendale, 1983)

– Many methods and variations created since; see Hoemmen’s 2010 PhD
thesis for thorough overview

• Main idea: Block iterations by groups of 𝑠

• Outer loop (communication step):

– Precompute Krylov basis 𝑉 (dimension 𝑁-by-𝑂(𝑠)) required to compute
next 𝑠 iterations (𝑂(𝑠) SpMVs, P2P communication)

– Encode inner products using Gram matrix 𝐺 = 𝑉𝑇𝑉

• Requires only one MPI_AllReduce to compute information needed
for 𝑠 iterations -> decreases global synchronizations by 𝑶(𝒔)!

• Inner loop (computation steps):

– Update length-𝑂(𝑠) vectors that represent coordinates of BICGSTAB
vectors in 𝑉 for the next 𝑠 iterations, use 𝐺 to recover inner products
locally- no further communication required!

13

14

𝑉 𝐺 = 𝑉𝑇𝑉

= ×

𝑂(𝑠)

𝑁/𝑝

𝑁

𝑂(𝑠)

𝑂(𝑠)

15

𝑉 𝐺 = 𝑉𝑇𝑉

= ×

𝑟 2 =

= × =

𝑟𝑇𝑟 = 𝑟′𝑇𝐺𝑟′

𝑂(𝑠)

𝑁/𝑝

𝑁

𝑂(𝑠)

𝑂(𝑠)

16

𝑉 𝐺 = 𝑉𝑇𝑉

= ×

𝑟 2 =

= × =

𝑟𝑇𝑟 = 𝑟′𝑇𝐺𝑟′

𝑂(𝑠)

𝑁/𝑝

𝑁

𝑂(𝑠)

𝑂(𝑠)

Computed locally on each
processor – no communication!

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏

Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0, pick arbitrary 𝑟 such that (𝑟, 𝑟0) ≠ 0

Construct (4𝑠 + 1)-by-(4𝑠 + 1) matrix 𝑇

for m = 0, 𝑠, 2𝑠, … , until convergence do

Compute 𝑉 w/columns a basis for 𝒦2𝑠+1 𝐴, 𝑝𝑚 +𝒦2𝑠 𝐴, 𝑟𝑚
Compute 𝐺, 𝑔 = 𝑉𝑇[𝑉, 𝑟]

for 𝑗 = 0,1, … , 𝑠 − 1 do

𝛼𝑚+𝑗 = (𝑔, 𝑟𝑗
′)/(𝑟, 𝑇𝑝𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗𝑇𝑝𝑗
′

Check 𝑞𝑗 2
= 𝑞𝑗

′ , 𝐺𝑞𝑗
′ 1/2

for convergence

𝜔𝑚+𝑗 = (𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′)/(𝑇𝑞𝑗
′ , 𝑇𝑞𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗+1

′ + 𝜔𝑚+𝑗𝑞𝑗
′

𝑟𝑗+1
′ = 𝑞𝑗

′ − 𝜔𝑚+𝑗𝑇𝑞𝑗
′

Check 𝑟𝑗+1 2
= 𝑟𝑗+1

′ , 𝐺𝑟𝑗+1
′ 1/2

for convergence

𝛽𝑚+𝑗 = (𝛼𝑚+𝑗 𝜔𝑚+𝑗)(𝑔, 𝑟𝑗+1
′)/(𝑔, 𝑟𝑗

′)

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗(𝑝𝑗
′ − 𝜔𝑚+𝑗𝑇𝑝𝑗

′)

end for

[𝑝𝑚+𝑠, 𝑟𝑚+𝑠, 𝑥𝑚+𝑠 − 𝑥𝑚] = 𝑉[𝑝𝑠
′ , 𝑟𝑠

′, 𝑥𝑠
′]

end for

The CA-BICGSTAB method

17

[C., Knight, Demmel. SISC 35(5), 2013.]

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏

Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0, pick arbitrary 𝑟 such that (𝑟, 𝑟0) ≠ 0

Construct (4𝑠 + 1)-by-(4𝑠 + 1) matrix 𝑇

for m = 0, 𝑠, 2𝑠, … , until convergence do

Compute 𝑉 w/columns a basis for 𝒦2𝑠+1 𝐴, 𝑝𝑚 +𝒦2𝑠 𝐴, 𝑟𝑚
Compute 𝐺, 𝑔 = 𝑉𝑇[𝑉, 𝑟]

for 𝑗 = 0,1, … , 𝑠 − 1 do

𝛼𝑚+𝑗 = (𝑔, 𝑟𝑗
′)/(𝑟, 𝑇𝑝𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗𝑇𝑝𝑗
′

Check 𝑞𝑗 2
= 𝑞𝑗

′ , 𝐺𝑞𝑗
′ 1/2

for convergence

𝜔𝑚+𝑗 = (𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′)/(𝑇𝑞𝑗
′ , 𝑇𝑞𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗+1

′ + 𝜔𝑚+𝑗𝑞𝑗
′

𝑟𝑗+1
′ = 𝑞𝑗

′ − 𝜔𝑚+𝑗𝑇𝑞𝑗
′

Check 𝑟𝑗+1 2
= 𝑟𝑗+1

′ , 𝐺𝑟𝑗+1
′ 1/2

for convergence

𝛽𝑚+𝑗 = (𝛼𝑚+𝑗 𝜔𝑚+𝑗)(𝑔, 𝑟𝑗+1
′)/(𝑔, 𝑟𝑗

′)

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗(𝑝𝑗
′ − 𝜔𝑚+𝑗𝑇𝑝𝑗

′)

end for

[𝑝𝑚+𝑠, 𝑟𝑚+𝑠, 𝑥𝑚+𝑠 − 𝑥𝑚] = 𝑉[𝑝𝑠
′ , 𝑟𝑠

′, 𝑥𝑠
′]

end for

The CA-BICGSTAB method

18

P2P communication

[C., Knight, Demmel. SISC 35(5), 2013.]

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏

Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0, pick arbitrary 𝑟 such that (𝑟, 𝑟0) ≠ 0

Construct (4𝑠 + 1)-by-(4𝑠 + 1) matrix 𝑇

for m = 0, 𝑠, 2𝑠, … , until convergence do

Compute 𝑉 w/columns a basis for 𝒦2𝑠+1 𝐴, 𝑝𝑚 +𝒦2𝑠 𝐴, 𝑟𝑚
Compute 𝐺, 𝑔 = 𝑉𝑇[𝑉, 𝑟]

for 𝑗 = 0,1, … , 𝑠 − 1 do

𝛼𝑚+𝑗 = (𝑔, 𝑟𝑗
′)/(𝑟, 𝑇𝑝𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗𝑇𝑝𝑗
′

Check 𝑞𝑗 2
= 𝑞𝑗

′ , 𝐺𝑞𝑗
′ 1/2

for convergence

𝜔𝑚+𝑗 = (𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′)/(𝑇𝑞𝑗
′ , 𝑇𝑞𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗+1

′ + 𝜔𝑚+𝑗𝑞𝑗
′

𝑟𝑗+1
′ = 𝑞𝑗

′ − 𝜔𝑚+𝑗𝑇𝑞𝑗
′

Check 𝑟𝑗+1 2
= 𝑟𝑗+1

′ , 𝐺𝑟𝑗+1
′ 1/2

for convergence

𝛽𝑚+𝑗 = (𝛼𝑚+𝑗 𝜔𝑚+𝑗)(𝑔, 𝑟𝑗+1
′)/(𝑔, 𝑟𝑗

′)

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗(𝑝𝑗
′ − 𝜔𝑚+𝑗𝑇𝑝𝑗

′)

end for

[𝑝𝑚+𝑠, 𝑟𝑚+𝑠, 𝑥𝑚+𝑠 − 𝑥𝑚] = 𝑉[𝑝𝑠
′ , 𝑟𝑠

′, 𝑥𝑠
′]

end for

The CA-BICGSTAB method

19

P2P communication

One MPI_AllReduce

[C., Knight, Demmel. SISC 35(5), 2013.]

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏

Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0, pick arbitrary 𝑟 such that (𝑟, 𝑟0) ≠ 0

Construct (4𝑠 + 1)-by-(4𝑠 + 1) matrix 𝑇

for m = 0, 𝑠, 2𝑠, … , until convergence do

Compute 𝑉 w/columns a basis for 𝒦2𝑠+1 𝐴, 𝑝𝑚 +𝒦2𝑠 𝐴, 𝑟𝑚
Compute 𝐺, 𝑔 = 𝑉𝑇[𝑉, 𝑟]

for 𝑗 = 0,1, … , 𝑠 − 1 do

𝛼𝑚+𝑗 = (𝑔, 𝑟𝑗
′)/(𝑟, 𝑇𝑝𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗𝑇𝑝𝑗
′

Check 𝑞𝑗 2
= 𝑞𝑗

′ , 𝐺𝑞𝑗
′ 1/2

for convergence

𝜔𝑚+𝑗 = (𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′)/(𝑇𝑞𝑗
′ , 𝑇𝑞𝑗

′)

𝑥𝑗+1
′ = 𝑥𝑗+1

′ + 𝜔𝑚+𝑗𝑞𝑗
′

𝑟𝑗+1
′ = 𝑞𝑗

′ − 𝜔𝑚+𝑗𝑇𝑞𝑗
′

Check 𝑟𝑗+1 2
= 𝑟𝑗+1

′ , 𝐺𝑟𝑗+1
′ 1/2

for convergence

𝛽𝑚+𝑗 = (𝛼𝑚+𝑗 𝜔𝑚+𝑗)(𝑔, 𝑟𝑗+1
′)/(𝑔, 𝑟𝑗

′)

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗(𝑝𝑗
′ − 𝜔𝑚+𝑗𝑇𝑝𝑗

′)

end for

[𝑝𝑚+𝑠, 𝑟𝑚+𝑠, 𝑥𝑚+𝑠 − 𝑥𝑚] = 𝑉[𝑝𝑠
′ , 𝑟𝑠

′, 𝑥𝑠
′]

end for

The CA-BICGSTAB method

20

P2P communication

One MPI_AllReduce

Vector updates for 𝑠
iterations computed

locally

[C., Knight, Demmel. SISC 35(5), 2013.]

Speedups for synthetic benchmark

21

• Time (left) and performance (right) of miniGMG benchmark with
BICGSTAB vs. CA-BICGSTAB with 𝑠 = 4 (monomial basis) on Hopper

• At 24K cores, CA-BICGSTAB’s asymptotic reduction of calls to
MPI_AllReduce improves bottom solver by 4.2x, overall multigrid solve
by nearly 2.5x

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

0 512 1024 1536 2048 2560 3072 3584 4096

P
e

rf
o

rm
an

ce
 (

D
O

F/
s)

Processes (6 threads each)

MGSolve w/CABiCGStab

MGSolve w/BiCGStab

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

MG Solver (w/BiCGStab)
BiCGStab time
MG Solver (w/CABiCGStab)
CABiCGStab time

MG Solve Time on Hopper (Weak Scaling)
Aggregate MG Solve Performance on Hopper

(Weak Scaling)

Speedups for synthetic benchmark

22

• Time (left) and performance (right) of miniGMG benchmark with
BICGSTAB vs. CA-BICGSTAB with 𝑠 = 4 (monomial basis) on Hopper

• Aggregate MG solve performance using CA-BICGSTAB much closer to
linear in DOF/s

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

0 512 1024 1536 2048 2560 3072 3584 4096

P
e

rf
o

rm
an

ce
 (

D
O

F/
s)

Processes (6 threads each)

MGSolve w/CABiCGStab

MGSolve w/BiCGStab

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

MG Solver (w/BiCGStab)
BiCGStab time
MG Solver (w/CABiCGStab)
CABiCGStab time

MG Solve Time on Hopper (Weak Scaling)
Aggregate MG Solve Performance on Hopper

(Weak Scaling)

Benchmark timing breakdown

23

• Plot: Net time spent across all bottom solves at 24,576 cores, for
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB

– Less than theoretical 24x
since messages in CA-
BICGSTAB are larger, not
always latency-limited

• P2P (blue) communication
doubles for CA-BICGSTAB

– Basis computation
requires twice as many
SpMVs (P2P) per iteration
as BICGSTAB 0.000

0.250

0.500

0.750

1.000

1.250

1.500

BICGSTAB CA-BICGSTAB

Ti
m

e
 (

se
co

n
d

s)

Breakdown of Bottom Solver

MPI (collectives)

MPI (P2P)

BLAS3

BLAS1

applyOp

residual

Benchmark timing breakdown

24

• Plot: Net time spent across all bottom solves at 24,576 cores, for
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB

– Less than theoretical 24x
since messages in CA-
BICGSTAB are larger, not
always latency-limited

• P2P (blue) communication
doubles for CA-BICGSTAB

– Basis computation
requires twice as many
SpMVs (P2P) per iteration
as BICGSTAB 0.000

0.250

0.500

0.750

1.000

1.250

1.500

BICGSTAB CA-BICGSTAB

Ti
m

e
 (

se
co

n
d

s)

Breakdown of Bottom Solver

MPI (collectives)

MPI (P2P)

BLAS3

BLAS1

applyOp

residual

Benchmark timing breakdown

25

• Plot: Net time spent across all bottom solves at 24,576 cores, for
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB

– Less than theoretical 24x
since messages in CA-
BICGSTAB are larger, not
always latency-limited

• P2P (blue) communication
doubles for CA-BICGSTAB

– Basis computation
requires twice as many
SpMVs (P2P) per iteration
as BICGSTAB 0.000

0.250

0.500

0.750

1.000

1.250

1.500

BICGSTAB CA-BICGSTAB

Ti
m

e
 (

se
co

n
d

s)

Breakdown of Bottom Solver

MPI (collectives)

MPI (P2P)

BLAS3

BLAS1

applyOp

residual

Speedups for real applications
• CA-BICGSTAB bottom-solver

implemented in BoxLib (AMR
framework from LBL)

• Compared GMG with BICGSTAB vs.
GMG with CA-BICGSTAB for two
different applications:

Low Mach Number Combustion Code
(LMC): gas-phase combustion
simulation

• Up to 2.5x speedup in bottom
solve; up to 1.5x in MG solve

Nyx: 3D N-body and gas dynamics code
for cosmological simulations of dark
matter particles

• Up to 2x speedup in bottom solve,
1.15x in MG solve

26

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

64 512 4096 32768 48 384 3072 24576

Flat MPI MPI+OpenMP

P
e

rf
o

rm
a

n
c

e
 B

e
n

e
fi

t
fr

o
m

 C
A

-B
IC

G
S

T
A

B

LMC - 3D mac_project Solve

Bottom Solver

MG Solver (overall)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

64 512 4096 32768 48 384 3072 24576

Flat MPI MPI+OpenMP

P
e

rf
o

rm
a

n
c

e
 B

e
n

e
fi

t
fr

o
m

 C
A

-B
IC

G
S

T
A

B

Nyx - 3D Gravity Solve

Bottom Solver

MG Solver (overall)

Speedups for real applications
• CA-BICGSTAB bottom-solver

implemented in BoxLib (AMR
framework from LBL)

• Compared GMG with BICGSTAB vs.
GMG with CA-BICGSTAB for two
different applications:

Low Mach Number Combustion Code
(LMC): gas-phase combustion
simulation

• Up to 2.5x speedup in bottom
solve; up to 1.5x in MG solve

Nyx: 3D N-body and gas dynamics code
for cosmological simulations of dark
matter particles

• Up to 2x speedup in bottom solve,
1.15x in MG solve

27

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

64 512 4096 32768 48 384 3072 24576

Flat MPI MPI+OpenMP

P
e

rf
o

rm
a

n
c

e
 B

e
n

e
fi

t
fr

o
m

 C
A

-B
IC

G
S

T
A

B

LMC - 3D mac_project Solve

Bottom Solver

MG Solver (overall)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

64 512 4096 32768 48 384 3072 24576

Flat MPI MPI+OpenMP

P
e

rf
o

rm
a

n
c

e
 B

e
n

e
fi

t
fr

o
m

 C
A

-B
IC

G
S

T
A

B

Nyx - 3D Gravity Solve

Bottom Solver

MG Solver (overall)

Speedups for real applications
• CA-BICGSTAB bottom-solver

implemented in BoxLib (AMR
framework from LBL)

• Compared GMG with BICGSTAB vs.
GMG with CA-BICGSTAB for two
different applications:

Low Mach Number Combustion Code
(LMC): gas-phase combustion
simulation

• Up to 2.5x speedup in bottom
solve; up to 1.5x in MG solve

Nyx: 3D N-body and gas dynamics code
for cosmological simulations of dark
matter particles

• Up to 2x speedup in bottom solve,
1.15x in MG solve

28

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

64 512 4096 32768 48 384 3072 24576

Flat MPI MPI+OpenMP

P
e

rf
o

rm
a

n
c

e
 B

e
n

e
fi

t
fr

o
m

 C
A

-B
IC

G
S

T
A

B

LMC - 3D mac_project Solve

Bottom Solver

MG Solver (overall)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

64 512 4096 32768 48 384 3072 24576

Flat MPI MPI+OpenMP

P
e

rf
o

rm
a

n
c

e
 B

e
n

e
fi

t
fr

o
m

 C
A

-B
IC

G
S

T
A

B

Nyx - 3D Gravity Solve

Bottom Solver

MG Solver (overall)

Discussion and challenges

• For practical purposes, choice of 𝑠 limited by finite precision error

– As 𝒔 is increased, convergence slows – more required iterations can
negate any speedup per iteration gained

– Can use better-conditioned Krylov bases, but this can incur extra cost
(esp. if 𝐴 changes b/t V-cycles); ongoing work

– In our tests, 𝑠 = 4 with the monomial basis gave similar
convergence for BICGSTAB and CA-BICGSTAB

• Some bottom-solves are “harder” – take more iterations to converge –
than others

– Implemented “telescoping 𝒔” approach

• Outer loops begin using 𝑠 = 1, increase up in subsequent outer
loops up to 𝑠 = 4

• Ensures that easy solves don’t incur extra costs of computing 𝑉
and 𝐺 = 𝑉𝑇𝑉, hard solves see asymptotic benefits

29

Discussion and challenges

• Timing breakdown shows we must consider tradeoffs between
bandwidth, latency, and computation when optimizing for particular
problem/machine

– Blocking BICGSTAB inner products most beneficial when:

• MPI_AllReduces in bottom solve are dominant cost in GMG solve,
GMG solves are dominant cost of application

• Bottom solve requires enough iterations to amortize extra costs
(bigger MPI messages, more P2P communication)

– CA-BICGSTAB can also be optimized to reduce P2P communication
or reduce vertical data movement when computing Krylov bases
(“matrix powers kernel”)

30

Design space and related approaches

31

• Parallelizing multigrid methods

– Concurrent iterations, multiple coarse corrections, full domain partitioning,
block factorization, etc.

• Solving the coarse grid problem

– Type of solver: direct (e.g., LU), stationary iterative (e.g., Jacobi), Krylov,
switch to algebraic

– Coarse grid agglomeration - use only a subset of available processors

• Reducing communication cost in Krylov subspace methods

– Pipelining: overlap nonblocking reductions with matrix-vector
multiplications (Ghysels, Ashby, Meerbergen, Vanroose, 2013)

– Tiling approach to reduce communication bottleneck in Chebyshev iteration
smoothers (Ghysels, Kłosiewicz, Vanroose, 2012)

– Overlap global synchronization points with SpMV and preconditioner
application (Gropp, 2010)

– Delayed reorthogonalization: avoid synchronization due to
reorthogonalization (ADR in SLEPc) (Hernandez, Román, Tomás, 2007)

Summary and future work
• Implemented, evaluated, and optimized CA-BICGSTAB as a high-

performance, distributed-memory bottom solve routine for geometric
multigrid solvers

– GMG+CABICGSTAB available as option in miniGMG, BoxLib, and
CHOMBO frameworks

• Expands the design space: trade collective latency for bandwidth,
trade 𝑠 fine-grained operations for one coarse-grained operation that
expresses more parallelism

• Future work:

– Exploration of design space for other Krylov solvers, other
architectures, other applications

– Implementation of different polynomial bases for Krylov subspace to
improve convergence for higher 𝑠 values

– Improve accessibility of communication-avoiding Krylov methods
through scientific computing libraries and frameworks

32

Summary and future work
• Implemented, evaluated, and optimized CA-BICGSTAB as a high-

performance, distributed-memory bottom solve routine for geometric
multigrid solvers

– GMG+CABICGSTAB available as option in miniGMG, BoxLib, and
CHOMBO frameworks

• Expands the design space: trade collective latency for bandwidth,
trade 𝑠 fine-grained operations for one coarse-grained operation that
expresses more parallelism

• Future work:

– Exploration of design space for other Krylov solvers, other
architectures, other applications

– Implementation of different polynomial bases for Krylov subspace to
improve convergence for higher 𝑠 values

– Improve accessibility of communication-avoiding Krylov methods
through scientific computing libraries and frameworks

33

Summary and future work
• Implemented, evaluated, and optimized CA-BICGSTAB as a high-

performance, distributed-memory bottom solve routine for geometric
multigrid solvers

– GMG+CABICGSTAB available as option in miniGMG, BoxLib, and
CHOMBO frameworks

• Expands the design space: trade collective latency for bandwidth,
trade 𝑠 fine-grained operations for one coarse-grained operation that
expresses more parallelism

• Future work:

– Exploration of design space for other Krylov solvers, other
architectures, other applications

– Implementation of different polynomial bases for Krylov subspace to
improve convergence for higher 𝑠 values

– Improve accessibility of communication-avoiding Krylov methods
through scientific computing libraries and frameworks

34

Thank you!
Email: erin@cs.berkeley.edu

References

36

Extra Slides

37

Communication is expensive!
• Algorithms have two costs: communication and computation

– Communication : moving data between levels of memory
hierarchy (sequential), between processors (parallel)

38

sequential comm.
parallel comm.

• On modern computers, communication is expensive, computation is cheap

– Flop time << 1/bandwidth << latency

– Communication bottleneck a barrier to achieving scalability

– Communication is also expensive in terms of energy cost

• For scalability, we must redesign algorithms to avoid communication

Coarse Grid Agglomeration

• Unite subdomains onto a subset of the available processors once ratio of interior
nodes to boundary nodes falls below some threshold

• Pros: Reduces communication required to perform operations at this level and
lower levels

• Cons: Leaves processors idle, requires lots of data movement (scatter/gather) to
perform data redistribution

– Words moved = 𝟐 ⋅ 𝑶 𝒏𝟐 for scatter/gather, versus
𝒊𝒕𝒔

𝒔
⋅ 𝑶(𝒔𝟐 𝐥𝐨𝐠𝒑) for

MPI_AllReduce in CA coarse grid solves

• This approach could be combined with coarse grid solve – do agglomeration at
some level, then coarse grid solve at this level or lower

– Expect CA-KSMs to have less speedup over KSMs in this case, since
communication in bottom solve less expensive due to more processors

• But not clear that this would always be the winning approach in terms of
overall runtime

• Best approach will depend on the parallel environment and application!

39

40

Krylov Subspace Methods

• A Krylov Subspace is defined as

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑚−1𝑟0

• A Krylov Subspace Method is a projection process onto the subspace
𝒦 orthogonal to ℒ

– The choice of ℒ distinguishes the various methods

• Examples: Conjugate Gradient (CG), Generalized Minimum
Residual Methods (GMRES), Biconjugate Gradient (BICG), BICG
Stabilized (BICGSTAB)

41

For linear systems, in iteration 𝑚, approximates
solution 𝑥𝑚 to 𝐴𝑥 = 𝑏 by imposing the condition

𝑥𝑚 = 𝑥0 + 𝛿, 𝛿 ∈ 𝒦𝑚 and 𝑟0 − 𝐴𝛿 ⊥ ℒ𝑚,

where 𝑟0 = 𝑏 − 𝐴𝑥0 ℒ

𝑟new

𝐴𝛿

𝑟0

0

Hopper

• Cray XE6 MPP at NERSC

• Each compute node that four 6-core Opteron chips each with
two DDR3-1333 mem controllers

• Each superscalar out-of-order core: 64KB L1, 512KB L2. One
6MB L3 cache per chip

• Pairs of compute nodes connected via HyperTransport to a
high-speed Gemini network chip

• Gemini network chips connected to form high-BW low-latency
3D torus
– Some asymmetry in torus

– No control over job placement

– Latency can be as low as 1.5 microseconds, but typically longer in
practice

42

Convergence rates with 𝑠 = 4

43

Authors KSM Basis Precond? Mtx Pwrs? TSQR?

Van Rosendale,
1983

CG Monomial Polynomial No No

Leland, 1989 CG Monomial Polynomial No No

Walker, 1988 GMRES Monomial None No No

Chronopoulos and
Gear, 1989

CG Monomial None No No

Chronopoulos and
Kim, 1990

Orthomin,
GMRES

Monomial None No No

Chronopoulos,
1991

MINRES Monomial None No No

Kim and
Chronopoulos,

1991

Symm.
Lanczos,
Arnoldi

Monomial None No No

Sturler, 1991 GMRES Chebyshev None No No

Related Work: 𝑠-step methods

44

Authors KSM Basis Precond? Mtx Pwrs? TSQR?

Joubert and
Carey, 1992

GMRES Chebyshev No Yes* No

Chronopoulos and
Kim, 1992

Nonsymm.
Lanczos

Monomial No No No

Bai, Hu, and
Reichel, 1991

GMRES Newton No No No

Erhel, 1995 GMRES Newton No No No

de Sturler and van
der Vorst, 2005

GMRES Chebyshev General No No

Toledo, 1995 CG Monomial Polynomial Yes* No

Chronopoulos and
Swanson, 1990

CGR,
Orthomin

Monomial No No No

Chronopoulos and
Kinkaid, 2001

Orthodir Monomial No No No

Related Work: 𝑠-step methods

45

46

• Many previously derived 𝑠-step Krylov methods

– First known reference is (Van Rosendale, 1983)

• Motivation: minimize I/O, increase parallelism

• Empirically found that monomial basis for 𝑠 > 5 causes instability

• Many found better convergence using better conditioned
polynomials based on spectrum of 𝐴 (e.g., scaled monomial,
Newton, Chebyshev)

• Hoemmen et al. (2009) first to produce CA implementations that also
avoid communication for general sparse matrices (and use TSQR)

– Speedups for various matrices for a fixed number of iterations

• Shows that
time per 𝑠 iterations KSM

time per outer iteration CA−KSM
can be 𝑂(𝑠)

Related Work: 𝑠-step methods

Parallel Multigrid Methods

• Concurrent iterations

– Reduces time per multigrid iteration by performing relaxation
sweeps on all grids simultaneously

• Multiple coarse corrections

– Accelerates convergence by projecting the fine grid system onto
several different coarse grid spaces

• Full domain partitioning

– Reduces communication during refinement stage

• Block factorization

– Use a special selection of coarse and fine points to expose
parallelism

47

The BICGSTAB method

48

Inner products in
each iteration
require global

synchronization
(MPI_AllReduce)

Multiplication by A
requires nearest

neighbor
communication

(P2P)

Given: Initial guess 𝑥0 for solving 𝐴𝑥 = 𝑏
Initialize 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0
Pick arbitrary 𝑟 such that (𝑟, 𝑟0) ≠ 0
for 𝑗 = 0,1, … , until convergence do

𝛼𝑗 = (𝑟, 𝑟𝑗)/(𝑟, 𝐴𝑝𝑗)

𝑥𝑗+1 = 𝑥𝑗 + 𝛼𝑗𝑝𝑗
𝑞𝑗 = 𝑟𝑗 − 𝛼𝑗𝐴𝑝𝑗

Check 𝑞𝑗 2
= 𝑞𝑗 , 𝑞𝑗

1/2
for convergence

𝜔𝑗 = (𝑞𝑗 , 𝐴𝑞𝑗)/(𝐴𝑞𝑗 , 𝐴𝑞𝑗)

𝑥𝑗+1 = 𝑥𝑗+1 + 𝜔𝑗𝑞𝑗
𝑟𝑗+1 = 𝑞𝑗 − 𝜔𝑗𝐴𝑞𝑗

Check 𝑟𝑗+1 2
= 𝑟𝑗+1, 𝑟𝑗+1

1/2
for convergence

𝛽𝑗 = (𝛼𝑗 𝜔𝑗)(𝑟, 𝑟𝑗+1)/(𝑟, 𝑟𝑗)

𝑝𝑗+1 = 𝑟𝑗+1 + 𝛽𝑗(𝑝𝑗 − 𝜔𝑗𝐴𝑝𝑗)
end for

CA-BICGSTAB derivation: Basis change

49

= ×

Suppose we are at some iteration 𝑚. What are the dependencies on 𝑟𝑚, 𝑝𝑚, and
𝑥𝑚 for computing the next 𝑠 iterations?

By induction, for 𝑗 = 0,1,… 𝑠 − 1

𝑝𝑚+𝑗+1, 𝑟𝑚+𝑗+1, 𝑥𝑚+𝑗+1 − 𝑥𝑚 ∈ 𝒦2𝑠+1 𝐴, 𝑝𝑚 + 𝒦2𝑠 𝐴, 𝑟𝑚

𝑞𝑚+𝑗 ∈ 𝒦2𝑠 𝐴, 𝑝𝑚 + 𝒦2𝑠−1 𝐴, 𝑟𝑚

𝑝𝑚+𝑗 ∈ 𝒦2𝑠−1 𝐴, 𝑝𝑚 + 𝒦2𝑠−2 𝐴, 𝑟𝑚

Let 𝑃 and 𝑅 be bases for 𝒦2𝑠+1 𝐴, 𝑝𝑚 and 𝒦2𝑠 𝐴, 𝑟𝑚 , respectively.

For the next 𝑠 iterations (𝑗 = 0,1,… 𝑠 − 1),

𝑟𝑚+𝑗+1 = 𝑃,𝑅 𝑟𝑗+1
′ 𝑝𝑚+𝑗+1 = 𝑃, 𝑅 𝑝𝑗+1

′

𝑥𝑚+𝑗+1 − 𝑥𝑚 = 𝑃, 𝑅 𝑥𝑗+1
′ 𝑞𝑚+𝑗 = 𝑃,𝑅 𝑞𝑗

′

i.e., length-(4𝑠 + 1) vectors 𝑟𝑗+1
′ , 𝑝𝑗+1

′ , 𝑥𝑗+1
′ , and 𝑞𝑗

′ are coordinates for the

length-𝑁 vectors 𝑟𝑚+𝑗+1, 𝑝𝑚+𝑗+1, 𝑥𝑚+𝑗+1-𝑥𝑚, and 𝑞𝑚+𝑗 respectively, in bases

[𝑃, 𝑅].

CA-BICGSTAB derivation: Coordinate updates

50

Each process stores 𝑇
locally, redundantly
compute coordinate

updates

=
×

×

=
×

×
×

The bases 𝑃, 𝑅 are generated by polynomials satisfying 3-term recurrence
represented by (4𝑠 + 1)-by-(4𝑠 + 1) tridiagonal matrix 𝑇 satisfying

𝐴 𝑃, 0𝑁,1, 𝑅, 0𝑁,1 = 𝑃, 𝑅 𝑇

where 𝑃, 𝑅 are 𝑃, 𝑅 resp. with last columns omitted

Multiplications by 𝐴 can then be written:

𝐴 𝑞𝑚+𝑗 , 𝑝𝑚+𝑗 = 𝐴 𝑃, 𝑅 𝑞𝑗
′ , 𝑝𝑗

′ = 𝑃, 𝑅 𝑇 𝑞𝑗
′ , 𝑝𝑗

′

Update BICGSTAB vectors by updating their coordinates in [𝑃, 𝑅]:

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑚+𝑗 𝑝𝑗
′

𝑞𝑗
′ = 𝑟𝑗

′ − 𝛼𝑚+𝑗 𝑇𝑝𝑗
′

𝑥𝑗+1
′ = 𝑥𝑗+1

′ +𝜔𝑚+𝑗 𝑞𝑗
′

𝑟𝑗+1
′ = 𝑟𝑗

′ − 𝜔𝑚+𝑗 𝑇𝑞𝑗
′

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑚+𝑗 (𝑝𝑗
′ −𝜔𝑚+𝑗 𝑇𝑝𝑗

′)

CA-BICGSTAB derivation: Inner products

51

× × ×

×

= × = ×

Last step: rewriting length-𝑁 inner products in the new Krylov basis. Let

𝐺 = 𝑃, 𝑅 𝑇[𝑃, 𝑅] 𝑔 = 𝑃, 𝑅 𝑇 𝑟

where the “Gram Matrix” 𝐺 is (4𝑠 + 1) -by-(4𝑠 + 1) and 𝑔 is a (4𝑠 + 1) vector.
(Note: can be computed with one MPI_AllReduce by 𝑃, 𝑅 𝑇 𝑃, 𝑅, 𝑟).

Then all the dot products for s iterations of BICGSTAB can be computed locally in
CA-BICGSTAB using 𝐺 and 𝑔 by the relations

 𝑟, 𝑟𝑚+𝑗 = (𝑔, 𝑟𝑗
′)

 𝑟, 𝑟𝑚+𝑗+1 = 𝑔, 𝑟𝑗
′

 𝑟, 𝐴𝑝𝑚+𝑗 = 𝑔, 𝑇𝑝𝑗
′

𝑞𝑚+𝑗 , 𝐴𝑞𝑚+𝑗 = 𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′

𝐴𝑞𝑚+𝑗 , 𝐴𝑞𝑚+𝑗 = 𝑇𝑞𝑗
′ , 𝐺𝑇𝑞𝑗

′

Note: norms for convergence checks can be estimated with no communication in
a similar way, e.g., 𝑟𝑚+𝑗+1 2

= 𝑟𝑚+𝑗+1, 𝑟𝑚+𝑗+1 = 𝑟𝑗+1
′ , 𝐺𝑟𝑗+1

′ .

52

𝑉 𝐺 = 𝑉𝑇𝑉

= ×

𝑟 2 =

= × =

𝑟𝑇𝑟 = 𝑟′𝑇𝐺𝑟′

𝑂(𝑠)

𝑁/𝑝

𝑁

𝑂(𝑠)

𝑂(𝑠)

Computed locally on each
processor – no communication!

