
Erin C. Carson
Department of Numerical Mathematics, Faculty of Mathematics and Physics,

Charles University

Joint work with Nicholas J. Higham, Srikara Pranesh

Advanced Solvers for Modern Architectures

November 11-13, 2019, Münster, Germany

Iterative Refinement
in Three Precisions

This research was supported by Charles University Primus program project No.

PRIMUS/19/SCI/11.

Exascale Computing: The Modern Space Race

• "Exascale": 𝟏𝟎𝟏𝟖 floating point operations per second

• with maximum energy consumption around 20-40 MWatts

• Large investment in HPC worldwide

2

Exascale Computing: The Modern Space Race

• "Exascale": 𝟏𝟎𝟏𝟖 floating point operations per second

• with maximum energy consumption around 20-40 MWatts

• Technical challenges at all levels

hardware to algorithms to applications

• Large investment in HPC worldwide

2

Exascale Computing: The Modern Space Race

• "Exascale": 𝟏𝟎𝟏𝟖 floating point operations per second

• with maximum energy consumption around 20-40 MWatts

• Technical challenges at all levels

hardware to algorithms to applications

• Large investment in HPC worldwide

2

Hardware Support for Multiprecision Computation

3

• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017:

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision;

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU): quantizes 32-bit FP computations
into 8-bit integer arithmetic

• Future exascale supercomputers: (~2021) Expected extensive support for
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

Performance of LU factorization on an NVIDIA V100 GPU

4[Haidar, Tomov, Dongarra, Higham, 2018]

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

5

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Traditional"

(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

5

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Traditional"

(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1,
• relative forward error is 𝑂 𝑢
• relative normwise and componentwise backward errors are 𝑂(𝑢)

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

5

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]
6

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1,
• relative forward error is 𝑂(𝑢)cond 𝐴, 𝑥
• relative normwise and componentwise backward errors are 𝑂(𝑢)

6

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

7

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1/2,
• relative forward error is 𝑂(𝑢)cond 𝐴, 𝑥
• relative normwise and componentwise backward errors are 𝑂(𝑢)

7

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

8

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

⇒ 3-precision iterative refinement

8

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM
SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

8

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM
SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

• Enables new types of IR: (half, single, double), (half, single, quad),
(half, double, quad), etc. 8

Key Analysis Innovations I

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

9

Key Analysis Innovations I

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − 𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

9

Key Analysis Innovations I

𝜇𝑖 ≪ 1

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − 𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 𝑥𝑖

≈ 𝑢 ≪
𝑥 − 𝑥𝑖

𝑥

9

Key Analysis Innovations I

𝜇𝑖 ≪ 1

𝜇𝑖 ≈ 1

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − 𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 𝑥𝑖

≈ 𝑢 ≪
𝑥 − 𝑥𝑖

𝑥

But close to convergence,
𝑟𝑖 ≈ 𝐴 𝑥 − 𝑥𝑖

9

Key Analysis Innovations II

10

Allow for general solver:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

10

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

10

example: LU solve:

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

10

example: LU solve:

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

10

example: LU solve:

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

10𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, 𝑟𝑖, 𝑛, and 𝒖𝒔

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇
 𝐿 𝑈

∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

10𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, 𝑟𝑖, 𝑛, and 𝒖𝒔

Key Analysis Innovations II

Allow for general solver:

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, 𝑟𝑖, 𝑛, and 𝒖𝒔

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇
 𝐿 𝑈

∞

10

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

11

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 2𝒖𝒔 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a
factor ≈ 𝜙𝑖 until an iterate 𝑥𝑖 is produced for which

𝑥 − 𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

11

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

Analogous traditional bounds: 𝜙𝑖 ≡ 3𝑛𝒖𝒇𝜅∞ 𝐴

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 2𝒖𝒔 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a
factor ≈ 𝜙𝑖 until an iterate 𝑥𝑖 is produced for which

𝑥 − 𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

11

Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is less than 1, then the residual is reduced on the 𝑖th iteration by a factor
≈ 𝜙𝑖 until an iterate 𝑥𝑖 is produced for which

𝑏 − 𝐴 𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞ 𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

12

IR3: Summary

13

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

LP fact.

LP fact.

LP fact.

13

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Fixed

LP fact.

LP fact.

LP fact.

13

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Trad.

Fixed

LP fact.

LP fact.

LP fact.

13

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

13

IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

14

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

14

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower
precision factorization w/no loss of accuracy!

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

A = gallery('randsvd', 100, 1e3)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 1e4

15

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e7)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 7e7

15

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

15

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

15

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

15

100

Standard (LU-based) IR with 𝒖𝒇: double, 𝒖: double, 𝒖𝒓: quad

GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝒖𝒇, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

16

GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to 𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

 𝐴 𝑟𝑖

16

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝒖𝒇, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to 𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

 𝐴 𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on 𝐴𝑑𝑖 = 𝑟𝑖

16

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝒖𝒇, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to 𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

 𝐴 𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on 𝐴𝑑𝑖 = 𝑟𝑖

𝒖𝒔 = 𝒖

16

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝒖𝒇, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

17

100

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞
 𝐴 ≈ 2e4

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞
 𝐴 ≈ 2e4

17

100

GMRES-IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

Number of GMRES iterations: (2,3)

GMRES-IR: Summary

Benefits of GMRES-IR:

18

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

18

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

18

𝜅∞ 𝐴 ≤ 𝒖− 1 2 𝒖𝒇
−1

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ If 𝜅∞ 𝐴 ≤ 1012, can use lower precision factorization w/no loss of accuracy!

18

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3

18

https://github.com/eccarson/ir3/

Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

19

Comments and Caveats

• Convergence rate of GMRES?

19

Comments and Caveats

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if 𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

19

Comments and Caveats

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if 𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

• Depending on conditioning of A, applying 𝐴 to a vector must be done accurately
(precision 𝑢2) in each GMRES iteration

19

Comments and Caveats

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if 𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

• Depending on conditioning of A, applying 𝐴 to a vector must be done accurately
(precision 𝑢2) in each GMRES iteration

• Why GMRES?

• Theoretical purposes: existing analysis and proof of backward stability [Paige,
Rozložník, Strakoš, 2006]

• In practice, use any solver you want!

19

Extension to Least Squares Problems
• Want to solve

min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 × 𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

20

Extension to Least Squares Problems
• Want to solve

min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 × 𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement
often needed to improve accuracy and stability

20

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Least Squares Iterative Refinement

21

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

21

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

 𝐴 𝑥 = 𝑏

21

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

 𝐴 𝑥 = 𝑏

 𝑟𝑖 = 𝑏 − 𝐴 𝑥𝑖

 𝐴𝑑𝑖 = 𝑟𝑖

 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

21

Least Squares Iterative Refinement
• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

 𝐴 𝑥 = 𝑏

 𝑟𝑖 = 𝑏 − 𝐴 𝑥𝑖

 𝐴𝑑𝑖 = 𝑟𝑖

 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖
Results for 3-precision
IR for linear systems
also applies to least
squares problems

21

Least Squares Iterative Refinement

• To apply the existing analysis, we must consider:

1. How is the condition number of 𝐴 related to the condition number of
𝐴?

2. What are bounds on the forward and backward error in solving the
correction equation 𝐴𝑑𝑖 = 𝑟𝑖?

• We now have a QR factorization rather than an LU factorization,
and the augmented system has structure which can be exploited

22

Augmented System Condition Number
• Result of Björck (1967):

The matrix

 𝐴𝛼 =
𝛼𝐼 𝐴
𝐴𝑇 0

has condition number bounded by

2𝜅2 𝐴 ≤ min
𝛼

𝜅2
 𝐴𝛼 ≤ 2𝜅2 𝐴 , max

𝛼
𝜅2

 𝐴𝛼 > 𝜅2 𝐴 2

and min
𝛼

𝜅2
 𝐴𝛼 is attained for 𝛼 = 2−

1

2 𝜎𝑚𝑖𝑛(𝐴).

23

Augmented System Condition Number
• Result of Björck (1967):

The matrix

 𝐴𝛼 =
𝛼𝐼 𝐴
𝐴𝑇 0

has condition number bounded by

2𝜅2 𝐴 ≤ min
𝛼

𝜅2
 𝐴𝛼 ≤ 2𝜅2 𝐴 , max

𝛼
𝜅2

 𝐴𝛼 > 𝜅2 𝐴 2

and min
𝛼

𝜅2
 𝐴𝛼 is attained for 𝛼 = 2−

1

2 𝜎𝑚𝑖𝑛(𝐴).

• Scaling does not change the solution to least squares problem; further, if 𝛼
is a power of the machine base, it doesn't affect rounding errors

⇒ Safe to assume that 𝜅2(𝐴) is the same order of magnitude as 𝜅2(𝐴)

23

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

24

precision 𝑢𝑓

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

precision 𝑢𝑓

precision 𝑢

24

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

For 𝑖 = 0, …

Compute residuals
𝑓𝑖

𝑔𝑖
=

𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

precision 𝑢𝑓

precision 𝑢

precision 𝑢𝑟

24

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

For 𝑖 = 0, …

Compute residuals
𝑓𝑖

𝑔𝑖
=

𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

Solve
𝐼 𝐴

𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖
, via

ℎ = 𝑈−𝑇𝑔𝑖

𝑑1

𝑑2
= 𝑄1, 𝑄2

𝑇𝑓𝑖

Δ𝑟𝑖 = 𝑄
ℎ
𝑑2

Δ𝑥𝑖 = 𝑈−1(𝑑1 − ℎ)

precision 𝑢𝑓

precision 𝑢

precision 𝑢𝑟

precision 𝑢

24

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

For 𝑖 = 0, …

Compute residuals
𝑓𝑖

𝑔𝑖
=

𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

Solve
𝐼 𝐴

𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖
, via

ℎ = 𝑈−𝑇𝑔𝑖

𝑑1

𝑑2
= 𝑄1, 𝑄2

𝑇𝑓𝑖

Δ𝑟𝑖 = 𝑄
ℎ
𝑑2

Δ𝑥𝑖 = 𝑈−1(𝑑1 − ℎ)

Update 𝑥𝑖+1 = 𝑥𝑖 + Δ𝑥𝑖, 𝑟𝑖+1 = 𝑟𝑖 + Δ𝑟𝑖

precision 𝑢𝑓

precision 𝑢

precision 𝑢𝑟

precision 𝑢

precision 𝑢

24

Returning to IR3 Analysis...

25

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴
∞

≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

Returning to IR3 Analysis...

𝒖𝒔 = 𝒖𝒇

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴
∞

≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

25

Returning to IR3 Analysis...

𝒖𝒔 = 𝒖𝒇

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞
1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴
∞

≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

25

Returning to IR3 Analysis...

𝒖𝒔 = 𝒖𝒇

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴
∞

≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

25

Returning to IR3 Analysis...

𝒖𝒔 = 𝒖𝒇

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ = 𝑂 𝒖𝒇
 𝐴

∞

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴
∞

≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

25

Returning to IR3 Analysis...

𝒖𝒔 = 𝒖𝒇

As long as 𝜅∞
 𝐴 ≲ 𝒖𝒇

−𝟏, expect convergence to

limiting relative forward error

 𝑥 − 𝑥
∞

 𝑥 ∞
≈ 𝒖𝒓 cond 𝐴, 𝑥 + 𝒖

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ = 𝑂 𝒖𝒇
 𝐴

∞

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴
∞

≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

25

Returning to IR3 Analysis...

𝒖𝒔 = 𝒖𝒇

As long as 𝜅∞
 𝐴 ≲ 𝒖𝒇

−𝟏, expect convergence to

limiting relative forward error

 𝑥 − 𝑥
∞

 𝑥 ∞
≈ 𝒖𝒓 cond 𝐴, 𝑥 + 𝒖

As long as 𝜅∞
 𝐴 ≲ 𝒖𝒇

−𝟏, expect normwise and

componentwise backward errors to be 𝑂(𝒖)

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ = 𝑂 𝒖𝒇
 𝐴

∞

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴
∞

≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴

∞

25

26

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

𝑚 𝑛

A = gallery('randsvd', [100, 10], kappa,3)

b = randn(100,1); b = b./norm(b)

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

𝑚 𝑛

A = gallery('randsvd', [100, 10], kappa,3)

b = randn(100,1); b = b./norm(b)

26

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', [100, 10], kappa,3)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

26

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

𝑚 𝑛

A = gallery('randsvd', [100, 10], kappa,3)

b = randn(100,1); b = b./norm(b)

26

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

𝑚 𝑛

A = gallery('randsvd', [100, 10], kappa,3)

b = randn(100,1); b = b./norm(b)

26

GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

• Again, don't want to compute an LU factorization of the augmented system

• How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

• Note that augmented system is a saddle-point system; lots of existing work (block
diagonal, triangular, constraint-based, ...)

27

GMRES-IR for Least Squares

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

𝛼𝐼 0

0
1

𝛼
 𝑅𝑇 𝑅

=

𝛼𝐼 0

0
1

𝛼
 𝑅𝑇

𝛼𝐼 0

0
1

𝛼
 𝑅

≡ 𝑀1𝑀2

28

GMRES-IR for Least Squares

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

𝛼𝐼 0

0
1

𝛼
 𝑅𝑇 𝑅

=

𝛼𝐼 0

0
1

𝛼
 𝑅𝑇

𝛼𝐼 0

0
1

𝛼
 𝑅

≡ 𝑀1𝑀2

• Assuming QR factorization is exact,

𝑀2
−1𝑀1

−1 𝐴 =
𝐼

1

𝛼
𝐴

𝛼 𝑅−1 𝑅−𝑇𝐴𝑇 0

is nonsymmetric, diagonalizable, with eigenvalues 1,
1

2
1 ± 5 .

• However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

28

GMRES-IR for Least Squares

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

𝛼𝐼 0

0
1

𝛼
 𝑅𝑇 𝑅

=

𝛼𝐼 0

0
1

𝛼
 𝑅𝑇

𝛼𝐼 0

0
1

𝛼
 𝑅

≡ 𝑀1𝑀2

• Assuming QR factorization is exact,

𝑀2
−1𝑀1

−1 𝐴 =
𝐼

1

𝛼
𝐴

𝛼 𝑅−1 𝑅−𝑇𝐴𝑇 0

is nonsymmetric, diagonalizable, with eigenvalues 1,
1

2
1 ± 5 .

• However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

• If we take split preconditioner

𝑀1
−1 𝐴𝑀2

−1 = 𝐼 𝐴 𝑅
 𝑅−𝑇𝐴𝑇 0

we will have a well-conditioned system

• However, split-preconditioned GMRES is not backward stable

• Potentially useful in practice, not but in theory
28

GMRES-IR for Least Squares
• One option:

𝑀 =
𝛼𝐼 𝑄1

 𝑅
 𝑅𝑇 𝑄1

𝑇 0

• Then we can prove that for the left-preconditioned system,

𝜅 𝑀−1 𝐴 ≤ 1 + 𝒖𝒇𝑐 𝜅 𝐴
2

where 𝑐 = 𝑂(𝑚2), where we note this bound is pessimistic.

• Thus even if 𝜅 𝐴 ≫ 𝒖𝒇
−1, the preconditioned system can still be reasonably

well conditioned

29

GMRES-IR for Least Squares
• One option:

𝑀 =
𝛼𝐼 𝑄1

 𝑅
 𝑅𝑇 𝑄1

𝑇 0

• Then we can prove that for the left-preconditioned system,

𝜅 𝑀−1 𝐴 ≤ 1 + 𝒖𝒇𝑐 𝜅 𝐴
2

where 𝑐 = 𝑂(𝑚2), where we note this bound is pessimistic.

• Thus even if 𝜅 𝐴 ≫ 𝒖𝒇
−1, the preconditioned system can still be reasonably

well conditioned

• GMRES run on 𝐴 with left-preconditioner 𝑀 gives

𝒖𝒔 𝐸𝑖 ∞ ≡ 𝒖 𝑓 𝑚 + 𝑛 𝜅∞(𝑀−1 𝐴)

where 𝑓 is a quadratic polynomial

29

GMRES-IR for Least Squares
• One option:

𝑀 =
𝛼𝐼 𝑄1

 𝑅
 𝑅𝑇 𝑄1

𝑇 0

• Then we can prove that for the left-preconditioned system,

𝜅 𝑀−1 𝐴 ≤ 1 + 𝒖𝒇𝑐 𝜅 𝐴
2

where 𝑐 = 𝑂(𝑚2), where we note this bound is pessimistic.

• Thus even if 𝜅 𝐴 ≫ 𝒖𝒇
−1, the preconditioned system can still be reasonably

well conditioned

• GMRES run on 𝐴 with left-preconditioner 𝑀 gives

𝒖𝒔 𝐸𝑖 ∞ ≡ 𝒖 𝑓 𝑚 + 𝑛 𝜅∞(𝑀−1 𝐴)

where 𝑓 is a quadratic polynomial

• So for GMRES-based LSIR, 𝒖𝒔 ≡ 𝒖; expect convergence of forward error
when 𝜅∞ 𝐴 < 𝒖−1/2𝒖𝒇

−1

29

gallery('randsvd', [100,10], kappa(i), 3)

QR factorization computed in half precision; preconditioned system computed exactly

30

31

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', [100, 10], kappa, 3)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', [100, 10], kappa, 3)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

31

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', [100, 10], kappa, 3)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

31

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', [100, 10], kappa, 3)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

31

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

32

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision)

32

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision)

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

32

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision)

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

• As numerical analysts, we must determine when and where we can exploit
lower-precision hardware to improve performance

32

carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

Thank You!

