Erin C. Carson

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Joint work with Nicholas J. Higham, Srikara Pranesh

Advanced Solvers for Modern Architectures

November 11-13, 2019, Münster, Germany

This research was supported by Charles University Primus program project No. PRIMUS/19/SCI/11.

Exascale Computing: The Modern Space Race

- "Exascale": 10¹⁸ floating point operations per second
 - with maximum energy consumption around 20-40 MWatts
- Large investment in HPC worldwide

Exascale Computing: The Modern Space Race

- "Exascale": 10¹⁸ floating point operations per second
 - with maximum energy consumption around 20-40 MWatts
- Large investment in HPC worldwide

• Technical challenges at all levels

hardware to algorithms to applications

Exascale Computing: The Modern Space Race

- "Exascale": 10¹⁸ floating point operations per second
 - with maximum energy consumption around 20-40 MWatts
- Large investment in HPC worldwide

• Technical challenges at all levels

Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of lowprecision capabilities in hardware:

- Half precision (FP16) defined as storage format in 2008 IEEE standard
- ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit
- AMD Radeon Instinct MI25 GPU, 2017:
 - single: 12.3 TFLOPS, half: 24.6 TFLOPS
- NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
- NVIDIA Tesla V100, 2017: tensor cores for half precision; 4x4 matrix multiply in one clock cycle
 - double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)
- Google's Tensor processing unit (TPU): quantizes 32-bit FP computations into 8-bit integer arithmetic
- Future exascale supercomputers: (~2021) Expected extensive support for reduced-precision arithmetic (32/16/8-bit)

Performance of LU factorization on an NVIDIA V100 GPU

[Haidar, Tomov, Dongarra, Higham, 2018]

Iterative refinement: well-established method for improving an approximate solution to Ax = b

A is $n \times n$ and nonsingular; u is unit roundoff

Solve $Ax_0 = b$ by LU factorization for i = 0: maxit $r_i = b - Ax_i$ Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$

Iterative refinement: well-established method for improving an approximate solution to Ax = b

A is $n \times n$ and nonsingular; u is unit roundoff

Solve $Ax_0 = b$ by LU factorization(in precision u)for i = 0: maxit(in precision u^2) $r_i = b - Ax_i$ (in precision u^2)Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ (in precision u) $x_{i+1} = x_i + d_i$ (in precision u)

"Traditional"

(high-precision residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

- relative forward error is O(u)
- relative normwise and componentwise backward errors are O(u)

Solve
$$Ax_0 = b$$
 by LU factorization(in precision u)for $i = 0$: maxit(in precision u^2) $r_i = b - Ax_i$ (in precision u^2)Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ (in precision u) $x_{i+1} = x_i + d_i$ (in precision u)

"Traditional"

(high-precision residual computation)

 $\kappa_{\infty}(A) = \|A^{-1}\|_{\infty} \|A\|_{\infty}$

 $cond(A, x) = || |A^{-1}||A||x| ||_{\infty} / ||x||_{\infty}$

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

Solve $Ax_0 = b$ by LU factorization(in precision u)for i = 0: maxit(in precision u) $r_i = b - Ax_i$ (in precision u)Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$ (in precision u)

"Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

- relative forward error is O(u)cond(A, x)
- relative normwise and componentwise backward errors are O(u)

Solve
$$Ax_0 = b$$
 by LU factorization(in precision u)for $i = 0$: maxit(in precision u) $r_i = b - Ax_i$ (in precision u)Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$ (in precision u)

"Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

Solve
$$Ax_0 = b$$
 by LU factorization(in precision $u^{1/2}$)for $i = 0$: maxit(in precision u) $r_i = b - Ax_i$ (in precision u)Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$ (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

As long as $\kappa_{\infty}(A) \leq u^{-1/2}$,

- relative forward error is O(u)cond(A, x)
- relative normwise and componentwise backward errors are O(u)

Solve
$$Ax_0 = b$$
 by LU factorization(in precision $u^{1/2}$)for $i = 0$: maxit(in precision u) $r_i = b - Ax_i$ (in precision u)Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$ (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

 \Rightarrow 3-precision iterative refinement

 u_f = factorization precision, u = working precision, u_r = residual precision $u_f \ge u \ge u_r$

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

 \Rightarrow 3-precision iterative refinement

 u_f = factorization precision, u = working precision, u_r = residual precision $u_f \ge u \ge u_r$

• New analysis **generalizes** existing types of IR:

[C. and Higham, SIAM SISC 40(2), 2018]

Traditional	$u_f = u$, $u_r = u^2$
Fixed precision	$u_f = u = u_r$
Lower precision factorization	$u_f^2 = u = u_r$

(and improves upon existing analyses in some cases)

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

 \Rightarrow 3-precision iterative refinement

 u_f = factorization precision, u = working precision, u_r = residual precision $u_f \ge u \ge u_r$

• New analysis **generalizes** existing types of IR:

[C. and Higham, SIAM SISC 40(2), 2018]

Traditional	$u_f=u$, $u_r=u^2$
Fixed precision	$u_f = u = u_r$
Lower precision factorization	$u_f^2 = u = u_r$

(and improves upon existing analyses in some cases)

• Enables **new** types of IR: (half, single, double), (half, single, quad), (half, double, quad), etc.

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Define μ_i : $||A(x - \hat{x}_i)||_{\infty} = \mu_i ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Define μ_i : $||A(x - \hat{x}_i)||_{\infty} = \mu_i ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

For a stable refinement scheme, in early stages we expect

$$\frac{\|r_i\|}{\|A\|\|\hat{x}_i\|} \approx u \ll \frac{\|x - \hat{x}_i\|}{\|x\|} \longrightarrow \mu_i \ll 1$$

Obtain tighter upper bounds:

Typical bounds used in analysis: $||A(x - \hat{x}_i)||_{\infty} \le ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

Define μ_i : $||A(x - \hat{x}_i)||_{\infty} = \mu_i ||A||_{\infty} ||x - \hat{x}_i||_{\infty}$

For a stable refinement scheme, in early stages we expect

$$\frac{\|r_i\|}{\|A\|\|\hat{x}_i\|} \approx u \ll \frac{\|x - \hat{x}_i\|}{\|x\|} \longrightarrow \mu_i \ll 1$$

But close to convergence,

$$||r_i|| \approx ||A|| ||x - \hat{x}_i|| \longrightarrow \mu_i \approx 1$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1. $\hat{d}_i = (I + \mathbf{u}_s E_i)d_i$, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1. $\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1 example: LU solve:

 $\mathbf{u}_{s} \|E_{i}\|_{\infty} \leq 3n \mathbf{u}_{f} \||A^{-1}||\hat{L}||\hat{U}|\|_{\infty}$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

→ normwise relative backward error is at most $\max(c_1, c_2) u_s$

overnley III colver

$$\mathbf{u}_{s} \| E_{i} \|_{\infty} \leq 3n \mathbf{u}_{f} \| |A^{-1}| |\hat{L}| |\hat{U}| \|_{\infty}$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \leq u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

 \rightarrow normwise relative backward error is at most $\max(c_1, c_2) u_s$

example: LU solve:

 $\mathbf{u}_{s} \| E_{i} \|_{\infty} \leq 3n \mathbf{u}_{f} \| |A^{-1}| |\hat{L}| |\hat{U}| \|_{\infty}$

$max(c, c) u \leq c$	$3n\mathbf{u_f} \ \hat{L} \hat{U} \ _{\infty}$
$\max(c_1, c_2) u_s \leq$	$\ A\ _{\infty}$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \leq u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

 \rightarrow normwise relative backward error is at most $\max(c_1, c_2) u_s$

3. $\left| \hat{r}_i - A\hat{d}_i \right| \le \mathbf{u}_s G_i |\hat{d}_i|$

 $\rightarrow\,$ componentwise relative backward error is bounded by a multiple of u_s

 E_i, c_1, c_2 , and G_i depend on A, \hat{r}_i, n , and u_s

 $\mathbf{u}_{s} \| E_{i} \|_{\infty} \leq 3n \mathbf{u}_{f} \| |A^{-1}| |\hat{L}| |\hat{U}| \|_{\infty}$

example: LU solve:

$$\max(c_1, c_2) \, \boldsymbol{u}_s \leq \frac{3n \boldsymbol{u}_f \left\| |\hat{L}| |\hat{U}| \right\|_{\infty}}{\|A\|_{\infty}}$$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \leq u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

 \rightarrow normwise relative backward error is at most $\max(c_1, c_2) u_s$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \le \mathbf{u}_s G_i |\hat{d}_i|$$

 $\rightarrow\,$ componentwise relative backward error is bounded by a multiple of $u_{\scriptscriptstyle S}$

 E_i, c_1, c_2 , and G_i depend on A, \hat{r}_i, n , and u_s

 $\mathbf{u}_{\mathbf{s}} \| E_i \|_{\infty} \le 3n \mathbf{u}_f \| |A^{-1}| |\hat{L}| |\hat{U}| \|_{\infty}$

example: LU solve:

$$\max(c_1, c_2) \, \boldsymbol{u}_s \leq \frac{3n \boldsymbol{u}_f \left\| |\hat{L}| |\hat{U}| \right\|_{\infty}}{\|A\|_{\infty}}$$

 $\mathbf{u}_{s} \|G_{i}\|_{\infty} \leq 3n \mathbf{u}_{f} \| |\hat{L}| |\hat{U}| \|_{\infty}$

Allow for general solver:

Let u_s be the *effective precision* of the solve, with $u \leq u_s \leq u_f$

Assume computed solution \hat{d}_i to $Ad_i = \hat{r}_i$ satisfies:

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 \rightarrow normwise relative forward error is bounded by multiple of u_s and is less than 1

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \leq u_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

 \rightarrow normwise relative backward error is at most $\max(c_1, c_2) u_s$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \le \frac{\mathbf{u}_s}{\mathbf{u}_s}G_i|\hat{d}_i|$$

 $\rightarrow\,$ componentwise relative backward error is bounded by a multiple of $u_{\scriptscriptstyle S}$

 E_i, c_1, c_2 , and G_i depend on A, \hat{r}_i, n , and u_s

$$\boldsymbol{u_s} \| E_i \|_{\infty} \le 3n \boldsymbol{u_f} \| |A^{-1}| | \hat{L} \| \hat{U} \|_{\infty}$$

$$\max(c_1, c_2) \, \boldsymbol{u}_s \leq \frac{3n \boldsymbol{u}_f \left\| |\hat{L}| |\hat{U}| \right\|_{\infty}}{\|A\|_{\infty}}$$

$$\mathbf{u}_{s} \|G_{i}\|_{\infty} \leq 3n \mathbf{u}_{f} \| |\hat{L}| |\hat{U}| \|_{\infty}$$

Forward Error for IR3

- Three precisions:
 - u_f : factorization precision
 - *u*: working precision
 - u_r : residual computation precision

 $\kappa_{\infty}(A) = ||A^{-1}||_{\infty} ||A||_{\infty}$ $\operatorname{cond}(A) = |||A^{-1}||A||_{\infty}$ $\operatorname{cond}(A, x) = |||A^{-1}||A||x||_{\infty} / ||x||_{\infty}$

Forward Error for IR3

- Three precisions:
 - u_f : factorization precision
 - *u*: working precision
 - u_r : residual computation precision

 $\kappa_{\infty}(A) = \|A^{-1}\|_{\infty} \|A\|_{\infty}$ $\operatorname{cond}(A) = \||A^{-1}||A|\|_{\infty}$ $\operatorname{cond}(A, x) = \||A^{-1}||A||x|\|_{\infty} / \|x\|_{\infty}$

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_f \ge u \ge u_r$ and effective solve precision u_s , if

 $\phi_i \equiv 2 \boldsymbol{u}_s \min(\operatorname{cond}(A), \kappa_\infty(A)\mu_i) + \boldsymbol{u}_s \|E_i\|_\infty$

is less than 1, then the forward error is reduced on the *i*th iteration by a factor $\approx \phi_i$ until an iterate \hat{x}_i is produced for which

$$\frac{\|x - \hat{x}_i\|_{\infty}}{\|x\|_{\infty}} \lesssim 4N\boldsymbol{u}_r \operatorname{cond}(A, x) + \boldsymbol{u},$$

where N is the maximum number of nonzeros per row in A.

Forward Error for IR3

- Three precisions:
 - u_f : factorization precision
 - *u*: working precision
 - u_r : residual computation precision

 $\kappa_{\infty}(A) = \|A^{-1}\|_{\infty} \|A\|_{\infty}$ $\operatorname{cond}(A) = \||A^{-1}||A|\|_{\infty}$ $\operatorname{cond}(A, x) = \||A^{-1}||A||x|\|_{\infty} / \|x\|_{\infty}$

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_f \ge u \ge u_r$ and effective solve precision u_s , if

 $\phi_i \equiv 2\mathbf{u}_s \min(\operatorname{cond}(A), \kappa_{\infty}(A)\mu_i) + \mathbf{u}_s ||E_i||_{\infty}$

is less than 1, then the forward error is reduced on the *i*th iteration by a factor $\approx \phi_i$ until an iterate \hat{x}_i is produced for which

$$\frac{\|x - \hat{x}_i\|_{\infty}}{\|x\|_{\infty}} \lesssim 4N\boldsymbol{u}_r \operatorname{cond}(A, x) + \boldsymbol{u},$$

where N is the maximum number of nonzeros per row in A.

Analogous traditional bounds: $\phi_i \equiv 3n u_f \kappa_{\infty}(A)$

Normwise Backward Error for IR3

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_f \ge u \ge u_r$ and effective solve precision u_s , if

 $\phi_i \equiv (c_1 \kappa_\infty(A) + c_2) \mathbf{u}_s$

is less than 1, then the residual is reduced on the ith iteration by a factor $\approx \phi_i$ until an iterate \hat{x}_i is produced for which

 $\|b - A\hat{x}_i\|_{\infty} \leq N\boldsymbol{u}(\|b\|_{\infty} + \|A\|_{\infty}\|\hat{x}_i\|_{\infty}),$

where N is the maximum number of nonzeros per row in A.

IR3: Summary

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

				Backwai	rd error	
u _f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Н	S	D	104	10^{-8}	10 ⁻⁸	10^{-8}
Н	D	D	10^{4}	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
S	S	S	10 ⁸	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
S	S	D	10 ⁸	10^{-8}	10 ⁻⁸	10^{-8}
S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
S	D	Q	10 ⁸	10^{-16}	10 ⁻¹⁶	10 ⁻¹⁶

IR3: Summary

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backward error		
	u _f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
	Н	S	D	104	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10 ⁴	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	Н	D	Q	104	10^{-16}	10^{-16}	10 ⁻¹⁶
	S	S	S	10 ⁸	10^{-8}	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶

IR3: Summary

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backward error		
	u _f	u	u _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
	Н	S	D	104	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	104	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	Н	D	Q	104	10^{-16}	10^{-16}	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10 ⁻⁸	10^{-8}	$cond(A, x) \cdot 10^{-8}$
	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10 ⁻¹⁶	10^{-16}	10 ⁻¹⁶
Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backwar	rd error	
	u _f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
	Н	S	D	104	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	104	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	Н	D	Q	104	10^{-16}	10^{-16}	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10^{-8}	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10 ⁻⁸	10^{-8}	10 ⁻⁸
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backwar	rd error	
	u _f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
New	н	S	D	10 ⁴	10 ⁻⁸	10^{-8}	10 ⁻⁸
LP fact.	Н	D	D	104	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	н	D	Q	10 ⁴	10^{-16}	10^{-16}	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10^{-8}	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10 ⁻⁸	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10 ⁻¹⁶

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backwai	rd error	
	u _f	u	u_r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
New	н	S	D	10 ⁴	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10 ⁴	10 ⁻¹⁶	10 ⁻¹⁶	$cond(A, x) \cdot 10^{-16}$
New	н	D	Q	104	10^{-16}	10^{-16}	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10^{-8}	10^{-8}	$cond(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	$cond(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶

 \Rightarrow Benefit of IR3 vs. "LP fact.": no cond(A, x) term in forward error

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backwar	rd error	
	u _f	u	u_r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10^{-8}	10^{-8}	$cond(A, x) \cdot 10^{-8}$
New	н	S	D	104	10^{-8}	10^{-8}	10 ⁻⁸
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10 ⁸	10^{-8}	10^{-8}	$cond(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10 ⁻⁸	10 ⁻⁸
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

⇒ Benefit of IR3 vs. traditional IR: As long as $\kappa_{\infty}(A) \leq 10^4$, can use lower precision factorization w/no loss of accuracy!

```
A = gallery('randsvd', 100, 1e3)
b = randn(100,1)
```

 $\kappa_\infty(A) pprox$ 1e4

Standard (LU-based) IR with u_f : single, u: double, u_r : quad


```
A = gallery('randsvd', 100, 1e7)
    b = randn(100, 1)
    \kappa_{\infty}(A) \approx 7e7
                                                                                                                 -2u_s\kappa_\infty(A)\mu_i
                                                                                                                  2u_s \operatorname{cond}(A)
    Standard (LU-based) IR with u_f: single, u: double, u_r: quad
                                                                                                              \ominus u_s \|E_i\|_{\infty}
                                                                                                              \nabla -\phi_i
  10<sup>0</sup>
                                                 × ferr
                                                                 10<sup>0</sup>
                                                 ⊖-nbe
                                                  <del>7</del>-cbe
                                                                 10<sup>-5</sup>
10<sup>-10</sup>
10<sup>-20</sup>
                                                                10<sup>-15</sup>
                                                     10 11
               2
                    3
                                            8
                                                 9
           1
                              5
      0
                         4
                                   6
                                                                                                             8
                                                                                                                  9
                                                                                                                       10 11
                                                                      0
                                                                           1
                                                                                2
                                                                                     3
                                                                                               5
                      refinement step
                                                                                       refinement step
```

```
A = gallery('randsvd', 100, 1e9)
b = randn(100,1)
```

 $\kappa_{\infty}(A) \approx$ 2e10

Standard (LU-based) IR with u_f : single, u: double, u_r : quad

• Observation [Rump, 1990]: if \hat{L} and \hat{U} are computed LU factors of A in precision u_f , then

```
\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)\boldsymbol{u_f},
```

even if $\kappa_{\infty}(A) \gg u_f^{-1}$.

• Observation [Rump, 1990]: if \hat{L} and \hat{U} are computed LU factors of A in precision u_f , then

$$\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)\boldsymbol{u}_{\boldsymbol{f}},$$

Ã

 \tilde{r}_i

even if $\kappa_{\infty}(A) \gg u_f^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates d_i , apply GMRES to $\hat{U}^{-1}\hat{L}^{-1}Ad_i = \hat{U}^{-1}\hat{L}^{-1}r_i$

• Observation [Rump, 1990]: if \hat{L} and \hat{U} are computed LU factors of A in precision u_f , then

$$\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)\boldsymbol{u}_{\boldsymbol{f}},$$

Â

 r_i

even if $\kappa_{\infty}(A) \gg u_f^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates d_i , apply GMRES to $\hat{U}^{-1}\hat{L}^{-1}Ad_i = \hat{U}^{-1}\hat{L}^{-1}r_i$

Solve $Ax_0 = b$ by LU factorization for i = 0: maxit $r_i = b - Ax_i$ Solve $Ad_i = r_i$ via GMRES on $\tilde{A}d_i = \tilde{r}_i$ $x_{i+1} = x_i + d_i$

• Observation [Rump, 1990]: if \hat{L} and \hat{U} are computed LU factors of A in precision u_f , then

$$\kappa_{\infty}(\widehat{U}^{-1}\widehat{L}^{-1}A) \approx 1 + \kappa_{\infty}(A)\boldsymbol{u}_{\boldsymbol{f}},$$

Â

 r_i

even if $\kappa_{\infty}(A) \gg u_f^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates d_i , apply GMRES to $\hat{U}^{-1}\hat{L}^{-1}Ad_i = \hat{U}^{-1}\hat{L}^{-1}r_i$

Solve
$$Ax_0 = b$$
 by LU factorization
for $i = 0$: maxit
 $r_i = b - Ax_i$
Solve $Ad_i = r_i$ via GMRES on $\tilde{A}d_i = \tilde{r}_i$
 $x_{i+1} = x_i + d_i$

```
A = gallery('randsvd', 100, 1e9, 2)
b = randn(100,1)
```

```
\kappa_{\infty}(A) \approx 2e10, \operatorname{cond}(A, x) \approx 5e9
```

Standard (LU-based) IR with u_f : single, u: double, u_r : quad

 $\kappa_{\infty}(A) \approx$ 2e10, $\operatorname{cond}(A, x) \approx$ 5e9, $\kappa_{\infty}(\tilde{A}) \approx$ 2e4

Number of GMRES iterations: (2,3)

					Backwa	rd error	
	u _f	u	u _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10 ⁻⁸	10 ⁻⁸	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	Н	D	Q	10 ¹²	10^{-16}	10^{-16}	10^{-16}

					Backwa	rd error	
	u _f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10^{-16}
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10^{-16}	10 ⁻¹⁶	10^{-16}
GMRES-IR	Н	D	Q	10 ¹²	10^{-16}	10 ⁻¹⁶	10^{-16}

 \Rightarrow With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$

					Backwa	rd error	
	u _f	u	<i>u</i> _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10 ⁻⁸	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	Н	D	Q	10 ¹²	10^{-16}	10^{-16}	10^{-16}

 \Rightarrow With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$

$$\kappa_{\infty}(A) \leq \boldsymbol{u}^{-1/2} \, \boldsymbol{u}_{\boldsymbol{f}}^{-1}$$

					Backwa	rd error	
	u _f	u	u _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10^{-16}	10 ⁻¹⁶	10^{-16}
GMRES-IR	H	D	Q	1012	10^{-16}	10^{-16}	10^{-16}

 \Rightarrow If $\kappa_{\infty}(A) \leq 10^{12}$, can use lower precision factorization w/no loss of accuracy!

					Backwa	rd error	
	u _f	u	u _r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10 ⁻⁸	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10^{-16}
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10^{-16}	10 ⁻¹⁶	10^{-16}
GMRES-IR	H	D	Q	1012	10^{-16}	10^{-16}	10^{-16}

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3

- Convergence tolerance τ for GMRES?
 - Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
 - Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

- Convergence rate of GMRES?
 - If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
 - e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until n^{th} iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
 - Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner

- Convergence rate of GMRES?
 - If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
 - e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until n^{th} iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
 - Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A, applying \tilde{A} to a vector must be done accurately (precision u^2) in each GMRES iteration

- Convergence rate of GMRES?
 - If A is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
 - e.g., if \tilde{A} still has cluster of eigenvalues near origin, GMRES can stagnate until n^{th} iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
 - Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A, applying \tilde{A} to a vector must be done accurately (precision u^2) in each GMRES iteration
- Why GMRES?
 - Theoretical purposes: existing analysis and proof of backward stability [Paige, Rozložník, Strakoš, 2006]
 - In practice, use any solver you want!

Extension to Least Squares Problems

• Want to solve

$$\min_{x} \|b - Ax\|_2$$

where $A \in \mathbb{R}^{m \times n}$ (m > n) has rank n

• Commonly solved using QR factorization:

$$A = QR = [Q_1, Q_2] \begin{bmatrix} U\\0 \end{bmatrix}$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular. $x = U^{-1}Q_1^T b$, $\|b - Ax\|_2 = \|Q_2^T b\|_2$

Extension to Least Squares Problems

• Want to solve

$$\min_{x} \|b - Ax\|_2$$

where $A \in \mathbb{R}^{m \times n}$ (m > n) has rank n

• Commonly solved using QR factorization:

$$A = QR = [Q_1, Q_2] \begin{bmatrix} U\\0 \end{bmatrix}$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular. $x = U^{-1}Q_1^T b$, $\|b - Ax\|_2 = \|Q_2^T b\|_2$

• As in linear system case, for ill-conditioned problems, iterative refinement often needed to improve accuracy and stability

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix} \qquad \tilde{r}_i = \tilde{b} - \tilde{A}\tilde{x}_i$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

 $\tilde{A}d_i = \tilde{r}_i$

 $\widetilde{x}_{i+1} = \widetilde{x}_i + d_i$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

Results for 3-precision IR for linear systems also applies to least squares problems

$$\tilde{r}_{i} = \tilde{b} - \tilde{A}\tilde{x}_{i}$$
$$\tilde{A}d_{i} = \tilde{r}_{i}$$
$$\tilde{x}_{i+1} = \tilde{x}_{i} + d_{i}$$

- To apply the existing analysis, we must consider:
 - 1. How is the condition number of \tilde{A} related to the condition number of A?
 - 2. What are bounds on the forward and backward error in solving the correction equation $\tilde{A}d_i = \tilde{r}_i$?
 - We now have a QR factorization rather than an LU factorization, and the augmented system has structure which can be exploited

Augmented System Condition Number

• Result of Björck (1967):

The matrix

$$\tilde{A}_{\alpha} = \begin{bmatrix} \alpha I & A \\ A^T & 0 \end{bmatrix}$$

has condition number bounded by

$$\sqrt{2}\kappa_2(A) \le \min_{\alpha} \kappa_2(\tilde{A}_{\alpha}) \le 2\kappa_2(A), \qquad \max_{\alpha} \kappa_2(\tilde{A}_{\alpha}) > \kappa_2(A)^2$$

and
$$\min_{\alpha} \kappa_2(\tilde{A}_{\alpha})$$
 is attained for $\alpha = 2^{-\frac{1}{2}} \sigma_{min}(A)$.

Augmented System Condition Number

• Result of Björck (1967):

The matrix

$$\tilde{A}_{\alpha} = \begin{bmatrix} \alpha I & A \\ A^T & 0 \end{bmatrix}$$

has condition number bounded by

$$\sqrt{2}\kappa_2(A) \le \min_{\alpha} \kappa_2(\tilde{A}_{\alpha}) \le 2\kappa_2(A), \qquad \max_{\alpha} \kappa_2(\tilde{A}_{\alpha}) > \kappa_2(A)^2$$

and $\min_{\alpha} \kappa_2(\tilde{A}_{\alpha})$ is attained for $\alpha = 2^{-\frac{1}{2}} \sigma_{min}(A)$.

Scaling does not change the solution to least squares problem; further, if α is a power of the machine base, it doesn't affect rounding errors
 ⇒ Safe to assume that κ₂(Ã) is the same order of magnitude as κ₂(A)

LS-IR in 3 precisions

Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix} \longrightarrow$$
 precision u_f
Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix} \longrightarrow$$
 precision u_f
Compute $x_0 = U^{-1}Q_1^T b, r_0 = b - Ax_0 \longrightarrow$ precision u

Compute QR factorization $A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix} \longrightarrow$ precision u_f Compute $x_0 = U^{-1}Q_1^T b, r_0 = b - Ax_0 \longrightarrow$ precision uFor i = 0, ...

Compute residuals
$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix} \longrightarrow$$
 precision u_r

Compute QR factorization $A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix} \longrightarrow$ precision u_f Compute $x_0 = U^{-1}Q_1^T b, r_0 = b - Ax_0 \longrightarrow$ precision uFor i = 0, ...

Compute residuals
$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix} \longrightarrow$$
 precision u_r
Solve $\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$, via

$$h = U^{-T}g_i$$

$$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = [Q_1, Q_2]^T f_i$$

$$\Delta r_i = Q \begin{bmatrix} h \\ d_2 \end{bmatrix}$$

$$\Delta x_i = U^{-1}(d_1 - h)$$

Compute QR factorization
$$A = QR = [Q_1, Q_2] \begin{bmatrix} U \\ 0 \end{bmatrix} \longrightarrow$$
 precision u_f
Compute $x_0 = U^{-1}Q_1^T b, r_0 = b - Ax_0 \longrightarrow$ precision u
For $i = 0, ...$
Compute residuals $\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix} \longrightarrow$ precision u_r
Solve $\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$, via

$$h = U^{-T} g_i$$

$$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = [Q_1, Q_2]^T f_i$$

$$\Delta r_i = Q \begin{bmatrix} h \\ d_2 \end{bmatrix}$$

$$\Delta x_i = U^{-1} (d_1 - h)$$

Update $x_{i+1} = x_i + \Delta x_i$, $r_{i+1} = r_i + \Delta r_i \longrightarrow \text{precision } u$

The backward error for the correction solve:

 $(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \boldsymbol{u_f} \|\tilde{A}\|_{\infty}$

The backward error for the correction solve:

$$\left(\tilde{A} + \Delta \tilde{A}\right) \hat{d}_{i} = \tilde{r}_{i}, \qquad \left\|\Delta \tilde{A}\right\|_{\infty} \le c_{m,n} \boldsymbol{u}_{f} \left\|\tilde{A}\right\|_{\infty}$$

 $u_s = u_f$

The backward error for the correction solve:

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \boldsymbol{u_f} \|\tilde{A}\|_{\infty} \qquad \boldsymbol{u_s} = \boldsymbol{u_f}$$

1. $\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 $\mathbf{u}_{s} \| E_{i} \|_{\infty} \leq c_{m,n} \mathbf{u}_{f} \| \tilde{A} \|_{\infty}$

The backward error for the correction solve:

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \boldsymbol{u_f} \|\tilde{A}\|_{\infty} \qquad \boldsymbol{u_s} = \boldsymbol{u_f}$$

1. $\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 $\mathbf{u}_{s} \| E_{i} \|_{\infty} \leq c_{m,n} \mathbf{u}_{f} \| \tilde{A} \|_{\infty}$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le \mathbf{u}_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty}) \qquad \max(c_1, c_2) \, \mathbf{u}_s = O(\mathbf{u}_f)$$

The backward error for the correction solve:

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \boldsymbol{u}_f \|\tilde{A}\|_{\infty} \qquad \boldsymbol{u}_s = \boldsymbol{u}_f$$

1. $\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$, $\mathbf{u}_s ||E_i||_{\infty} < 1$

 $\mathbf{u}_{s} \| E_{i} \|_{\infty} \leq c_{m,n} \mathbf{u}_{f} \| \tilde{A} \|_{\infty}$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \leq \mathbf{u}_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$
 $\max(c_1, c_2) \mathbf{u}_s = O(\mathbf{u}_f)$
3. $|\hat{r}_i - A\hat{d}_i| \leq \mathbf{u}_s G_i |\hat{d}_i|$ $\mathbf{u}_s \|G_i\|_{\infty} = O(\mathbf{u}_f) \|\tilde{A}\|_{\infty}$

The backward error for the correction solve:

$$\left(\tilde{A} + \Delta \tilde{A}\right) \hat{d}_i = \tilde{r}_i, \qquad \left\|\Delta \tilde{A}\right\|_{\infty} \le c_{m,n} \boldsymbol{u_f} \left\|\tilde{A}\right\|_{\infty}$$

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

As long as $\kappa_{\infty}(\tilde{A}) \leq u_f^{-1}$, expect convergence to limiting relative forward error

$$\frac{\|\tilde{x} - \hat{\tilde{x}}\|_{\infty}}{\|\tilde{x}\|_{\infty}} \approx \boldsymbol{u_r} \operatorname{cond}(\tilde{A}, \tilde{x}) + \boldsymbol{u}$$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le \mathbf{u}_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

3.
$$\left|\hat{r}_i - A\hat{d}_i\right| \le \mathbf{u}_s G_i |\hat{d}_i|$$

 $u_s = u_f$

$$\boldsymbol{u_s} \| E_i \|_{\infty} \le c_{m,n} \boldsymbol{u_f} \| \tilde{A} \|_{\infty}$$

 \leftarrow

 $\max(c_1, c_2) \mathbf{u}_s = O(\mathbf{u}_f)$

$$\mathbf{u}_{s} \|G_{i}\|_{\infty} = O(\mathbf{u}_{f}) \|\tilde{A}\|_{\infty}$$

The backward error for the correction solve:

$$(\tilde{A} + \Delta \tilde{A}) \hat{d}_i = \tilde{r}_i, \qquad \|\Delta \tilde{A}\|_{\infty} \le c_{m,n} \boldsymbol{u_f} \|\tilde{A}\|_{\infty}$$

1.
$$\hat{d}_i = (I + \mathbf{u}_s E_i) d_i$$
, $\mathbf{u}_s ||E_i||_{\infty} < 1$

As long as $\kappa_{\infty}(\tilde{A}) \leq u_f^{-1}$, expect convergence to limiting relative forward error

$$\frac{\|\tilde{x} - \hat{\tilde{x}}\|_{\infty}}{\|\tilde{x}\|_{\infty}} \approx \boldsymbol{u_r} \operatorname{cond}(\tilde{A}, \tilde{x}) + \boldsymbol{u}$$

2.
$$\|\hat{r}_i - A\hat{d}_i\|_{\infty} \le \mathbf{u}_s(c_1 \|A\|_{\infty} \|\hat{d}_i\|_{\infty} + c_2 \|\hat{r}_i\|_{\infty})$$

3. $\left| \hat{r}_i - A\hat{d}_i \right| \le \mathbf{u}_s G_i |\hat{d}_i|$

As long as $\kappa_{\infty}(\tilde{A}) \leq u_f^{-1}$, expect normwise and componentwise backward errors to be O(u)

 $u_s = u_f$

$$\boldsymbol{u_s} \| E_i \|_{\infty} \le c_{m,n} \boldsymbol{u_f} \| \tilde{A} \|_{\infty}$$

 $\max(c_1, c_2) \, \boldsymbol{u}_s = O(\boldsymbol{u}_f)$ $\boldsymbol{u}_s \| G_i \|_{\infty} = O(\boldsymbol{u}_f) \| \tilde{A} \|_{\infty}$

Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double

Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double

Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double

Standard (QR-based) least squares IR with u_f : half, u: single, u_r : double

Standard (QR-based) least squares IR with *u_f*: half, *u*: single, *u_r*: double

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?
- Note that augmented system is a saddle-point system; lots of existing work (block diagonal, triangular, constraint-based, ...)

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$\begin{bmatrix} \alpha I & 0 \\ 0 & \frac{1}{\alpha} \hat{R}^T \hat{R} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R}^T \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R} \end{bmatrix} \equiv M_1 M_2$$

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$\begin{bmatrix} \alpha I & 0 \\ 0 & \frac{1}{\alpha} \hat{R}^T \hat{R} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R}^T \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R} \end{bmatrix} \equiv M_1 M_2$$

• Assuming QR factorization is exact,

$$M_{2}^{-1}M_{1}^{-1}\tilde{A} = \begin{bmatrix} I & \frac{1}{\alpha}A \\ \alpha \,\hat{R}^{-1}\hat{R}^{-T}A^{T} & 0 \end{bmatrix}$$

is nonsymmetric, diagonalizable, with eigenvalues $\left\{1, \frac{1}{2}\left(1 \pm \sqrt{5}\right)\right\}$.

• However, condition number can still be quite large; unsuitable for proving backward stability of GMRES

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

$$\begin{bmatrix} \alpha I & 0 \\ 0 & \frac{1}{\alpha} \hat{R}^T \hat{R} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R}^T \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} I & 0 \\ 0 & \frac{1}{\sqrt{\alpha}} \hat{R} \end{bmatrix} \equiv M_1 M_2$$

• Assuming QR factorization is exact,

$$M_{2}^{-1}M_{1}^{-1}\tilde{A} = \begin{bmatrix} I & \frac{1}{\alpha}A \\ \alpha \,\hat{R}^{-1}\hat{R}^{-T}A^{T} & 0 \end{bmatrix}$$

is nonsymmetric, diagonalizable, with eigenvalues $\left\{1, \frac{1}{2}\left(1 \pm \sqrt{5}\right)\right\}$.

- However, condition number can still be quite large; unsuitable for proving backward stability of GMRES
- If we take split preconditioner

$$M_1^{-1}\tilde{A}M_2^{-1} = \begin{bmatrix} I & A\hat{R} \\ \hat{R}^{-T}A^T & 0 \end{bmatrix}$$

we will have a well-conditioned system

- However, split-preconditioned GMRES is not backward stable
- Potentially useful in practice, not but in theory

• One option:

$$M = \begin{bmatrix} \alpha I & \hat{Q}_1 \hat{R} \\ \hat{R}^T \hat{Q}_1^T & 0 \end{bmatrix}$$

• Then we can prove that for the left-preconditioned system, $\kappa \big(M^{-1} \tilde{A} \big) \leq \Big(1 + {\pmb u_f} c \; \kappa(A) \Big)^2$

where $c = O(m^2)$, where we note this bound is pessimistic.

• Thus even if $\kappa(A) \gg u_f^{-1}$, the preconditioned system can still be reasonably well conditioned

• One option:

$$M = \begin{bmatrix} \alpha I & \hat{Q}_1 \hat{R} \\ \hat{R}^T \hat{Q}_1^T & 0 \end{bmatrix}$$

• Then we can prove that for the left-preconditioned system, $\kappa \big(M^{-1} \tilde{A} \big) \leq \Big(1 + {\pmb u_f} c \; \kappa(A) \Big)^2$

where $c = O(m^2)$, where we note this bound is pessimistic.

- Thus even if $\kappa(A) \gg u_f^{-1}$, the preconditioned system can still be reasonably well conditioned
- GMRES run on \tilde{A} with left-preconditioner M gives $u_s ||E_i||_{\infty} \equiv u f(m+n)\kappa_{\infty}(M^{-1}\tilde{A})$

where f is a quadratic polynomial

• One option:

$$M = \begin{bmatrix} \alpha I & \hat{Q}_1 \hat{R} \\ \hat{R}^T \hat{Q}_1^T & 0 \end{bmatrix}$$

• Then we can prove that for the left-preconditioned system, $\kappa \big(M^{-1} \tilde{A} \big) \leq \Big(1 + {\pmb u_f} c \; \kappa(A) \Big)^2$

where $c = O(m^2)$, where we note this bound is pessimistic.

- Thus even if $\kappa(A) \gg u_f^{-1}$, the preconditioned system can still be reasonably well conditioned
- GMRES run on \tilde{A} with left-preconditioner M gives $u_s ||E_i||_{\infty} \equiv u f(m+n)\kappa_{\infty}(M^{-1}\tilde{A})$

where f is a quadratic polynomial

• So for GMRES-based LSIR, $u_s \equiv u$; expect convergence of forward error when $\kappa_{\infty}(A) < u^{-1/2} u_f^{-1}$

gallery('randsvd', [100,10], kappa(i), 3)

QR factorization computed in half precision; preconditioned system computed exactly

• Future machines will support a range of precisions: quarter, half, single, double, quad

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision)

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision)
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision)
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm
- As numerical analysts, we must determine when and where we can exploit lower-precision hardware to improve performance

Thank You!

carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson/