
Erin Carson
Charles University

Platform for Advanced Scientific Computing (PASC) Conference 2021

July 7, 2021

Mixed Precision s-step Lanczos and Conjugate
Gradient Algorithms

We acknowledge funding from Charles Univ. PRIMUS project No. PRIMUS/19/SCI/11, Charles Univ. Research Program No. UNCE/SCI/023, and the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Admin.

Krylov Subspace Methods

In each iteration:

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Linear systems: Select approximate solution

𝑥𝑖 ∈ 𝑥0 +𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑛 × 𝑛 matrix and 𝑟0 is a length-𝑛 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

2

Conjugate Gradient Method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑛+1 = 0

3

Conjugate Gradient Method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑛+1 = 0

Connection with Lanczos:

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑛 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖
3

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

4

Classical CG

• HSCG: Hestenes and Stiefel (1952)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

4

Classical CG

• HSCG: Hestenes and Stiefel (1952)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

4

Classical CG

• HSCG: Hestenes and Stiefel (1952)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

4

Classical CG

• HSCG: Hestenes and Stiefel (1952)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

4

Classical CG

• HSCG: Hestenes and Stiefel (1952)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

4

Classical CG

• HSCG: Hestenes and Stiefel (1952)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

→ Inner products

• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for all
communication to finish before proceeding

→ Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring

processors (P2P communication)

Dependencies between communication-bound kernels
in each iteration limit performance!

SpMV

orthogonalize

×

×

Communication in Lanczos/CG

5

TOP500 HPCG Benchmark, June 28, 2021

6

Rank System Rpeak
(Tflops/s)

HPCG
(Tflops/s)

HPCG
%peak

HPL
(Tflops/s)

HPL %
peak

1 Supercomputer Fugaku,
RIKEN, Japan

537,212 16004.50 3.0% 442,010 82.3%

2 Summit, ORNL, USA 200,794.
9

2925.75 1.5% 148,600 74.0%

3 Perlmutter, LBNL, USA 89,794.5 1905.44 2.0% 64,590 72.0%

4 Sierra, LLNL, USA 125,712.
0

1795.67 1.4% 94,640 75.3%

5 Selene, NVIDIA, USA 79,215.0 1622.51 2.1% 63,460 80.1%

6 JUWELS Booster
Module, FZJ, Germany

70,980.0 1275.36 1.8% 44,120 62.2%

s-step Krylov subspace methods

13

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖 according

to the recurrence 𝐴𝒴 = 𝒴 ℬ

s-step Krylov subspace methods

7

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖 according

to the recurrence 𝐴𝒴 = 𝒴 ℬ

s-step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
8

s-step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
8

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

s-step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
8

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

s-step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
8

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

9

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 6.8e6

Numerical Example

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚 𝑇𝑚 + መ𝛽𝑚+1 ො𝑣𝑚+1𝑒𝑚
𝑇 + 𝛿 𝑉𝑚

𝑉𝑚 = ො𝑣1, … , ො𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 ො𝑣1, … , 𝛿 ො𝑣𝑚 , 𝑇𝑚 =

ො𝛼1 መ𝛽2
መ𝛽2 ⋱ ⋱

⋱ ⋱ መ𝛽𝑚
መ𝛽𝑚 ො𝛼𝑚

Lanczos Convergence Analysis [Paige, 1976]

Classical Lanczos (Paige, 1976):

for 𝑖 ∈ {1, … ,𝑚},
𝛿 ො𝑣𝑖 2 ≤ 𝜀1𝜎

መ𝛽𝑖+1 ො𝑣𝑖
𝑇 ො𝑣𝑖+1 ≤ 2𝜀0𝜎

ො𝑣𝑖+1
𝑇 ො𝑣𝑖+1 − 1 ≤ Τ𝜀0 2

መ𝛽𝑖+1
2 + ො𝛼𝑖

2 + መ𝛽𝑖
2 − 𝐴ො𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

10

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚 𝑇𝑚 + መ𝛽𝑚+1 ො𝑣𝑚+1𝑒𝑚
𝑇 + 𝛿 𝑉𝑚

𝑉𝑚 = ො𝑣1, … , ො𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 ො𝑣1, … , 𝛿 ො𝑣𝑚 , 𝑇𝑚 =

ො𝛼1 መ𝛽2
መ𝛽2 ⋱ ⋱

⋱ ⋱ መ𝛽𝑚
መ𝛽𝑚 ො𝛼𝑚

Lanczos Convergence Analysis [Paige, 1976]

Classical Lanczos (Paige, 1976):

for 𝑖 ∈ {1, … ,𝑚},
𝛿 ො𝑣𝑖 2 ≤ 𝜀1𝜎

መ𝛽𝑖+1 ො𝑣𝑖
𝑇 ො𝑣𝑖+1 ≤ 2𝜀0𝜎

ො𝑣𝑖+1
𝑇 ො𝑣𝑖+1 − 1 ≤ Τ𝜀0 2

መ𝛽𝑖+1
2 + ො𝛼𝑖

2 + መ𝛽𝑖
2 − 𝐴ො𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

s-step Lanczos (C., 2015):

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃𝚪

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2
10

Paige’s Results for Classical Lanczos (1980)

Using bounds on local rounding errors in Lanczos, showed that
1. The computed eigenvalues always lie between the extreme eigenvalues of

𝐴 to within a small multiple of machine precision.

2. At least one small interval containing an eigenvalue of 𝐴 is found by the
𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue approximation is found.

4. The loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some computed eigenvalues have converged.

11

Results for s-step Lanczos

• Do Paige’s results, e.g.,
loss of orthogonality → eigenvalue convergence

hold for s-step Lanczos?

12

• The answer is YES!

Results for s-step Lanczos

• Do Paige’s results, e.g.,
loss of orthogonality → eigenvalue convergence

hold for s-step Lanczos?

12

• Only if:

• 𝜀0 ≡ 2𝜀 𝑛+11𝑠+15 Γ2 ≤
1

12

• i.e., Γ ≤ 24𝜀 𝑛 + 11𝑠 + 15
− Τ1 2

= 𝑂
1

𝑛𝜀

• The answer is YES!

Results for s-step Lanczos

…but

• Do Paige’s results, e.g.,
loss of orthogonality → eigenvalue convergence

hold for s-step Lanczos?

12

• With the caveat:

• Paige’s results say: orthogonality is not lost until an eigenvalue
has stabilized to within 𝑂(𝜀) of an eigenvalue of A

• For s-step Lanczos: orthogonality is not lost until an eigenvalue
has stabilized to within 𝑂(𝜀Γ2) within an eigenvalue of A

• So the result is weaker: an eigenvalue is considered to be
“stabilized” within a larger radius for the s-step case, and thus
orthogonality is lost sooner

• This explains the worse convergence behavior!

• The answer is YES!

Results for s-step Lanczos

…but

• Do Paige’s results, e.g.,
loss of orthogonality → eigenvalue convergence

hold for s-step Lanczos?

12

The case for mixed precision

• The term Γ enters the bounds due to computation in the computed s-step
basis

• SpMVs cause Γ terms in the bounds

• Inner products (computed using the Gram matrix) cause Γ2 terms in
the bounds

13

The case for mixed precision

• The term Γ enters the bounds due to computation in the computed s-step
basis

• SpMVs cause Γ terms in the bounds

• Inner products (computed using the Gram matrix) cause Γ2 terms in
the bounds

• Idea: use higher precision in computing and applying the Gram matrix

• Computation only happens once every s iterations (doubles the size of
the Allreduce)

• Applying to vector happens every iteration, but the matrix is very small
(𝑠 × 𝑠, fits in cache)

13

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚 𝑇𝑚 + መ𝛽𝑚+1 ො𝑣𝑚+1𝑒𝑚
𝑇 + 𝛿 𝑉𝑚

𝑉𝑚 = ො𝑣1, … , ො𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 ො𝑣1, … , 𝛿 ො𝑣𝑚 , 𝑇𝑚 =

ො𝛼1 መ𝛽2
መ𝛽2 ⋱ ⋱

⋱ ⋱ መ𝛽𝑚
መ𝛽𝑚 ො𝛼𝑚

Mixed Precision Lanczos Analysis

Classical Lanczos
(Paige, 1976):

for 𝑖 ∈ {1, … ,𝑚},
𝛿 ො𝑣𝑖 2 ≤ 𝜀1𝜎

መ𝛽𝑖+1 ො𝑣𝑖
𝑇 ො𝑣𝑖+1 ≤ 2𝜀0𝜎

ො𝑣𝑖+1
𝑇 ො𝑣𝑖+1 − 1 ≤ Τ𝜀0 2

መ𝛽𝑖+1
2 + ො𝛼𝑖

2 + መ𝛽𝑖
2 − 𝐴ො𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

s-step Lanczos
(C., 2015):

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃Γ

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 14

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚 𝑇𝑚 + መ𝛽𝑚+1 ො𝑣𝑚+1𝑒𝑚
𝑇 + 𝛿 𝑉𝑚

𝑉𝑚 = ො𝑣1, … , ො𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 ො𝑣1, … , 𝛿 ො𝑣𝑚 , 𝑇𝑚 =

ො𝛼1 መ𝛽2
መ𝛽2 ⋱ ⋱

⋱ ⋱ መ𝛽𝑚
መ𝛽𝑚 ො𝛼𝑚

Mixed Precision Lanczos Analysis

Classical Lanczos
(Paige, 1976):

for 𝑖 ∈ {1, … ,𝑚},
𝛿 ො𝑣𝑖 2 ≤ 𝜀1𝜎

መ𝛽𝑖+1 ො𝑣𝑖
𝑇 ො𝑣𝑖+1 ≤ 2𝜀0𝜎

ො𝑣𝑖+1
𝑇 ො𝑣𝑖+1 − 1 ≤ Τ𝜀0 2

መ𝛽𝑖+1
2 + ො𝛼𝑖

2 + መ𝛽𝑖
2 − 𝐴ො𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

s-step Lanczos
(C., 2015):

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃Γ

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2

Mixed precision s-
step Lanczos
(C. & Gergelits, 2021):

𝜀0 = 𝑂 𝜀𝚪

𝜀1 = 𝑂 𝜀𝑁𝜃Γ
14

Mixed precision s-step Lanczos analysis

15

Classical Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within
𝑶(𝜺) of an eigenvalue of A

Uniform precision s-step Lanczos: orthogonality is not lost until an eigenvalue has
stabilized to within 𝑶(𝜺𝚪𝟐) of an eigenvalue of A

Results hold if 𝚪 ≤ 𝑶
𝟏

𝒏𝜺

Mixed precision s-step Lanczos: orthogonality is not lost until an eigenvalue has
stabilized to within 𝑶(𝜺𝚪) of an eigenvalue of A

Results hold if 𝚪 ≤ 𝑶
𝟏

𝒏𝜺

⇒ For mixed precision case, expect orthogonality (and thus convergence behavior) to
be somewhere between classical and (fixed precision) s-step Lanczos
⇒ Expect mixed precision algorithm can handle more ill-conditioned bases versus
uniform precision algorithm

16

Diagonal test problem, 𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 102

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 0.65𝑛−𝑖 , 𝑖 = 2, … , 𝑛 − 1

Starting vector 𝑣1 has entries 1/ 𝑛

17

nos4 from SuiteSparse, starting vector 𝑣1 has entries 1/ 𝑛

18

nos4 from SuiteSparse, starting vector 𝑣1 has entries 1/ 𝑛

19

nos4 from SuiteSparse, starting vector 𝑣1 has entries 1/ 𝑛

Extension to s-step CG

• s-step CG based on underlying s-step Lanczos procedure

• Expectation is that better Ritz value accuracy and orthogonality in s-step
Lanczos will lead to better convergence behavior of mixed precision s-step
CG

• But: extended precision computations in Gram matrix computations will not
improve attainable accuracy (this is primarily determined by precision in
matrix-vector products)

• Greenbaum (1989): finite precision classical CG behaves like exact CG
applied to a larger matrix whose eigenvalues are in tight clusters around the
eigenvalues of A.

• Can we extend this analysis?

• Prediction: Cluster radius will contain a Γ2 term for the uniform
precision case, Γ term for the mixed precision case

20

22

Diagonal test problem, 𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 102

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 0.65𝑛−𝑖 , 𝑖 = 2, … , 𝑛 − 1

RHS: equal components in the eigenbasis of 𝐴, unit 2-norm

nos4 from SuiteSparse
RHS: equal components in the eigenbasis of 𝐴, unit 2-norm

23

lundb from SuiteSparse
RHS: equal components in the eigenbasis of 𝐴, unit 2-norm

24

What is the overhead?

• 3D Laplace matrix with 𝑛 = 1003

• 500 iterations of s-step CG with 𝑠 = 5 on a NVIDIA V100 GPU

• Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes 𝐶 = 𝛼𝐴𝑇𝐵 + 𝛽𝐶

• Do not compute multiplication with 𝛼 (= 1)

• Only compute upper triangular part of C since symmetric

• Input cast to double before being passed in

25

What is the overhead?

• 3D Laplace matrix with 𝑛 = 1003

• 500 iterations of s-step CG with 𝑠 = 5 on a NVIDIA V100 GPU

• Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes 𝐶 = 𝛼𝐴𝑇𝐵 + 𝛽𝐶

• Do not compute multiplication with 𝛼 (= 1)

• Only compute upper triangular part of C since symmetric

• Input cast to double before being passed in

• Double/double-double: Software
implementation of double-double
(each multiply-add operation requires
16 double-precision operations)

• Since Kokkos does not support
double-double arithmetic, the
implementation uses a custom
reducer for mixed-precision inner
products on a GPU

• For small double-double
computations with the Gram
matrix, we use multiprecision
BLAS on the host CPU

25

Strong Scaling

• Same problem

• Strong scaling up to 18 GPUs on Summit (6 GPUs per node)

• Using double/double-double

26

• Overhead of using software-implemented precision decreases as we scale up
the hardware

• Likely because latency becomes more dominant

Conclusions

Big picture idea: Selective use of higher precision can improve numerical
behavior (and time to solution) with minimal overhead

For s-step Lanczos and CG:

Overhead is negligible when restricting to precisions available in hardware

+

Convergence rate improved

=

Likely to see improved time-to-solution in many scenarios

27

Ongoing Work

• Performance results are preliminary – a thorough performance study is
needed!

• Extending the analysis of Greenbaum for s-step CG

• Benefits to extended precision for other s-step Krylov subspace methods?

• Benefit to mixed precision in pipelined variants?

• Combine mixed precision with residual replacement to also improve
accuracy?

28

Thank you!
carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

arXiv preprint: https://arxiv.org/abs/2103.09210
MATLAB codes: https://github.com/eccarson/mixedsstep

https://arxiv.org/abs/2103.09210
https://github.com/eccarson/mixedsstep

