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The Exascale Era

We have now entered the “Exascale Era”

• 1018 floating point operations per second
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• 1018 floating point operations per second
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Significant opportunity … 

Significant challenges
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Exascale Hardware
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Exascale Hardware

−1 sign × 2(exponent−offset) × 1. fraction

double 
(fp64)

single 
(fp32)

half 
(fp16)

quarter
(fp8)

size 
(bits) range 𝑢

perf. (NVIDIA 
H100)

fp64 64 10±308 1 × 10−16 60 Tflops/s

fp32 32 10±38 6 × 10−8 1 Pflop/s

fp16 16 10±5 5 × 10−4

2 Pflops/s
bfloat16 16 10±38 4 × 10−3

fp8-e5m2 8 10±5 1 × 10−1

4 Pflops/s
fp8-e4m3 8 10±2 6 × 10−2
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Exascale Hardware

−1 sign × 2(exponent−offset) × 1. fraction

double 
(fp64)

single 
(fp32)

half 
(fp16)

quarter
(fp8) 𝑛𝑢 < 1?

Frontier
Oak Ridge National Laboratory

US

7.9 Eflops/s
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Mixed precision in NLA
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• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018] 

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., 
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], 
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015] 

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, 
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, 
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et 
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., IJHPC, 2021], [Higham and Mary, 2022]



When Can I Use Low Precision?

1. When low accuracy is needed
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1. When low accuracy is needed

A = diag(linspace(.001,1,100));

b = ones(n,1);



When Can I Use Low Precision?
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1. When low accuracy is needed

b = ones(n,1);

𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 1

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 (0.65)𝑛−𝑖 , 𝑖 = 2,… , 𝑛 − 1
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1. When low accuracy is needed

2. When a self-correction mechanism is available
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1. When low accuracy is needed

2. When a self-correction mechanism is available

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

Example: Iterative refinement

e.g., [Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 
2016], [C. and Higham, 2018], [Amestoy et al., 2021]
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2. When a self-correction mechanism is available

3. When other approximations are being used 
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1. When low accuracy is needed

2. When a self-correction mechanism is available

3. When other approximations are being used 

• E.g., reduced models, sparsification, low-rank approximations, randomization

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, randomizationLow-rank approximation

𝐴 ≈
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Mixed Precision Sparse Approximate 
Inverse Preconditioners



SPAI Preconditioners
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Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜺

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜺

break;

Else

add select nonzeros to 𝐽, repeat. 



SPAI Preconditioners

Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜺

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜺

break;

Else

add select nonzeros to 𝐽, repeat. 

Benefits: Highly parallelizable

But construction can still be costly, esp. for large-scale problems

[Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tůma, 1999], [He, Yin, Gao, 
2020] 6



SPAI Preconditioners in Low Precision
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What is the effect of using low precision in SPAI construction?

Notes and assumptions:

• We will assume that the SPAI construction is performed in some precision 𝒖𝒇

• We will denote quantities computed in finite precision with hats

• In our application, we want a left preconditioner, so we will run the algorithm 
on 𝐴𝑇 and set 𝑀 ← 𝑀𝑇.

• We will assume that the QR factorization of the submatrix of 𝐴𝑇 is computed 
fully using HouseholderQR/TSQR



SPAI Preconditioners in Low Precision
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Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝒖𝒇 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜺, with Ƹ𝑟𝑘 = 𝑓𝑙𝒖𝒇(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?
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7

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝒖𝒇 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜺, with Ƹ𝑟𝑘 = 𝑓𝑙𝒖𝒇(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?

2. Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern 

as 𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?



SPAI Preconditioning in Low Precision
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Using standard rounding error analysis and perturbation results for LS 
problems, we have

Ƹ𝑟𝑘 2 ≤ 𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜺, we 
need

𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜺.
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Using standard rounding error analysis and perturbation results for LS 
problems, we have

Ƹ𝑟𝑘 2 ≤ 𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜺, we 
need

𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜺.

→ problem must not be so ill-conditioned WRT 𝒖𝒇 that we incur an error 
greater than 𝜺 just computing the residual
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9

Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜺𝒖𝒇
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.
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Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜺𝒖𝒇
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.

Another view: with a given matrix 𝐴 and a given precision 𝒖𝒇, one must set 𝜺
such that 

𝜺 ≥ 𝒖𝒇cond2 𝐴𝑇 .

Confirms intuition: The more approximate the inverse, the lower the 
precision we can use. 
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9

Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜺𝒖𝒇
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.

Another view: with a given matrix 𝐴 and a given precision 𝒖𝒇, one must set 𝜺
such that 

𝜺 ≥ 𝒖𝒇cond2 𝐴𝑇 .

Confirms intuition: The more approximate the inverse, the lower the 
precision we can use. 

Resulting bounds for 𝑀: 

𝐼 − 𝐴𝑇 𝑀𝑇
𝐹
≤ 2 𝑛𝜺,           𝐼 − 𝑀𝐴

∞
≤ 2𝑛𝜺



Size of SPAI Preconditioner in Low Precision
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How does precision used affect the number of nonzeros in 𝑀?

steam3
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How does precision used affect the number of nonzeros in 𝑀?

saylr1steam3



Second Question
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Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern as 

𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?



Second Question
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Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern as 

𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?

In this case, we obtain the bound

𝐼 − 𝑀𝐴
∞
≤ 𝑛 𝜺 + 𝑛 Τ7 2𝒖𝒇𝜅∞ 𝐴 .

→ If 𝜅∞ 𝐴 ≫ 𝜺𝒖𝒇
−1, then computed 𝑀 with same sparsity structure as 𝑀 can 

be of much lower quality. 



Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

𝑢𝑓 = factorization precision, 𝑢 = working precision,   𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

𝒖𝒔 is the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

3-precision iterative refinement [C. and Higham, 2018]

12



GMRES-Based Iterative Refinement
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• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, 
then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝒖𝒔 = 𝒖



GMRES-IR with Inexact Preconditioners
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• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use approximate preconditioners 
(ILU, SPAI, etc.)

• [Amestoy et al., 2022]

• Analysis of block low-rank (BLR) LU within GMRES-IR 

• Analysis of use of static pivoting in LU within GMRES-IR

• [C., Khan, 2022]

• Analysis of sparse approximate inverse (SPAI) 
preconditioners within GMRES-IR



SPAI-GMRES-IR
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SPAI-GMRES-IR

To compute the updates 𝑑𝑖, apply GMRES to   𝑀𝐴𝑑𝑖 = 𝑀𝑟𝑖

Solve 𝑀𝐴𝑥0 = 𝑀𝑏

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on 𝑀𝐴𝑑𝑖 = 𝑀𝑟𝑖



Low Precision SPAI within GMRES-IR

16

Using 𝑀 computed in precision 𝒖𝒇, for the preconditioned system ሚ𝐴 = 𝑀𝐴,

𝜅∞ ሚ𝐴 ≲ 1 + 2𝑛𝜺 2.

saylr1steam3



Low Precision SPAI within GMRES-IR

17

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.
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𝑀 can be 
constructed

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.
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𝑀 can be 
constructed

𝑀 is a good enough 
preconditioner

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.

If 𝜀 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 

𝑀 can be 
constructed

𝑀 is a good enough 
preconditioner



Low Precision SPAI within GMRES-IR

17

𝑀 can be 
constructed

𝑀 is a good enough 
preconditioner

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.

If 𝜀 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 

Compared to GMRES-IR with full LU factorization, in general expect slower 
convergence, but much sparser preconditioner. 



SPAI-GMRES-IR Example

18

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



SPAI-GMRES-IR Example

18

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, double, quad)

nnz(𝐿 + 𝑈) = 13,765

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



SPAI-GMRES-IR Example

18

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, double, quad)

nnz(𝑀) = 2,248nnz(𝐿 + 𝑈) = 13,765

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



A Question

19

Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103

Is there a point in using precision higher than that dictated by 𝒖𝒇cond2 𝐴𝑇 ≤ 𝜺?

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (half, single, double)



A Question
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Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (half, single, double)

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.2𝑒 + 02 26801 69 (32, 37)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7529 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, single, double)

Is there a point in using precision higher than that dictated by 𝒖𝒇cond2 𝐴𝑇 ≤ 𝜺?

Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103



Ongoing and Future Work
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• Incorporate mixed-precision storage of 𝑀 and adaptive-precision SpMV
to apply 𝑀 using the work of [Graillat et al., 2002]

• Theoretical analysis of incomplete factorization preconditioners in mixed 
precision

• Experimental work shows that half precision works well in practice 
[Scott, Tůma, 2023]



Mixed Precision Randomized 
Preconditioners



Our setting

21

Let 𝐴 ∈ ℝ𝑛×𝑛 be a symmetric positive semidefinite matrix. Want to solve

𝐴 + 𝜇𝐼 𝑥 = 𝑏

where 𝜇 ≥ 0 is set so that 𝐴 + 𝜇𝐼 is positive definite. 

Assume 𝐴 has rapidly decreasing eigenvalues or cluster of large eigenvalues. 

Many applications, e.g., ridge regression. 



Limited Memory Preconditioners

22

Want to solve using PCG using spectral limited memory preconditioner [Gratton, 
Sartenaer, Tshimanga, 2011], [Tshimanga et al., 2008]:

𝑃 = 𝐼 − 𝑈𝑈𝑇 +
1

𝛼+𝜇
𝑈 Θ + 𝜇𝐼 𝑈𝑇

𝑃−1 = 𝐼 − 𝑈𝑈𝑇 + 𝛼 + 𝜇 𝑈 Θ + 𝜇𝐼 −1𝑈𝑇

where columns of 𝑼 ∈ ℝ𝒏×𝒌 are 𝒌 approximate eigenvectors of 𝑨 and 𝑈𝑇𝑈 = 𝐼,          

𝚯 is diagonal with approximations to eigenvalues of 𝑨, and 𝛼 ≥ 0.

Used in data assimilation [Laloyaux et al., 2018], [Mogensen, Alonso Balmaseda, 

Weaver, 2012], [Moore et al., 2011], [Daužickaitė, Lawless, Scott, van Leeuwen, 2021]



Randomized Nystrӧm Approximation

23

Want to compute a rank-𝑘 approximation 𝐴 ≈ 𝑈Θ𝑈𝑇 via the randomized 
Nystrӧm method.

Nystrӧm approximation:

𝐴𝑁 = 𝐴𝑄 𝑄𝑇𝐴𝑄 + 𝐴𝑄 𝑇

where 𝑄 is an 𝑛 × 𝑘 test matrix (random projection). 

In the case that 𝐴 is very large, matrix-matrix products with 𝐴 are the 
bottleneck.

This motivates the single-pass version of the Nystrӧm method.



Randomized Nystrӧm Approximation
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Given sym. PSD matrix 𝐴, target rank 𝑘

𝐺 = randn(𝑛, 𝑘)

[𝑄,~]= qr(𝐺, 0)

𝑛

𝑘

[Tropp et al., 2017]
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𝑛

𝑘

𝑛

𝑘𝑛

=

𝑘
𝑛 𝑘

=

=

𝑈 Θ

Given sym. PSD matrix 𝐴, target rank 𝑘

𝐺 = randn(𝑛, 𝑘)

[𝑄,~]= qr(𝐺, 0)

𝒀 = 𝑨𝑸

Compute shift 𝜈; 𝑌𝜈 = 𝑌 + 𝜈𝑄

𝐵 = 𝑄𝑇𝑌𝜈

𝐶 = chol((𝐵 + 𝐵𝑇)/2)

Solve 𝐹 = 𝑌𝜈/𝐶

[𝑈, Σ, ~] = svd(𝐹, 0)

Θ = max 0, Σ2 − 𝜈𝐼

[Tropp et al., 2017]
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Given sym. PSD matrix 𝐴, target rank 𝑘

𝐺 = randn(𝑛, 𝑘)

[𝑄,~]= qr(𝐺, 0)

𝒀 = 𝑨𝑸

Compute shift 𝜈; 𝑌𝜈 = 𝑌 + 𝜈𝑄

𝐵 = 𝑄𝑇𝑌𝜈

𝐶 = chol((𝐵 + 𝐵𝑇)/2)

Solve 𝐹 = 𝑌𝜈/𝐶

[𝑈, Σ, ~] = svd(𝐹, 0)

Θ = max 0, Σ2 − 𝜈𝐼

𝑛

𝑘

𝑛

𝑘𝑛

=

𝑘
𝑛 𝑘

=

=

𝑈 Θ

Can we further reduce the cost 
of the matrix-matrix product 
with 𝐴 by using low precision?

[Tropp et al., 2017]



Error Bounds
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𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

exact Nystrӧm 
approximation

Nystrӧm approximation 
computed in 
finite precision
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𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

Deterministic bound [Gittens, Mahoney, 2016]:

𝐴 − 𝐴𝑁 2 ≤ 𝜆𝑘+1 + Σ2
Τ1 2𝑈2

𝑇𝑄 𝑈1𝑄
+

2

2

with 𝐴 = 𝑈1 𝑈2
Σ1

Σ2
𝑈1 𝑈2

𝑇. 

exact 
approximation 

error

finite precision
error
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𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

Deterministic bound [Gittens, Mahoney, 2016]:

𝐴 − 𝐴𝑁 2 ≤ 𝜆𝑘+1 + Σ2
Τ1 2𝑈2

𝑇𝑄 𝑈1𝑄
+

2

2

with 𝐴 = 𝑈1 𝑈2
Σ1

Σ2
𝑈1 𝑈2

𝑇. 

Expected value bound [Frangella, Tropp, Udell, 2021]:

𝔼 𝐴 − 𝐴𝑁 2 ≤ min
2≤𝑝≤𝑘−2

1 +
2(𝑘 − 𝑝)

𝑝 − 1
𝜆𝑘−𝑝+1 +

2𝑒2𝑘

𝑝2 − 1


𝑗=𝑘−𝑝+1

𝑛

𝜆𝑗

where 𝜆𝑖 ≥ 𝜆𝑖+1 are the eigenvalues of 𝐴.

exact 
approximation 

error

finite precision
error



Finite Precision Error Bound

26

Finite precision error: 𝐴𝑁 − መ𝐴𝑁

Assumptions: 

• 𝐴 is stored in precision 𝑢𝑝 and matrix-matrix product 𝐴𝑄 is computed in 
precision 𝑢𝑝

• All other quantities stored and computed in precision 𝑢 ≪ 𝑢𝑝
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• 𝐴 is stored in precision 𝑢𝑝 and matrix-matrix product 𝐴𝑄 is computed in 
precision 𝑢𝑝

• All other quantities stored and computed in precision 𝑢 ≪ 𝑢𝑝

[C., Daužickaitė, 2022]: With failure probability at most 𝑒−𝑡
2/2 + 𝑐1𝛼,

𝐴𝑁 − መ𝐴𝑁 2
≲ 𝛼−1𝑛 Τ1 2𝑘 𝑛 Τ1 2 + 𝑘 Τ1 2 + 𝑡

2
𝑢𝑝 𝐴 2𝜅(𝐴𝑘)

where 𝐴𝑘 is the best rank-𝑘 approximation of 𝐴
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2
𝑢𝑝 𝐴 2𝜅(𝐴𝑘)

where 𝐴𝑘 is the best rank-𝑘 approximation of 𝐴

Interpretation: Likely that  𝐴𝑁 − መ𝐴𝑁 2
≳ 𝐴 − 𝐴𝑁 2 when 

𝜆𝑘+1
𝜆1

≲ 𝑛𝑢𝑝
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26

Finite precision error: 𝐴𝑁 − መ𝐴𝑁

Assumptions: 

• 𝐴 is stored in precision 𝑢𝑝 and matrix-matrix product 𝐴𝑄 is computed in 
precision 𝑢𝑝

• All other quantities stored and computed in precision 𝑢 ≪ 𝑢𝑝

[C., Daužickaitė, 2022]: With failure probability at most 𝑒−𝑡
2/2 + 𝑐1𝛼,

𝐴𝑁 − መ𝐴𝑁 2
≲ 𝛼−1𝑛 Τ1 2𝑘 𝑛 Τ1 2 + 𝑘 Τ1 2 + 𝑡

2
𝑢𝑝 𝐴 2𝜅(𝐴𝑘)

where 𝐴𝑘 is the best rank-𝑘 approximation of 𝐴

Interpretation: Likely that  𝐴𝑁 − መ𝐴𝑁 2
≳ 𝐴 − 𝐴𝑁 2 when 

𝜆𝑘+1
𝜆1

≲ 𝑛𝑢𝑝

The more approximate 
the low-rank 
representation, the lower 
the precision we can use!



Condition Number Bounds

27

Let 𝐸 = 𝐴 − 𝐴𝑁, ℰ = 𝐴𝑁 − መ𝐴𝑁, and assume (𝐴 + 𝜇𝐼) is SPD. 

Let 
𝑃−1 = 𝐼 − 𝑈𝑈𝑇 + መ𝜆𝑘 + 𝜇 𝑈 Θ + 𝜇𝐼

−1𝑈𝑇

be the LMP preconditioner constructed using the mixed precision Nystrӧm 
approximation መ𝐴𝑁 = 𝑈Θ𝑈𝑇.
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be the LMP preconditioner constructed using the mixed precision Nystrӧm 
approximation መ𝐴𝑁 = 𝑈Θ𝑈𝑇.

Then

max 1,
መ𝜆𝑘 + 𝜇 − ℰ 2

𝜇 + 𝜆𝑚𝑖𝑛(𝐴)
≤ 𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ 1 +

መ𝜆𝑘 + 𝐸 2 + 2 ℰ 2

𝜇 − ℰ 2

where the upper bound holds if 𝜇 > ℰ 2. 

Regardless of this constraint, if 𝐴 is positive definite, then 

𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ መ𝜆𝑘 + 𝜇 + 𝐸 2 + ℰ 2

1

መ𝜆𝑘 + 𝜇
+

ℰ 2 + 1

𝜆𝑚𝑖𝑛 𝐴 + 𝜇
.
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𝑃−1 = 𝐼 − 𝑈𝑈𝑇 + መ𝜆𝑘 + 𝜇 𝑈 Θ + 𝜇𝐼

−1𝑈𝑇

be the LMP preconditioner constructed using the mixed precision Nystrӧm 
approximation መ𝐴𝑁 = 𝑈Θ𝑈𝑇.

Then

max 1,
መ𝜆𝑘 + 𝜇 − ℰ 2

𝜇 + 𝜆𝑚𝑖𝑛(𝐴)
≤ 𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ 1 +

መ𝜆𝑘 + 𝐸 2 + 2 ℰ 2

𝜇 − ℰ 2

where the upper bound holds if 𝜇 > ℰ 2. 

Regardless of this constraint, if 𝐴 is positive definite, then 

𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2 ≤ መ𝜆𝑘 + 𝜇 + 𝐸 2 + ℰ 2

1

መ𝜆𝑘 + 𝜇
+

ℰ 2 + 1

𝜆𝑚𝑖𝑛 𝐴 + 𝜇
.

If ℰ = 0, reduces to bounds of [Frangella, 
Tropp, Udell, 2021] for exact case.



Numerical Experiment
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Matrix: bcsstm07, 𝑛 = 420

𝜆𝑘+1/𝜆1

𝑛𝑢𝑝, 𝑢𝑝 = half

𝑛𝑢𝑝, 𝑢𝑝 = single

𝑘

https://github.com/dauzickaite/mpNystrom

https://github.com/dauzickaite/mpNystrom


Numerical Experiment
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Matrix: bcsstm07, 𝑛 = 420

mean total error, 𝐴 − መ𝐴𝑁 2

mean finite prec. error, 𝐴𝑁 − መ𝐴𝑁 2

exact 

mixed, 𝑢𝑝 = half

mixed, 𝑢𝑝 = single

mixed, 𝑢𝑝 = double

28https://github.com/dauzickaite/mpNystrom

https://github.com/dauzickaite/mpNystrom


Numerical Experiment

unpreconditioned

exact 

mixed, 𝑢𝑝 = half

mixed, 𝑢𝑝 = single

mixed, 𝑢𝑝 = double

𝜅 𝑃− Τ1 2 𝐴 + 𝜇𝐼 𝑃− Τ1 2

PCG iteration count

https://github.com/dauzickaite/mpNystrom 28

https://github.com/dauzickaite/mpNystrom


Ongoing Work
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• Mixed-precision randomized preconditioners for Krylov subspace method-
based iterative refinement of least squares problems min

𝑥
𝑏 − 𝐴𝑥 2

Compute 𝑅 factor of 𝑄𝑅 decomposition of randomly sketched 𝐴 using precision 𝑢𝑠
(sketching step) and 𝑢𝑜 (QR step).

Solve min
𝑥

𝑏 − 𝐴𝑥 2via LSQR preconditioned with 𝑅 in precision 𝑢 to get initial solution 𝑥0
and residual 𝑟0.

for 𝑖 = 0,… , until convergence

Compute residual 
𝑓𝑖
𝑔𝑖

=
𝑏
0
−

𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

and ℎ𝑖 = 𝑅−𝑇𝑔𝑖 in precision 𝑢𝑟.

Solve via KSM in (effective) precision 𝑢𝑠:

𝐼 0
0 𝑅−𝑇

𝐼 𝐴
𝐴𝑇 0

𝐼 0
0 𝑅−1

𝛿𝑟𝑖
𝛿𝑧𝑖

=
𝑓𝑖
ℎ𝑖

, 

where 𝑅𝛿𝑥𝑖 = 𝛿𝑧𝑖.

Update in precision 𝑢:

𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
𝛿𝑟𝑖
𝛿𝑥𝑖

• Collaboration with Hartwig Anzt and Vasileios Georgiou
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can use sketch-and-apply approach of 
[Meier et al., 2023]



Summary and Takeaway
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• To efficiently use modern exascale machines, we need to use 
mixed precision hardware

• Understanding the interaction and balance of errors from 
finite precision and sources of algorithmic approximation is 
thus crucial

• Careful analysis will reveal not only limitations, but  
opportunities!



carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/
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