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The Exascale Era

We have now entered the “Exascale Era”
« 108 floating point operations per second

Significant opportunity ...
Significant challenges

https://eurohpc-ju.europa.eu/pictures
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BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

Iterative refinement:
* Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...
* More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C.,
Higham, Pranesh, 2020], [Amestoy et al., 2021]

Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020],
[Abdelfattah et al., 2020]

Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al.,
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

Sparse direct solvers: [Buttari et al., 2008]
Orthogonalization: [Yamazaki et al., 2015]

Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist,
Kronbichler, 2017, 2019]

(Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi,
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., IJHPC, 2021], [Higham and Mary, 2022]
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S When Can | Use Low Precision?

1. When low accuracy is needed

n=100,A, =1073,1, = 1
A=A+ (;;_11) (A, — 1)(0.65)"F, i=2,..n—1

b = ones(n,1);
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E
8 10'5 -
<
S
o
.g 10'10 —
©
0]
= double
single
10°15 ¢ half
0 20 40 60 80

iteration
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7" \When Can | Use Low Precision?

1. When low accuracy is needed

2. When a self-correction mechanism is available

Example: lterative refinement

Solve Axy = b by LU factorization (in precision uy)

for i = 0: maxit

r; =b— Ax; (in precision u,.)
Solve Ad; = r; (in precision 11,)
Xiy1 = X; + d; (in precision u)

e.g., [Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al.,
2016], [C. and Higham, 2018], [Amestoy et al., 2021]
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3.  When other approximations are being used

When Can | Use Low Precision?

* E.g., reduced models, sparsification, low-rank approximations, randomization
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1. When low accuracy is needed
2. When a self-correction mechanism is available

3.  When other approximations are being used

When Can | Use Low Precision?

* E.g., reduced models, sparsification, low-rank approximations, randomization
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Mixed Precision Sparse Approximate
Inverse Preconditioners



< SPAI Preconditioners

Goal: Construct sparse matrix M ~ A~1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m; of M dynamically

~

4 Given matrix A, initial sparsity structure J, and tolerance &
For each column k:
Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve rgzi,?”ek — Amy ||,

If llrelly = llexk — Amyll, < €
break:
Else

add select nonzeros to J, repeat.




< SPAI Preconditioners

Goal: Construct sparse matrix M ~ A~1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m; of M dynamically

~

4 Given matrix A, initial sparsity structure J, and tolerance &
For each column k:
Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve rgzi,?”ek — Amy ||,

If {lreelly = llex — Amyll, < &
break:

Else
add select nonzeros to J, repeat.

- J
Benefits: Highly parallelizable

But construction can still be costly, esp. for large-scale problems

[Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tima, 1999], [He, Yin, Gao,
2020]



S SPAI Preconditioners in Low Precision

What is the effect of using low precision in SPAI construction?

Notes and assumptions:

We will assume that the SPAI construction is performed in some precision uy
We will denote quantities computed in finite precision with hats

In our application, we want a left preconditioner, so we will run the algorithm
on AT and set M « MT.

We will assume that the QR factorization of the submatrix of AT is computed
fully using HouseholderQR/TSQR



S SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on M, under what
constraint on Uy can we guarantee that ||7||; < &, with 7}, = flu,(ex —

ATm]) for the computed M}, ?



7/~ SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on M, under what
constraint on 1y can we guarantee that ||7||; < &, with 7}, = flu,(ex —

ATm]) for the computed M}, ?

2. Assume that when M is computed in exact arithmetic, we quit as soon as
I7 |l < &. For M computed in precision us with the same sparsity pattern

as M, what is ||ek —ATT/ﬁﬂlz?



“upa SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS
problems, we have

1Pl < nPug|lel + 1ATI[mE] ||

So in order to guarantee we eventually reach a solution with |||, < &, we
need

n3uf|||ek| + |AT||T/)’\1£|”2 < E&.



Using standard rounding error analysis and perturbation results for LS
problems, we have

1Pl < n3ug|lel + 1ATI[mE] ||

So in order to guarantee we eventually reach a solution with |||, < &, we
need

n3uf|||ek| + |AT||T/)’\l£|”2 < E&.

— problem must not be so ill-conditioned WRT u; that we incur an error
greater than € just computing the residual
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Can turn this into the looser but more descriptive a priori bound:

cond,(AT) < euj?,

where cond, (A7) = |||A~T|A7||l,.
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cond,(AT) < euj?,
where cond, (A7) = [[[A=T[|AT|ll,.

Another view: with a given matrix A and a given precision Us, one must set £
such that

g = ugcond,(A").

Confirms intuition: The more approximate the inverse, the lower the
precision we can use.



“ur SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond,(AT) < euj?,
where cond, (A7) = [[[A=T[|AT|ll,.

Another view: with a given matrix A and a given precision Us, one must set £
such that

g = ugcond,(A").

Confirms intuition: The more approximate the inverse, the lower the
precision we can use.

Resulting bounds for M:
|1 —ATM"| . < 2yne, |1 —MA|_ < 2ne



“upe Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in M?
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Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in M?
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Assume that when M is computed in exact arithmetic, we quit as soon as
Tl < €. For M computed in precision ug with the same sparsity pattern as

M, what is ||ek — ATﬁ\l;‘CHZ ?

11



Assume that when M is computed in exact arithmetic, we quit as soon as
Tl < €. For M computed in precision ug with the same sparsity pattern as
M, what is ||ek — ATﬁ\l?;”Z ?

In this case, we obtain the bound

|11 — MA”OO <n (e + n7/2uficoo(A)).

- If ko, (4) > sufl, then computed M with same sparsity structure as M can
be of much lower quality.



A lterative Refinement for Ax = b

3-precision iterative refinement [C. and Higham, 2018]

us = factorization precision, u = working precision, u, = residual precision

U 2 U = Uy
Solve Axy = b by LU factorization (in precision uy)
for i = 0: maxit
r; = b — Ax; (in precision u,.)
Solve Ad; = r; (in precision 1..)
Xiy1 = X; + d; (in precision u)

is the effective precision of the solve, with u < u; < uy

12



S GMRES-Based lterative Refinement

« Observation [Rump, 1990]: if L and U are computed LU factors of A4 in precision Uy,
then

Ko(UTL71A) = 1+ Koo (A uy,

even if Ko (A) > us'.

GMRES-IR [C. and Higham, SISC 39(6), 2017] A i

« To compute the updates d;, apply GMRES to U 'L 'Ad; = UL 1r;

Solve Axy, = b by LU factorization

for i = 0: maxit =u
;= b — Axl- />

Solve Ad; = 1; via GMRES on Ad; = #;

Xi+1 = X; +d;



GMRES-IR with Inexact Preconditioners

* Existing analyses of GMRES-IR assume we use full LU factors

* In practice, often want to use approximate preconditioners
(ILU, SPAI, etc.)

* [Amestoy et al., 2022]
* Analysis of block low-rank (BLR) LU within GMRES-IR
* Analysis of use of static pivoting in LU within GMRES-IR

« [C., Khan, 2022]

* Analysis of sparse approximate inverse (SPAI)
preconditioners within GMRES-IR

14



“ars SPAI-GMRES-IR

SPAI-GMRES-IR
To compute the updates d;, apply GMRES to MAd; = Mr;

Solve MAx, = Mb
for i = 0: maxit
1 = b — Ax;
Solve Ad; =1; via GMRES on MAd; = Mr;

Xi+1 = X; T d;



Low Precision SPAI within GMRES-IR

~

Using M computed in precision uy, for the preconditioned system A = MA,

Keo(A) S (1 + 2ne)?.

steam3 saylrl
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S Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

nuscond,(A") S ne < u-1/2,
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S Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

nuscond,(A") S ne < u-1/2,

M can be M is a good enough
constructed preconditioner

If € satisfies these constraints, then the constraints on condition number for
forward and backward errors to converge are the same as for GMRES-IR with
full LU factorization.

17



Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

nugcond, (A7) S ne s u”2
_ \/ J
Y Y

M can be M is a good enough
constructed preconditioner

If € satisfies these constraints, then the constraints on condition number for
forward and backward errors to converge are the same as for GMRES-IR with
full LU factorization.

Compared to GMRES-IR with full LU factorization, in general expect slower
convergence, but much sparser preconditioner.

17



SPAI-GMRES-IR Example

Matrix: steaml, n = 240, nnz = 2,248, k. (4) = 3 -107, cond(4T) = 3-103

18
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SPAI-GMRES-IR Example

Matrix: steaml, n = 240, nnz = 2,248, k(4) = 3-107, cond(4T) =3-103

NS - " Ry
; 5

(uf, u, ur) = (single, double, quad)

LU-GMRES-IR, #.(A) =4.6e+00 SPAI-GMRES-IR, f(A) = 1.1e + 00, £ =0.5

—s— ferT I | | I—)-(— ferr

10° S—nbe 10%E —S—nbe
=—che ——che

1 U-EEI 1 L . " |
1] 1 2 3 4 5 0 1 2 3 4 5
refinement step refinement step

nnz(L + U) = 13,765 nnz(M) = 2,248 13



A Question

Is there a point in using precision higher than that dictated by ufcondz(AT) < &?

Matrix: bfwa782, n = 782, nnz = 7514, ko (4) = 7 - 103, cond(47) = 1- 103

(uf, u,u,.) = (half, single, double)

SPAI (£ = 0.2) 2.1e + 02 28053 67 (31, 36)
SPAI (£ = 0.5) 9.7¢ + 02 7528 153 (71, 82)

19



A Question

Is there a point in using precision higher than that dictated by ufcondz(AT) < &?

Matrix: bfwa782, n = 782, nnz = 7514, k. (4) = 7 - 103, cond(4T) = 1- 103

(uf, u,u,.) = (half, single, double)

SPAI (£ = 0.2) 2.1e + 02 28053 67 (31, 36)
SPAI (£ = 0.5) 9.7¢ + 02 7528 153 (71, 82)

(us,u,u,) = (single, single, double)

SPAI (£ = 0.2) 2.2e + 02 26801 69 (32, 37)
SPAI (£ = 0.5) 9.7¢ + 02 7529 153 (71, 82)

19



Ongoing and Future Work

* Incorporate mixed-precision storage of M and adaptive-precision SpMV
to apply M using the work of [Graillat et al., 2002]

* Theoretical analysis of incomplete factorization preconditioners in mixed
precision

* Experimental work shows that half precision works well in practice
[Scott, Tama, 2023]

20



Mixed Precision Randomized
Preconditioners



Let A € R™™ be a symmetric positive semidefinite matrix. Want to solve

(A+ul)x=0>b

where u > 0 is set so that A + ul is positive definite.

Assume A has rapidly decreasing eigenvalues or cluster of large eigenvalues.

Many applications, e.g., ridge regression.



Limited Memory Preconditioners

Want to solve using PCG using spectral limited memory preconditioner [Gratton,
Sartenaer, Tshimanga, 2011], [Tshimanga et al., 2008]:

_y_qnT o Y T
P=1-UUT+_—U(®+u)U
Pl=1-UU"+(a+n)UO+u) tU"

where columns of U € R™¥ are k approximate eigenvectors of A and UTU =1,
O is diagonal with approximations to eigenvalues of A, and a = 0.

Used in data assimilation [Laloyaux et al., 2018], [Mogensen, Alonso Balmaseda,
Weaver, 2012], [Moore et al., 2011], [Dauzickaité, Lawless, Scott, van Leeuwen, 2021]

22



“qrs Randomized Nystrom Approximation

Want to compute a rank-k approximation A ~ UOUT via the randomized
Nystrom method.

Nystrom approximation:
Ay = (AQ)(QTAQ)"(AQ)"
where Q is an n X k test matrix (random projection).

In the case that A is very large, matrix-matrix products with A are the
bottleneck.

This motivates the single-pass version of the Nystrom method.

23



“qrs Randomized Nystrom Approximation

[Tropp et al., 2017]
k

Given sym. PSD matrix A, target rank k
G = randn(n, k)

[Q, ~] = ar(G,0)
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[Tropp et al., 2017]
k
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“qrs Randomized Nystrom Approximation

[Tropp et al., 2017]

k
Given sym. PSD matrix A, target rank k
n
G = randn(n, k)
[, ~] = ar(G,0) n__k
Y = AQ =n
Compute shift v; ¥, =Y +vQ 0k

B = QTY,



Randomized Nystrom Approximation
[Tropp et al., 2017]

Given sym. PSD matrix A, target rank k ‘
G = randn(n, k) |
@, ~] = ar(G, 0) n k
Ml
Compute shift v; ¥, =Y +vQ
B =QTY,

C = chol((B + B")/2)

|
Solve F =Y, /C |=|

24



Given sym. PSD matrix A, target rank k
G = randn(n, k)

[Q,~] = ar(G,0)

Y = AQ

Compute shift v; ¥, =Y +vQ

B =QTY,

C = chol((B + B")/2)

Solve F =Y, /C

[U,Z,~] = svd(F,0)

® = max(0, 2% —vI)

Randomized Nystrom Approximation

[Tropp et al., 2017]

24



Randomized Nystrom Approximation
[Tropp et al., 2017]

k
Given sym. PSD matrix A, target rank k
n|
G = randn(n, k) Can we further reduce the cost
of the matrix-matrix product I
[@,~] = ar(G,0) with A by using low precision?
Y = AQ | |
Compute shift v; ¥, =Y +vQ I
m= k—
= QTYV |
C = chol((B + B")/2)
|
Solve F =Y, /C |:|

® = max(0, 2% —vI) )

[U,%,~] = svd(F, 0) |



7" Error Bounds

|4 — AN||2 =||A— Ay + Ay — ,ci,\,||2 < ||A—Aplly + |4y — AN||2

exact Nystrom Nystrom approximation
approximation computed in
finite precision
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exact finite precision
approximation error
error



7" Error Bounds

|4 — AN||2 =||A— Ay + Ay — ,ci,\,||2 < ||A—Aplly + |4y — AN||2

exact finite precision
approximation error
error

Deterministic bound [Gittens, Mahoney, 2016]:
1/2 T + 2
14— Allz < A + || 2320 QUL Q||

21

with 4 = [U; U,] [ 22] v, U,]".

25



/" Error Bounds

|4 — AN||2 =||A— Ay + Ay — ,ci,\,||2 < ||A—Aplly + |4y — AN||2

exact finite precision
approximation error
error

Deterministic bound [Gittens, Mahoney, 2016]:

b=l < ds+ |23 *u 000"

with 4 = [U; U,] [Zl 22] (U, U,]T.

Expected value bound [Frangella, Tropp, Udell, 2021]:

_ 2(k — p) 2e%k
El[A — Ayll; < 0 1+ — Ak—p+1 +ﬁ | z Aj

where A; > A;,, are the eigenvalues of A. o



S Finite Precision Error Bound

Finite precision error: Ay — Ay

Assumptions:

* A is stored in precision u, and matrix-matrix product AQ is computed in
precision U,
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S Finite Precision Error Bound

Finite precision error: Ay — Ay

Assumptions:

* A is stored in precision u, and matrix-matrix product AQ is computed in
precision U,

* All other quantities stored and computed in precision u < u,

[C., Dauzickaité, 2022]: With failure probability at most e t*/2 + ¢, a,

. 2

Ay — AN”2 S a I 2k(n2 + kY2 + ) "w, l|All ke (Ay)

where Ay, is the best rank-k approximation of A The more approximate
the low-rank

representation, the lower

the precision we can use!

A1
Ay = iy < J

Interpretation: Likely that ||AN — AN”Z = ||A — Ayll, when
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Let E=A— Ay, €= Ay — Ay, and assume (A + ul) is SPD.

Let
PL=1—007 + (A + )@+ ) 07

be the LMP preconditioner constructed using the mixed precision Nystrom

AN AN AN

approximation Ay = UOUT.

Then

max{l A + =€,
, U+ Amin(A)

where the upper bound holds if u > [|£]],.

A + IE Il + 2[I€]
u— Il

} < k(P2 +uDP1?2) <1+
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R Condition Number Bounds

Let E=A— Ay, €= Ay — Ay, and assume (A + ul) is SPD.
Let

PL=1—007 + (A + )@+ ) 07

be the LMP preconditioner constructed using the mixed precision Nystrom

AN AN AN

approximation Ay = UOUT.
If £ =0, reduces to bounds of [Frangella,

Tropp, Udell, 2021] for exact case.
Then

{ A + u— I, Ae + 1EN + 2lIEl,
max41

} < k(P2 +uDP1?2) <1+

"+ Ay (A) u—lEll
where the upper bound holds if u > [|£]],.
Regardless of this constraint, if A is positive definite, then
5 - A €N, + 1
k(P~Y2(A 4+ uDP~12) < (A + u+ Ell, + €] < + .
( )= ( ’ 2) A+ Amin(4) +p



Numerical Experiment

Matrix: bcsstmQ07, n = 420

=213 B M/

107f= = == == -

— Bl V7w, u, = half

Vnu,, u, = single
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k

https://github.com /dauzickaite/mpNystrom 28
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Matrix: bcsstmQ07, n = 420

mean total error, ||A — AN”2
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Numerical Experiment

- exact
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k(P~Y2(A + uhP~1/2)
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Numerical Experiment

I unpreconditioned
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PCG iteration count
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e Ongoing Work

* Mixed-precision randomized preconditioners for Krylov subspace method-
based iterative refinement of least squares problems min||b — Ax||,
X

Compute R factor of QR decomposition of randomly sketched A using precision
(sketching step) and u, (QR step).

Solve min||b — Ax||,via LSQR preconditioned with R in precision u to get initial solution x,
X
and residual 7.

for i =0, ..., until convergence
. T; "
Compute residual lfl] = lb] — lAIT Al l ll and h; = R Tg; in precision u,.
Solve via KSM in (effective) precision uy:

lo RO ”AT Al [o RO HgHﬂ

where R8x; = §z;.

Update in precision u:
) =[]+ [
Xi+1 5Xi

* Collaboration with Hartwig Anzt and Vasileios Georgiou



e Ongoing Work

* Mixed-precision randomized preconditioners for Krylov subspace method-
based iterative refinement of least squares problems min||b — Ax||,
X

Compute R factor of QR decomposition of randomly sketched A using precision
(sketching step) and u, (QR step).

Solve min||b — Ax||,via LSQR preconditioned with R in precision u to get initial solution x,
X
and residual 7.

for i =0, ..., until convergence
Compute residual lg] = lg] — lAIT '3] lxl.l and h; = R Tg; in precision u,.
i i

Solve via KSM in (effective) precision uy:

o el ollo ahllsi] =1

where Réx; = 6z;. can use sketch-and-apply approach of

Update in precision u: [Meier et al., 2023]

] = el + 5

* Collaboration with Hartwig Anzt and Vasileios Georgiou



Summary and Takeaway

* To efficiently use modern exascale machines, we need to use
mixed precision hardware

* Understanding the interaction and balance of errors from
finite precision and sources of algorithmic approximation is
thus crucial

 Careful analysis will reveal not only limitations, but
opportunities!
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Thank Youl

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/~carson/



