Balancing Inexactness in Matrix Computations

Erin C. Carson
Charles University

Computational Mathematics and Applications Seminar
Mathematical Institute, University of Oxford
May 25, 2023

The Exascale Era

We have now entered the "Exascale Era"

- 10^{18} floating point operations per second

The Exascale Era

We have now entered the "Exascale Era"

- 10^{18} floating point operations per second

https://eurohpc-ju.europa.eu/pictures

The Exascale Era

We have now entered the "Exascale Era"

- 10^{18} floating point operations per second

Significant opportunity ... Significant challenges

Exascale Hardware

Exascale Hardware

Exascale Hardware

Exascale Hardware

HPLMXP

NUMEER 1 SYSTEM

Mixed precision in NLA

- BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]
- Iterative refinement:
- Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...
- More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., Higham, Pranesh, 2020], [Amestoy et al., 2021]
- Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], [Abdelfattah et al., 2020]
- Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 2001], [Petschow et al., 2014], [Alvermann et al., 2019]
- Sparse direct solvers: [Buttari et al., 2008]
- Orthogonalization: [Yamazaki et al., 2015]
- Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, Kronbichler, 2017, 2019]
- (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

When Can I Use Low Precision?

1. When low accuracy is needed

When Can I Use Low Precision?

1. When low accuracy is needed
```
A = diag(linspace(.001,1,100));
b = ones(n,1);
```


When Can I Use Low Precision?

1. When low accuracy is needed
```
\(n=100, \lambda_{1}=10^{-3}, \lambda_{n}=1\)
\(\lambda_{i}=\lambda_{1}+\left(\frac{i-1}{n-1}\right)\left(\lambda_{n}-\lambda_{1}\right)(0.65)^{n-i}, \quad i=2, \ldots, n-1\)
b \(=\) ones ( \(\mathrm{n}, 1\) );
```


When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available

Example: Iterative refinement
Solve $A x_{0}=b$ by LU factorization
for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

(in precision u_{r})
Solve $A d_{i}=r_{i}$
(in precision u_{s})
$x_{i+1}=x_{i}+d_{i}$
(in precision u)
e.g., [Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016], [C. and Higham, 2018], [Amestoy et al., 2021]

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available
3. When other approximations are being used

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available
3. When other approximations are being used

- E.g., reduced models, sparsification, low-rank approximations, randomization

[Schilders, van der Vorst, Rommes, 2008]

Low-rank approximation

Sparsification, randomization

[Sinha, 2018]

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available
3. When other approximations are being used

- E.g., reduced models, sparsification, low-rank approximations, randomization

[Schilders, van der Vorst, Rommes, 2008]

Low-rank approximation

Sparsification, randomization

[Sinha, 2018]

Mixed Precision Sparse Approximate Inverse Preconditioners

SPAI Preconditioners

Goal: Construct sparse matrix $M \approx A^{-1}$ (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m_{k} of M dynamically

Given matrix A, initial sparsity structure J, and tolerance ε For each column k :

Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve $\min _{m_{k}}\left\|e_{k}-A m_{k}\right\|_{2}$
If $\left\|r_{k}\right\|_{2}=\left\|e_{k}-A m_{k}\right\|_{2} \leq \varepsilon$ break;
Else
add select nonzeros to J, repeat.

SPAI Preconditioners

Goal: Construct sparse matrix $M \approx A^{-1}$ (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m_{k} of M dynamically

Given matrix A, initial sparsity structure J, and tolerance ε For each column k :

Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve $\min _{m_{k}}\left\|e_{k}-A m_{k}\right\|_{2}$
If $\left\|r_{k}\right\|_{2}=\left\|e_{k}-A m_{k}\right\|_{2} \leq \varepsilon$ break;
Else
add select nonzeros to J, repeat.

Benefits: Highly parallelizable
But construction can still be costly, esp. for large-scale problems [Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tůma, 1999], [He, Yin, Gao, 2020]

SPAI Preconditioners in Low Precision

What is the effect of using low precision in SPAI construction?

Notes and assumptions:

- We will assume that the SPAI construction is performed in some precision u_{f}
- We will denote quantities computed in finite precision with hats
- In our application, we want a left preconditioner, so we will run the algorithm on A^{T} and set $M \leftarrow M^{T}$.
- We will assume that the QR factorization of the submatrix of A^{T} is computed fully using HouseholderQR/TSQR

SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on \widehat{M}, under what constraint on \boldsymbol{u}_{f} can we guarantee that $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, with $\hat{r}_{k}=f l_{u_{f}}\left(e_{k}-\right.$ $A^{T} \widehat{m}_{k}^{T}$) for the computed \widehat{m}_{k}^{T} ?

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on \widehat{M}, under what constraint on u_{f} can we guarantee that $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, with $\hat{r}_{k}=f l_{u_{f}}\left(e_{k}-\right.$ $A^{T} \widehat{m}_{k}^{T}$) for the computed \widehat{m}_{k}^{T} ?
2. Assume that when M is computed in exact arithmetic, we quit as soon as $\left\|r_{k}\right\| \leq \varepsilon$. For \widehat{M} computed in precision u_{f} with the same sparsity pattern as M, what is $\left\|e_{k}-A^{T} \widehat{m}_{k}^{T}\right\|_{2}$?

SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS problems, we have

$$
\left\|\hat{r}_{k}\right\|_{2} \leq n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} .
$$

So in order to guarantee we eventually reach a solution with $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, we need

$$
n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} \leq \varepsilon .
$$

SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS problems, we have

$$
\left\|\hat{r}_{k}\right\|_{2} \leq n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} .
$$

So in order to guarantee we eventually reach a solution with $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, we need

$$
n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} \leq \varepsilon .
$$

\rightarrow problem must not be so ill-conditioned WRT u_{f} that we incur an error greater than ε just computing the residual

SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

$$
\operatorname{cond}_{2}\left(A^{T}\right) \lesssim \varepsilon u_{f}^{-1},
$$

where $\operatorname{cond}_{2}\left(A^{T}\right)=\left\|\left|A^{-T}\right|\left|A^{T}\right|\right\|_{2}$.

SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

$$
\operatorname{cond}_{2}\left(A^{T}\right) \lesssim \varepsilon \boldsymbol{u}_{f}^{-1},
$$

where $\operatorname{cond}_{2}\left(A^{T}\right)=\left\|\left|A^{-T}\right|\left|A^{T}\right|\right\|_{2}$.

Another view: with a given matrix A and a given precision \boldsymbol{u}_{f}, one must set ε such that

$$
\varepsilon \geq u_{f} \operatorname{cond}_{2}\left(A^{T}\right)
$$

Confirms intuition: The more approximate the inverse, the lower the precision we can use.

SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

$$
\operatorname{cond}_{2}\left(A^{T}\right) \lesssim \varepsilon \boldsymbol{u}_{f}^{-1},
$$

where $\operatorname{cond}_{2}\left(A^{T}\right)=\left\|\left|A^{-T}\right|\left|A^{T}\right|\right\|_{2}$.

Another view: with a given matrix A and a given precision \boldsymbol{u}_{f}, one must set ε such that

$$
\varepsilon \geq u_{f} \operatorname{cond}_{2}\left(A^{T}\right)
$$

Confirms intuition: The more approximate the inverse, the lower the precision we can use.

Resulting bounds for \widehat{M} :

$$
\left\|I-A^{T} \widehat{M}^{T}\right\|_{F} \leq 2 \sqrt{n} \varepsilon, \quad\|I-\widehat{M} A\|_{\infty} \leq 2 n \varepsilon
$$

Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in \widehat{M} ?
steam3

Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in \widehat{M} ?
steam3

saylr1

Second Question

Assume that when M is computed in exact arithmetic, we quit as soon as $\left\|r_{k}\right\| \leq \varepsilon$. For \widehat{M} computed in precision $\boldsymbol{u}_{\boldsymbol{f}}$ with the same sparsity pattern as M, what is $\left\|e_{k}-A^{T} \widehat{m}_{k}^{T}\right\|_{2}$?

Second Question

Assume that when M is computed in exact arithmetic, we quit as soon as $\left\|r_{k}\right\| \leq \varepsilon$. For \widehat{M} computed in precision $\boldsymbol{u}_{\boldsymbol{f}}$ with the same sparsity pattern as M, what is $\left\|e_{k}-A^{T} \widehat{m}_{k}^{T}\right\|_{2}$?

In this case, we obtain the bound

$$
\|I-\widehat{M} A\|_{\infty} \leq n\left(\varepsilon+n^{7 / 2} u_{f} \kappa_{\infty}(A)\right)
$$

\rightarrow If $\kappa_{\infty}(A) \gg \varepsilon u_{f}^{-1}$, then computed \widehat{M} with same sparsity structure as M can be of much lower quality.

Iterative Refinement for $A x=b$

3-precision iterative refinement [C. and Higham, 2018]
$u_{f}=$ factorization precision, $u=$ working precision, $u_{r}=$ residual precision

$$
u_{f} \geq u \geq u_{r}
$$

Solve $A x_{0}=b$ by LU factorization
for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

(in precision u_{r})
Solve $A d_{i}=r_{i}$
(in precision u_{s})
$x_{i+1}=x_{i}+d_{i}$
(in precision u)
u_{s} is the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if \hat{L} and \widehat{U} are computed LU factors of A in precision \boldsymbol{u}_{f}, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f},
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.
GMRES-IR [C. and Higham, SISC 39(6), 2017]

- To compute the updates d_{i}, apply GMRES to $\widehat{U}^{-1} \hat{L}^{-1} A d_{i}=\widehat{U}^{-1} \hat{L}^{-1} r_{i}$

Solve $A x_{0}=b$ by LU factorization for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i}$ via GMRES on $\tilde{A} d_{i}=\tilde{r}_{i}$
$x_{i+1}=x_{i}+d_{i}$

- Existing analyses of GMRES-IR assume we use full LU factors
- In practice, often want to use approximate preconditioners (ILU, SPAI, etc.)
- [Amestoy et al., 2022]
- Analysis of block low-rank (BLR) LU within GMRES-IR
- Analysis of use of static pivoting in LU within GMRES-IR
- [C., Khan, 2022]
- Analysis of sparse approximate inverse (SPAI) preconditioners within GMRES-IR

SPAI-GMRES-IR

SPAI-GMRES-IR

To compute the updates d_{i}, apply GMRES to $\widehat{M} A d_{i}=\widehat{M} r_{i}$

Solve $\widehat{M} A x_{0}=\widehat{M} b$ for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i} \quad$ via GMRES on $\widehat{M} A d_{i}=\widehat{M} r_{i}$

$$
x_{i+1}=x_{i}+d_{i}
$$

Using \widehat{M} computed in precision $\boldsymbol{u}_{\boldsymbol{f}}$, for the preconditioned system $\tilde{A}=\widehat{M} A$,

$$
\kappa_{\infty}(\tilde{A}) \leqq(1+2 n \varepsilon)^{2} .
$$

steam3

saylr1

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

$$
n u_{f} \operatorname{cond}_{2}\left(A^{T}\right) \lesssim n \varepsilon \lesssim u^{-1 / 2}
$$

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

If ε satisfies these constraints, then the constraints on condition number for forward and backward errors to converge are the same as for GMRES-IR with full LU factorization.

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

$$
\underbrace{n u_{f} \operatorname{cond}_{2}\left(A^{T}\right) \lesssim n \varepsilon \lesssim u^{-1 / 2} \text { is a good enough }}_{\begin{array}{c}
\hat{M} \text { can be } \\
\text { constructed }
\end{array}} \text { preconditioner }
$$

If ε satisfies these constraints, then the constraints on condition number for forward and backward errors to converge are the same as for GMRES-IR with full LU factorization.

Compared to GMRES-IR with full LU factorization, in general expect slower convergence, but much sparser preconditioner.

SPAI-GMRES-IR Example

Matrix: steam1, $n=240, \mathrm{nnz}=2,248, \kappa_{\infty}(A)=3 \cdot 10^{7}, \operatorname{cond}\left(A^{T}\right)=3 \cdot 10^{3}$

SPAI-GMRES-IR Example

Matrix: steam1, $n=240, \mathrm{nnz}=2,248, \kappa_{\infty}(A)=3 \cdot 10^{7}, \operatorname{cond}\left(A^{T}\right)=3 \cdot 10^{3}$

$\left(u_{f}, u, u_{r}\right)=($ single, double, quad $)$

$$
\mathrm{nnz}(L+U)=13,765
$$

SPAI-GMRES-IR Example

Matrix: steam1, $n=240, \mathrm{nnz}=2,248, \kappa_{\infty}(A)=3 \cdot 10^{7}, \operatorname{cond}\left(A^{T}\right)=3 \cdot 10^{3}$

$\left(u_{f}, u, u_{r}\right)=($ single, double, quad $)$

$n n z(L+U)=13,765$

$n n z(M)=2,248$

A Question

Is there a point in using precision higher than that dictated by $u_{f} \operatorname{cond}_{2}\left(A^{T}\right) \leq \varepsilon$? Matrix: bfwa782, $n=782, \mathrm{nnz}=7514, \kappa_{\infty}(A)=7 \cdot 10^{3}, \operatorname{cond}\left(A^{T}\right)=1 \cdot 10^{3}$

$$
\left(u_{f}, u, u_{r}\right)=\text { (half, single, double) }
$$

Preconditioner	$\kappa_{\infty}(\tilde{A})$	Precond. nnz	GMRES-IR steps/iteration
SPAI $(\varepsilon=0.2)$	$2.1 e+02$	28053	$67(31,36)$
SPAI $(\varepsilon=0.5)$	$9.7 e+02$	7528	$153(71,82)$

A Question

Is there a point in using precision higher than that dictated by $\boldsymbol{u}_{f} \operatorname{cond}\left(A^{T}\right) \leq \varepsilon$? Matrix: bfwa782, $n=782, \mathrm{nnz}=7514, \kappa_{\infty}(A)=7 \cdot 10^{3}, \operatorname{cond}\left(A^{T}\right)=1 \cdot 10^{3}$

$$
\left(u_{f}, u_{1}, u_{r}\right)=(\text { half, single, double })
$$

Preconditioner	$\kappa_{\infty}(\tilde{A})$	Precond. nnz	GMRES-IR steps/iteration
SPAI $(\varepsilon=0.2)$	$2.1 e+02$	28053	$67(31,36)$
SPAI $(\varepsilon=0.5)$	$9.7 e+02$	7528	$153(71,82)$

($\left.u_{f}, u, u_{r}\right)=$ (single, single, double)

Preconditioner	$\kappa_{\infty}(\tilde{A})$	Precond. nnz	GMRES-IR steps/iteration
SPAI $(\varepsilon=0.2)$	$2.2 e+02$	26801	$69(32,37)$
SPAI $(\varepsilon=0.5)$	$9.7 e+02$	7529	$153(71,82)$

Ongoing and Future Work

- Incorporate mixed-precision storage of \widehat{M} and adaptive-precision SpMV to apply \widehat{M} using the work of [Graillat et al., 2002]
- Theoretical analysis of incomplete factorization preconditioners in mixed precision
- Experimental work shows that half precision works well in practice [Scott, Tůma, 2023]

Mixed Precision Randomized Preconditioners

Our setting

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive semidefinite matrix. Want to solve

$$
(A+\mu I) x=b
$$

where $\mu \geq 0$ is set so that $A+\mu I$ is positive definite.

Assume A has rapidly decreasing eigenvalues or cluster of large eigenvalues.

Many applications, e.g., ridge regression.

Limited Memory Preconditioners

Want to solve using PCG using spectral limited memory preconditioner [Gratton, Sartenaer, Tshimanga, 2011], [Tshimanga et al., 2008]:

$$
\begin{aligned}
P & =I-U U^{T}+\frac{1}{\alpha+\mu} U(\Theta+\mu I) U^{T} \\
P^{-1} & =I-U U^{T}+(\alpha+\mu) U(\Theta+\mu I)^{-1} U^{T}
\end{aligned}
$$

where columns of $U \in \mathbb{R}^{n \times k}$ are \boldsymbol{k} approximate eigenvectors of A and $U^{T} U=I$, © is diagonal with approximations to eigenvalues of A, and $\alpha \geq 0$.

Used in data assimilation [Laloyaux et al., 2018], [Mogensen, Alonso Balmaseda, Weaver, 2012], [Moore et al., 2011], [Daužickaité, Lawless, Scott, van Leeuwen, 2021]

Randomized Nyström Approximation

Want to compute a rank- k approximation $A \approx U \Theta U^{T}$ via the randomized Nyström method.

Nyström approximation:

$$
A_{N}=(A Q)\left(Q^{T} A Q\right)^{+}(A Q)^{T}
$$

where Q is an $n \times k$ test matrix (random projection).

In the case that A is very large, matrix-matrix products with A are the bottleneck.

This motivates the single-pass version of the Nyström method.

Randomized Nyström Approximation

[Tropp et al., 2017]
Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$

Randomized Nyström Approximation

[Tropp et al., 2017]
Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$

Randomized Nyström Approximation

[Tropp et al., 2017]
Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$

Randomized Nyström Approximation

[Tropp et al., 2017]
Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$
$C=\operatorname{chol}\left(\left(B+B^{T}\right) / 2\right)$
Solve $F=Y_{v} / C$

| $=$ |"

Randomized Nyström Approximation

[Tropp et al., 2017]
Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$
$C=\operatorname{chol}\left(\left(B+B^{T}\right) / 2\right)$
Solve $F=Y_{v} / C$

$$
[U, \Sigma, \sim]=\operatorname{svd}(F, 0)
$$

$\Theta=\max \left(0, \Sigma^{2}-v I\right)$

Randomized Nyström Approximation

[Tropp et al., 2017]
Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$
$C=\operatorname{chol}\left(\left(B+B^{T}\right) / 2\right)$
Solve $F=Y_{v} / C$

$$
[U, \Sigma, \sim]=\operatorname{svd}(F, 0)
$$

$\Theta=\max \left(0, \Sigma^{2}-v I\right)$
Can we further reduce the cost of the matrix-matrix product with A by using low precision?

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq\left\|A-A_{N}\right\|_{2}+\left\|A_{N}-\hat{A}_{N}\right\|_{2}
$$

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{\left\|A-A_{N}\right\|_{2}}_{\begin{array}{c}
\text { exact } \\
\text { approximation } \\
\text { error }
\end{array}}+\underbrace{\left\|A_{N}-\hat{A}_{N}\right\|_{2}}_{\begin{array}{c}
\text { finite precision } \\
\text { error }
\end{array}}
$$

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{A-A_{N} \|_{2}}_{\substack{\text { exact } \\ \text { approximation } \\ \text { error }}}+\underbrace{\left\|A_{N}-\hat{A}_{N}\right\|_{2}}_{\substack{\text { finite precision } \\ \text { error }}}
$$

Deterministic bound [Gittens, Mahoney, 2016]:

$$
\left\|A-A_{N}\right\|_{2} \leq \lambda_{k+1}+\left\|\Sigma_{2}^{1 / 2} U_{2}^{T} Q\left(U_{1} Q\right)^{+}\right\|_{2}^{2}
$$

with $A=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]^{T}$.

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{\left\|-A_{N}\right\|_{2}}_{\begin{array}{c}
\text { exact } \\
\text { approximation }
\end{array}}+\underbrace{\left\|A_{N}-\hat{A}_{N}\right\|_{2}}_{\begin{array}{c}
\text { finite precision } \\
\text { error }
\end{array}}
$$

Deterministic bound [Gittens, Mahoney, 2016]:

$$
\left\|A-A_{N}\right\|_{2} \leq \lambda_{k+1}+\left\|\Sigma_{2}^{1 / 2} U_{2}^{T} Q\left(U_{1} Q\right)^{+}\right\|_{2}^{2}
$$

with $A=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]^{T}$.
Expected value bound [Frangella, Tropp, Udell, 2021]:

$$
\mathbb{E}\left\|A-A_{N}\right\|_{2} \leq \min _{2 \leq p \leq k-2}\left(\left(1+\frac{2(k-p)}{p-1}\right) \lambda_{k-p+1}+\frac{2 e^{2} k}{p^{2}-1} \sum_{j=k-p+1}^{n} \lambda_{j}\right)
$$

where $\lambda_{i} \geq \lambda_{i+1}$ are the eigenvalues of A.

Finite Precision Error Bound

Finite precision error: $A_{N}-\hat{A}_{N}$

Assumptions:

- A is stored in precision u_{p} and matrix-matrix product $A Q$ is computed in precision u_{p}
- All other quantities stored and computed in precision $u \ll u_{p}$

Finite Precision Error Bound

Finite precision error: $A_{N}-\hat{A}_{N}$
Assumptions:

- A is stored in precision u_{p} and matrix-matrix product $A Q$ is computed in precision u_{p}
- All other quantities stored and computed in precision $u \ll u_{p}$
[C., Daužickaitè, 2022]: With failure probability at most $e^{-t^{2} / 2}+c_{1} \alpha$,

$$
\left\|A_{N}-\hat{A}_{N}\right\|_{2} \lesssim \alpha^{-1} n^{1 / 2} k\left(n^{1 / 2}+k^{1 / 2}+t\right)^{2} u_{p}\|A\|_{2} \kappa\left(A_{k}\right)
$$

where A_{k} is the best rank- k approximation of A

Finite Precision Error Bound

Finite precision error: $A_{N}-\hat{A}_{N}$
Assumptions:

- A is stored in precision u_{p} and matrix-matrix product $A Q$ is computed in precision u_{p}
- All other quantities stored and computed in precision $u \ll u_{p}$
[C., Daužickaitè, 2022]: With failure probability at most $e^{-t^{2} / 2}+c_{1} \alpha$,

$$
\left\|A_{N}-\hat{A}_{N}\right\|_{2} \lesssim \alpha^{-1} n^{1 / 2} k\left(n^{1 / 2}+k^{1 / 2}+t\right)^{2} u_{p}\|A\|_{2} \kappa\left(A_{k}\right)
$$

where A_{k} is the best rank- k approximation of A

Interpretation: Likely that $\left\|A_{N}-\hat{A}_{N}\right\|_{2} \gtrsim\left\|A-A_{N}\right\|_{2}$ when

$$
\frac{\lambda_{k+1}}{\lambda_{1}} \lesssim \sqrt{n} u_{p}
$$

Finite Precision Error Bound

Finite precision error: $A_{N}-\hat{A}_{N}$
Assumptions:

- A is stored in precision u_{p} and matrix-matrix product $A Q$ is computed in precision u_{p}
- All other quantities stored and computed in precision $u \ll u_{p}$
[C., Daužickaitė, 2022]: With failure probability at most $e^{-t^{2} / 2}+c_{1} \alpha$,

$$
\left\|A_{N}-\hat{A}_{N}\right\|_{2} \lesssim \alpha^{-1} n^{1 / 2} k\left(n^{1 / 2}+k^{1 / 2}+t\right)^{2} u_{p}\|A\|_{2} \kappa\left(A_{k}\right)
$$

where A_{k} is the best rank- k approximation of A

Interpretation: Likely that $\left\|A_{N}-\hat{A}_{N}\right\|_{2} \gtrsim\left\|A-A_{N}\right\|_{2}$ when
The more approximate the low-rank representation, the lower the precision we can use!

$$
\frac{\lambda_{k+1}}{\lambda_{1}} \lesssim \sqrt{n} u_{p}
$$

Condition Number Bounds

Let $E=A-A_{N}, \varepsilon=A_{N}-\hat{A}_{N}$, and assume $(A+\mu I)$ is SPD.

Let

$$
\hat{P}^{-1}=I-\widehat{U} \widehat{U}^{T}+\left(\hat{\lambda}_{k}+\mu\right) \widehat{U}(\widehat{\Theta}+\mu I)^{-1} \widehat{U}^{T}
$$

be the LMP preconditioner constructed using the mixed precision Nyström approximation $\hat{A}_{N}=\widehat{U} \widehat{\Theta} \widehat{U}^{T}$.

Condition Number Bounds

Let $E=A-A_{N}, \mathcal{E}=A_{N}-\hat{A}_{N}$, and assume $(A+\mu I)$ is SPD.

Let

$$
\widehat{P}^{-1}=I-\widehat{U} \widehat{U}^{T}+\left(\hat{\lambda}_{k}+\mu\right) \widehat{U}(\widehat{\Theta}+\mu I)^{-1} \widehat{U}^{T}
$$

be the LMP preconditioner constructed using the mixed precision Nyström approximation $\hat{A}_{N}=\widehat{U} \widehat{\Theta} \widehat{U}^{T}$.

Then

$$
\max \left\{1, \frac{\hat{\lambda}_{k}+\mu-\|\varepsilon\|_{2}}{\mu+\lambda_{\min }(A)}\right\} \leq \kappa\left(\hat{P}^{-1 / 2}(A+\mu I) \hat{P}^{-1 / 2}\right) \leq 1+\frac{\hat{\lambda}_{k}+\|E\|_{2}+2\|\varepsilon\|_{2}}{\mu-\|\varepsilon\|_{2}}
$$

where the upper bound holds if $\mu>\|\varepsilon\|_{2}$.
Regardless of this constraint, if A is positive definite, then

$$
\kappa\left(\hat{P}^{-1 / 2}(A+\mu I) \hat{P}^{-1 / 2}\right) \leq\left(\hat{\lambda}_{k}+\mu+\|E\|_{2}+\|\varepsilon\|_{2}\right)\left(\frac{1}{\hat{\lambda}_{k}+\mu}+\frac{\|\varepsilon\|_{2}+1}{\lambda_{\min }(A)+\mu}\right) .
$$

Condition Number Bounds

Let $E=A-A_{N}, \mathcal{E}=A_{N}-\hat{A}_{N}$, and assume $(A+\mu I)$ is SPD.

Let

$$
\widehat{P}^{-1}=I-\widehat{U} \widehat{U}^{T}+\left(\hat{\lambda}_{k}+\mu\right) \widehat{U}(\widehat{\Theta}+\mu I)^{-1} \widehat{U}^{T}
$$

be the LMP preconditioner constructed using the mixed precision Nyström approximation $\hat{A}_{N}=\widehat{U} \widehat{\Theta} \widehat{U}^{T}$.

Then
If $\mathcal{E}=0$, reduces to bounds of [Frangella, Tropp, Udell, 2021] for exact case.

$$
\max \left\{1, \frac{\hat{\lambda}_{k}+\mu-\|\varepsilon\|_{2}}{\mu+\lambda_{\min }(A)}\right\} \leq \kappa\left(\hat{P}^{-1 / 2}(A+\mu I) \hat{P}^{-1 / 2}\right) \leq 1+\frac{\hat{\lambda}_{k}+\|E\|_{2}+2\|\varepsilon\|_{2}}{\mu-\|\varepsilon\|_{2}}
$$

where the upper bound holds if $\mu>\|\varepsilon\|_{2}$.
Regardless of this constraint, if A is positive definite, then

$$
\kappa\left(\hat{P}^{-1 / 2}(A+\mu I) \hat{P}^{-1 / 2}\right) \leq\left(\hat{\lambda}_{k}+\mu+\|E\|_{2}+\|\varepsilon\|_{2}\right)\left(\frac{1}{\hat{\lambda}_{k}+\mu}+\frac{\|\varepsilon\|_{2}+1}{\lambda_{\min }(A)+\mu}\right) .
$$

Numerical Experiment
Matrix: bcsstm07, $n=420$

$$
\begin{aligned}
& \lambda_{k+1} / \lambda_{1} \\
& \sqrt{n} u_{p}, u_{p}=\text { half } \\
& \sqrt{n} u_{p}, u_{p}=\text { single }
\end{aligned}
$$

Numerical Experiment

Matrix: bcsstm07, $n=420$

exact
mixed, $u_{p}=$ half
mixed, $u_{p}=$ single
mixed, $u_{p}=$ double

Numerical Experiment

Ongoing Work

- Mixed-precision randomized preconditioners for Krylov subspace methodbased iterative refinement of least squares problems min $\|b-A x\|_{2}$

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and u_{o} (QR step).

Solve $\min _{x}\|b-A x\|_{2}$ via LSQR preconditioned with \hat{R} in precision u to get initial solution x_{0} and residual r_{0}.
for $i=0, \ldots$, until convergence
Compute residual $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]-\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}r_{i} \\ x_{i}\end{array}\right]$ and $h_{i}=\hat{R}^{-T} g_{i}$ in precision u_{r}.
Solve via KSM in (effective) precision u_{s} :

$$
\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-T}
\end{array}\right]\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-1}
\end{array}\right]\left[\begin{array}{c}
\delta r_{i} \\
\delta z_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
h_{i}
\end{array}\right],
$$

where $\hat{R} \delta x_{i}=\delta z_{i}$.
Update in precision u :

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\delta r_{i} \\
\delta x_{i}
\end{array}\right]
$$

Ongoing Work

- Mixed-precision randomized preconditioners for Krylov subspace methodbased iterative refinement of least squares problems $\min _{x}\|b-A x\|_{2}$

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and u_{o} (QR step).

Solve $\min _{x}\|b-A x\|_{2}$ via LSQR preconditioned with \hat{R} in precision u to get initial solution x_{0} and residual r_{0}.
for $i=0, \ldots$, until convergence
Compute residual $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]-\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}r_{i} \\ x_{i}\end{array}\right]$ and $h_{i}=\hat{R}^{-T} g_{i}$ in precision u_{r}.
Solve via KSM in (effective) precision u_{s} :

$$
\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-T}
\end{array}\right]\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-1}
\end{array}\right]\left[\begin{array}{c}
\delta r_{i} \\
\delta z_{i}
\end{array}\right]=\left[\begin{array}{c}
f_{i} \\
h_{i}
\end{array}\right],
$$

where $\hat{R} \delta x_{i}=\delta z_{i}$.
Update in precision u : can use sketch-and-apply approach of [Meier et al., 2023]

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\delta r_{i} \\
\delta x_{i}
\end{array}\right]
$$

Summary and Takeaway

- To efficiently use modern exascale machines, we need to use mixed precision hardware
- Understanding the interaction and balance of errors from finite precision and sources of algorithmic approximation is thus crucial
- Careful analysis will reveal not only limitations, but opportunities!

Thank You!

carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson/

