#### Mixed Precision s-step Lanczos and Conjugate Gradient Algorithms

#### Erin Carson

Charles University

Platform for Advanced Scientific Computing (PASC) Conference 2021

July 7, 2021







We acknowledge funding from Charles Univ. PRIMUS project No. PRIMUS/19/SCI/11, Charles Univ. Research Program No. UNCE/SCI/023, and the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Admin.

# Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

$$\mathcal{K}_{i}(A, r_{0}) = \operatorname{span}\{r_{0}, Ar_{0}, A^{2}r_{0}, \dots, A^{i-1}r_{0}\}$$

where A is an  $n \times n$  matrix and  $r_0$  is a length-n vector

In each iteration:

- Add a dimension to the Krylov subspace
  - Forms nested sequence of Krylov subspaces

 $\mathcal{K}_1(A, r_0) \subset \mathcal{K}_2(A, r_0) \subset \cdots \subset \mathcal{K}_i(A, r_0)$ 

- Orthogonalize (with respect to some  $C_i$ )
- Linear systems: Select approximate solution

 $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using  $r_i = b - Ax_i \perp C_i$ 



#### Conjugate Gradient Method

A is symmetric positive definite,  $C_i = \mathcal{K}_i(A, r_0)$ 

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies$$
  $r_{n+1} = 0$ 

#### Conjugate Gradient Method

A is symmetric positive definite,  $C_i = \mathcal{K}_i(A, r_0)$ 

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies$$
  $r_{n+1} = 0$ 

Connection with Lanczos:

• With  $v_1 = r_0/||r_0||$ , *i* iterations of Lanczos produces  $n \times i$  matrix  $V_i = [v_1, \dots, v_i]$ , and  $i \times i$  tridiagonal matrix  $T_i$  such that

$$AV_i = V_i T_i + \delta_{i+1} v_{i+1} e_i^T, \qquad T_i = V_i^* A V_i$$

• CG approximation  $x_i$  is obtained by solving the reduced model

$$T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$$

- HSCG: Hestenes and Stiefel (1952)
  - Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \end{aligned}$$

$$\begin{aligned} \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end



- HSCG: Hestenes and Stiefel (1952)
  - Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \end{aligned}$$

$$\begin{aligned} \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end



- HSCG: Hestenes and Stiefel (1952)
  - Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \\ \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end



- HSCG: Hestenes and Stiefel (1952)
  - Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \end{aligned}$$

$$\beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end



- HSCG: Hestenes and Stiefel (1952)
  - Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \end{aligned}$$

$$\begin{aligned} \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end



- HSCG: Hestenes and Stiefel (1952)
  - Uses three 2-term recurrences for updating  $x_i, r_i, p_i$

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$
  
for  $i = 1:nmax$   
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end



# Communication in Lanczos/CG

- $\rightarrow$  Sparse matrix-vector multiplication (SpMV)
  - Must communicate vector entries w/ neighboring processors (P2P communication)

- $\rightarrow$  Inner products
  - global synchronization (MPI\_Allreduce)
  - all processors must exchange data and wait for *all* communication to finish before proceeding



Dependencies between communication-bound kernels in each iteration limit performance!





#### TOP500 HPCG Benchmark, June 28, 2021

| Rank | System                                 | Rpeak<br>(Tflops/s) | HPCG<br>(Tflops/s) | HPCG<br>%peak | HPL<br>(Tflops/s) | HPL %<br>peak |
|------|----------------------------------------|---------------------|--------------------|---------------|-------------------|---------------|
| 1    | Supercomputer Fugaku,<br>RIKEN, Japan  | 537,212             | 16004.50           | 3.0%          | 442,010           | 82.3%         |
| 2    | Summit, ORNL, USA                      | 200,794.<br>9       | 2925.75            | 1.5%          | 148,600           | 74.0%         |
| 3    | Perlmutter, LBNL, USA                  | 89,794.5            | 1905.44            | 2.0%          | 64,590            | 72.0%         |
| 4    | Sierra, LLNL, USA                      | 125,712.<br>0       | 1795.67            | 1.4%          | 94,640            | 75.3%         |
| 5    | Selene, NVIDIA, USA                    | 79,215.0            | 1622.51            | 2.1%          | 63,460            | 80.1%         |
| 6    | JUWELS Booster<br>Module, FZJ, Germany | 70,980.0            | 1275.36            | 1.8%          | 44,120            | 62.2%         |

#### s-step Krylov subspace methods

- Idea: Compute blocks of *s* iterations at once
  - Compute updates in a different basis
  - Communicate every s iterations instead of every iteration
  - Reduces number of synchronizations per iteration by a factor of s

Compute "basis" matrix  $\mathcal{Y}$  such that  $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$  according to the recurrence  $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$ 



#### s-step Krylov subspace methods

- Idea: Compute blocks of *s* iterations at once
  - Compute updates in a different basis
  - Communicate every s iterations instead of every iteration
  - Reduces number of synchronizations per iteration by a factor of s

Compute "basis" matrix  $\mathcal{Y}$  such that  $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$  according to the recurrence  $A \underline{\mathcal{Y}} = \mathcal{Y} \mathcal{B}$ 



#### S-Step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$  $G_k = Y_k^T Y_k$  $x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$  $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$  $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

 $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$ 



end

#### S-Step CG e.g., [Van Rosendale, 1983], [Chronopoulos & Gear, 1989], [Toledo, 1995]

end

 $r_0 = b - Ax_0, p_0 = r_0$ Outer Loop for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and Compute basis  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ O(s) SPMVs  $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$  $O(s^2)$  Inner  $x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$ Products (one for j = 1:ssynchronization)  $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$ Inner Loop  $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$  $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ Local Vector S  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ Updates (no times comm.  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end End Inner Loop  $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$ Inner Outer Loop

#### S-Step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

 $r_0 = b - Ax_0, p_0 = r_0$ Outer Loop for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and Compute basis  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ O(s) SPMVs  $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$  $O(s^2)$  Inner  $x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$ Products (one for j = 1:ssynchronization)  $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$ Inner Loop  $x'_{i} = x'_{i-1} + \alpha_{sk+i-1}p'_{i-1}$  $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ Local Vector S  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ Updates (no times comm.  $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end End Inner Loop  $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$ Inner Outer Loop

end

#### S-Step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

 $r_0 = b - Ax_0, p_0 = r_0$ Outer Loop for k = 0:nmax/sCompute  $\mathcal{Y}_k$  and  $\mathcal{B}_k$  such that  $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$  and Compute basis  $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ O(s) SPMVs  $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$  $O(s^2)$  Inner  $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ Products (one for j = 1:ssynchronization)  $\alpha_{sk+j-1} = \frac{r_{j-1}'^{T} \mathcal{G}_{k} r_{j-1}'}{p_{j-1}'^{T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}'}$  $x'_{i} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$ Inner Loop  $r_i' = r_{i-1}' - \alpha_{sk+j-1} \mathcal{B}_k p_{j-1}'$ Local Vector S  $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ Updates (no times comm.)  $p'_i = r'_i + \beta_{sk+j} p'_{j-1}$ end End Inner Loop  $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$ Inner Outer Loop 8 end

#### Numerical Example

s-step CG with monomial basis ( $\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$ )



 $N = 112, \kappa(A) \approx 6.8e6$ 

# Lanczos Convergence Analysis [Paige, 1976]

Finite precision Lanczos process: (A is  $n \times n$  with at most N nonzeros per row)

$$\begin{split} A\hat{V}_{m} &= \hat{V}_{m}\hat{T}_{m} + \hat{\beta}_{m+1}\hat{v}_{m+1}e_{m}^{T} + \delta\hat{V}_{m} \\ \hat{V}_{m} &= [\hat{v}_{1}, \dots, \hat{v}_{m}], \quad \delta\hat{V}_{m} = [\delta\hat{v}_{1}, \dots, \delta\hat{v}_{m}], \quad \hat{T}_{m} = \begin{bmatrix} \hat{\alpha}_{1} & \hat{\beta}_{2} & & \\ \hat{\beta}_{2} & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_{m} \\ & & \hat{\beta}_{m} & \hat{\alpha}_{m} \end{bmatrix} \\ \text{for } i \in \{1, \dots, m\}, \\ & \|\delta\hat{v}_{i}\|_{2} \leq \varepsilon_{1}\sigma \\ & \hat{\beta}_{i+1} |\hat{v}_{i}^{T}\hat{v}_{i+1}| \leq 2\varepsilon_{0}\sigma \\ & |\hat{v}_{i+1}^{T}\hat{v}_{i+1} - 1| \leq \varepsilon_{0}/2 \\ & |\hat{\beta}_{i+1}^{2} + \hat{\alpha}_{i}^{2} + \hat{\beta}_{i}^{2} - \|A\hat{v}_{i}\|_{2}^{2} \| \leq 4i(3\varepsilon_{0} + \varepsilon_{1})\sigma^{2} \end{split} \text{ where } \sigma \equiv \|A\|_{2}, \text{ and } \\ \theta\sigma \equiv \||A|\|_{2} \end{split}$$

Classical Lanczos (Paige, 1976):

$$\varepsilon_0 = O(\varepsilon n)$$
$$\varepsilon_1 = O(\varepsilon N\theta)$$

# Lanczos Convergence Analysis [Paige, 1976]

Finite precision Lanczos process: (A is  $n \times n$  with at most N nonzeros per row)

$$\begin{split} A\hat{V}_{m} &= \hat{V}_{m}\hat{T}_{m} + \hat{\beta}_{m+1}\hat{v}_{m+1}e_{m}^{T} + \delta\hat{V}_{m} \\ \hat{V}_{m} &= [\hat{v}_{1}, \dots, \hat{v}_{m}], \quad \delta\hat{V}_{m} = [\delta\hat{v}_{1}, \dots, \delta\hat{v}_{m}], \quad \hat{T}_{m} = \begin{bmatrix} \hat{\alpha}_{1} & \hat{\beta}_{2} & & \\ \hat{\beta}_{2} & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_{m} \\ & & \hat{\beta}_{m} & \hat{\alpha}_{m} \end{bmatrix} \\ \text{for } i \in \{1, \dots, m\}, \\ & \|\delta\hat{v}_{i}\|_{2} \leq \varepsilon_{1}\sigma \\ & \hat{\beta}_{i+1} \|\hat{v}_{i}^{T}\hat{v}_{i+1}\| \leq 2\varepsilon_{0}\sigma \\ & \|\hat{v}_{i+1}^{T}\hat{v}_{i+1} - 1\| \leq \varepsilon_{0}/2 \\ & |\hat{\beta}_{i+1}^{2} + \hat{\alpha}_{i}^{2} + \hat{\beta}_{i}^{2} - \|A\hat{v}_{i}\|_{2}^{2} \| \leq 4i(3\varepsilon_{0} + \varepsilon_{1})\sigma^{2} \end{split} \text{ where } \sigma \equiv \|A\|_{2}, a \\ \theta\sigma \equiv \||A|\|_{2} \end{split}$$

Classical Lanczos (Paige, 1976):

$$\varepsilon_0 = O(\varepsilon n)$$
$$\varepsilon_1 = O(\varepsilon N\theta)$$

s-step Lanczos (C., 2015):  $\varepsilon_0 = O(\varepsilon n \Gamma^2)$  $\varepsilon_1 = O(\varepsilon N \theta \Gamma)$ 

 $\Gamma = \max_{\substack{\ell \in \mathcal{V}}} \|\mathcal{Y}_{\ell}^+\|_2 \cdot \||\mathcal{Y}_{\ell}\|\|_2$ 

nd

#### Paige's Results for Classical Lanczos (1980)

Using bounds on local rounding errors in Lanczos, showed that

- 1. The computed eigenvalues always lie between the extreme eigenvalues of A to within a small multiple of machine precision.
- 2. At least one small interval containing an eigenvalue of A is found by the nth iteration.
- 3. The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
- 4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some computed eigenvalues have converged.

 Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for s-step Lanczos?

- Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for s-step Lanczos?
- The answer is **YES**!

- Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for s-step Lanczos?
- The answer is **YES!** ...but
- Only if:

• 
$$\varepsilon_0 \equiv 2\varepsilon(n+11s+15) \Gamma^2 \leq \frac{1}{12}$$

• i.e.,  $\Gamma \le (24\varepsilon(n+11s+15))^{-1/2} = O\left(\frac{1}{\sqrt{n\varepsilon}}\right)$ 

- Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for s-step Lanczos?
- The answer is **YES!** ...but
- With the caveat:
- Paige's results say: orthogonality is not lost until an eigenvalue has stabilized to within  $O(\varepsilon)$  of an eigenvalue of A
- For s-step Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within  $O(\epsilon\Gamma^2)$  within an eigenvalue of A
  - So the result is weaker: an eigenvalue is considered to be "stabilized" within a larger radius for the s-step case, and thus orthogonality is lost sooner
    - This explains the worse convergence behavior!

#### The case for mixed precision

- The term  $\Gamma$  enters the bounds due to computation in the computed s-step basis
  - SpMVs cause  $\Gamma$  terms in the bounds
  - Inner products (computed using the Gram matrix) cause  $\Gamma^2$  terms in the bounds

#### The case for mixed precision

- The term  $\Gamma$  enters the bounds due to computation in the computed s-step basis
  - SpMVs cause  $\Gamma$  terms in the bounds
  - Inner products (computed using the Gram matrix) cause  $\Gamma^2$  terms in the bounds
- Idea: use higher precision in computing and applying the Gram matrix
  - Computation only happens once every s iterations (doubles the size of the Allreduce)
  - Applying to vector happens every iteration, but the matrix is very small  $(s \times s, \text{ fits in cache})$

# Mixed Precision Lanczos Analysis

Finite precision Lanczos process: (A is  $n \times n$  with at most N nonzeros per row)

$$\begin{split} A\hat{V}_{m} &= \hat{V}_{m}\hat{T}_{m} + \hat{\beta}_{m+1}\hat{v}_{m+1}e_{m}^{T} + \delta\hat{V}_{m} \\ \hat{V}_{m} &= [\hat{v}_{1}, \dots, \hat{v}_{m}], \quad \delta\hat{V}_{m} = [\delta\hat{v}_{1}, \dots, \delta\hat{v}_{m}], \quad \hat{T}_{m} = \begin{bmatrix} \hat{a}_{1} & \hat{\beta}_{2} & & \\ \hat{\beta}_{2} & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_{m} \\ & & & \hat{\beta}_{m} & \hat{a}_{m} \end{bmatrix} \\ \end{split}$$
for  $i \in \{1, \dots, m\},$ 

$$\begin{split} \|\delta\hat{v}_{i}\|_{2} \leq \varepsilon_{1}\sigma \\ \hat{\beta}_{i+1} |\hat{v}_{i}^{T}\hat{v}_{i+1}| \leq 2\varepsilon_{0}\sigma \\ |\hat{v}_{i+1}^{T}\hat{v}_{i+1} - 1| \leq \varepsilon_{0}/2 \end{split}$$
where  $\sigma \equiv \|A\|$ 

$$\theta\sigma \equiv \||A\|$$

 $|\hat{\beta}_{i+1}^{2} + \hat{\alpha}_{i}^{2} + \hat{\beta}_{i}^{2} - ||A\hat{v}_{i}||_{2}^{2}| \le 4i(3\varepsilon_{0} + \varepsilon_{1})\sigma^{2}$ 

 $|_2$ , and  $4|||_2$ 

**Classical Lanczos** (Paige, 1976):

$$\begin{aligned} \varepsilon_0 &= O(\varepsilon n) \\ \varepsilon_1 &= O(\varepsilon N\theta) \end{aligned}$$

s-step Lanczos (C., 2015):  $\varepsilon_0 = O(\varepsilon n \Gamma^2)$  $\varepsilon_1 = O(\varepsilon N \theta \Gamma)$ 

 $\Gamma = \max_{\ell \le k} \|\mathcal{Y}_{\ell}^+\|_2 \cdot \||\mathcal{Y}_{\ell}\|\|_2$ 

# Mixed Precision Lanczos Analysis

Finite precision Lanczos process: (A is  $n \times n$  with at most N nonzeros per row)

$$\begin{split} A\hat{V}_{m} &= \hat{V}_{m}\hat{T}_{m} + \hat{\beta}_{m+1}\hat{v}_{m+1}e_{m}^{T} + \delta\hat{V}_{m} \\ \hat{V}_{m} &= [\hat{v}_{1}, \dots, \hat{v}_{m}], \quad \delta\hat{V}_{m} = [\delta\hat{v}_{1}, \dots, \delta\hat{v}_{m}], \quad \hat{T}_{m} = \begin{bmatrix} \hat{\alpha}_{1} & \hat{\beta}_{2} & & \\ \hat{\beta}_{2} & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_{m} \\ & & \hat{\beta}_{m} & \hat{\alpha}_{m} \end{bmatrix} \\ \text{for } i \in \{1, \dots, m\}, \\ \|\delta\hat{v}_{i}\|_{2} &\leq \varepsilon_{1}\sigma \\ & \hat{\beta}_{i+1} |\hat{v}_{i}^{T}\hat{v}_{i+1}| \leq 2\varepsilon_{0}\sigma \\ & |\hat{v}_{i+1}^{T}\hat{v}_{i+1} - 1| \leq \varepsilon_{0}/2 \\ |\hat{\beta}_{i+1}^{2} + \hat{\alpha}_{i}^{2} + \hat{\beta}_{i}^{2} - \|A\hat{v}_{i}\|_{2}^{2} | \leq 4i(3\varepsilon_{0} + \varepsilon_{1})\sigma^{2} \end{split} \text{ where } \sigma \equiv \|A\|_{2}, \\ \theta\sigma \equiv \||A|\|_{2} \end{split}$$

Classical Lanczos (Paige, 1976):

$$\begin{aligned} \varepsilon_0 &= O(\varepsilon n) \\ \varepsilon_1 &= O(\varepsilon N\theta) \end{aligned}$$

s-step Lanczos (C., 2015):  $\varepsilon_0 = O(\varepsilon n \Gamma^2)$  $\varepsilon_1 = O(\varepsilon N \theta \Gamma)$ 

 $\Gamma = \max_{\ell \leq k} \|\mathcal{Y}_{\ell}^+\|_2 \cdot \||\mathcal{Y}_{\ell}\|\|_2$ 

Mixed precision sstep Lanczos (C. & Gergelits, 2021):

and

2

#### Mixed precision s-step Lanczos analysis

Classical Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within  $O(\varepsilon)$  of an eigenvalue of A

Uniform precision s-step Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within  $O(\epsilon\Gamma^2)$  of an eigenvalue of A

Results hold if  $\Gamma \leq O\left(\frac{1}{\sqrt{n\varepsilon}}\right)$ 

Mixed precision s-step Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within  $O(\epsilon\Gamma)$  of an eigenvalue of A

Results hold if  $\Gamma \leq O\left(\frac{1}{n\varepsilon}\right)$ 

 ⇒ For mixed precision case, expect orthogonality (and thus convergence behavior) to be somewhere between classical and (fixed precision) s-step Lanczos
 ⇒ Expect mixed precision algorithm can handle more ill-conditioned bases versus uniform precision algorithm Diagonal test problem,

$$n = 100, \lambda_1 = 10^{-3}, \lambda_n = 10^2$$
  
$$\lambda_i = \lambda_1 + \left(\frac{i-1}{n-1}\right)(\lambda_n - \lambda_1)0.65^{n-i}, \quad i = 2, ..., n-1$$

Starting vector  $v_1$  has entries  $1/\sqrt{n}$ 



nos4 from SuiteSparse, starting vector  $v_1$  has entries  $1/\sqrt{n}$ 



nos4 from SuiteSparse, starting vector  $v_1$  has entries  $1/\sqrt{n}$ 



nos4 from SuiteSparse, starting vector  $v_1$  has entries  $1/\sqrt{n}$ 



#### Extension to s-step CG

- s-step CG based on underlying s-step Lanczos procedure
- Expectation is that better Ritz value accuracy and orthogonality in s-step Lanczos will lead to better convergence behavior of mixed precision s-step CG
- But: extended precision computations in Gram matrix computations will not improve attainable accuracy (this is primarily determined by precision in matrix-vector products)

- Greenbaum (1989): finite precision classical CG behaves like exact CG applied to a larger matrix whose eigenvalues are in tight clusters around the eigenvalues of A.
- Can we extend this analysis?
  - Prediction: Cluster radius will contain a  $\Gamma^2$  term for the uniform precision case,  $\Gamma$  term for the mixed precision case

Diagonal test problem,

$$n = 100, \lambda_1 = 10^{-3}, \lambda_n = 10^2$$
  
$$\lambda_i = \lambda_1 + \left(\frac{i-1}{n-1}\right)(\lambda_n - \lambda_1)0.65^{n-i}, \quad i = 2, ..., n-1$$
  
RHS: equal components in the eigenbasis of A, unit 2-norm



#### nos4 from SuiteSparse RHS: equal components in the eigenbasis of *A*, unit 2-norm



23

#### lundb from SuiteSparse RHS: equal components in the eigenbasis of *A*, unit 2-norm



24

#### What is the overhead?

- 3D Laplace matrix with  $n = 100^3$
- 500 iterations of s-step CG with s = 5 on a NVIDIA V100 GPU
- Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes  $C = \alpha A^T B + \beta C$ 
  - Do not compute multiplication with  $\alpha$  (= 1)
  - Only compute upper triangular part of C since symmetric
  - Input cast to double before being passed in



#### What is the overhead?

- 3D Laplace matrix with  $n = 100^3$
- 500 iterations of s-step CG with s = 5 on a NVIDIA V100 GPU
- Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes  $C = \alpha A^T B + \beta C$ 
  - Do not compute multiplication with  $\alpha$  (= 1)
  - Only compute upper triangular part of C since symmetric
  - Input cast to double before being passed in
- Double/double-double: Software implementation of double-double (each multiply-add operation requires 16 double-precision operations)
  - Since Kokkos does not support double-double arithmetic, the implementation uses a custom reducer for mixed-precision inner products on a GPU
  - For small double-double computations with the Gram matrix, we use multiprecision BLAS on the host CPU



# Strong Scaling

- Same problem
- Strong scaling up to 18 GPUs on Summit (6 GPUs per node)
- Using double/double-double



- Overhead of using software-implemented precision decreases as we scale up the hardware
  - Likely because latency becomes more dominant

#### Conclusions

Big picture idea: Selective use of higher precision can improve numerical behavior (and time to solution) with minimal overhead

For s-step Lanczos and CG:

Overhead is negligible when restricting to precisions available in hardware

+

Convergence rate improved

Likely to see improved time-to-solution in many scenarios

# Ongoing Work

- Performance results are preliminary a thorough performance study is needed!
- Extending the analysis of Greenbaum for s-step CG
- Benefits to extended precision for other s-step Krylov subspace methods?
- Benefit to mixed precision in pipelined variants?
- Combine mixed precision with residual replacement to also improve accuracy?

# Thank you!

#### carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson/

arXiv preprint: MATLAB codes: https://arxiv.org/abs/2103.09210 https://github.com/eccarson/mixedsstep