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Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second
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Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

Today's Systems
Predicted Exascale

Systems*
Factor 

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect 
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2
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Exascale System Projections

• Gaps will only grow larger

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Reducing time spent moving data/waiting for data will be essential for 
applications at exascale! 

Today's Systems
Predicted Exascale

Systems*
Factor 

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect 
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

• Movement of data (communication) is much more expensive than floating 
point operations (computation), in terms of both time and energy
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• Focus: Iterative solvers for sparse 
• Linear systems 𝐴𝑥 = 𝑏 and 
• Eigenvalue problems 𝐴𝑥 = 𝜆𝑥
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• Iterative solvers used when

• 𝐴 is very large, very sparse

• 𝐴 is represented implicitly

• Only approximate answer required

• Solving nonlinear equations

• Focus: Iterative solvers for sparse 
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• Eigenvalue problems 𝐴𝑥 = 𝜆𝑥
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Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector
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Krylov Subspace Methods

In each iteration: 

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Linear systems: Select approximate solution

𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖
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Conjugate gradient method: 𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 ⟹ 𝒓𝑵+𝟏 = 𝟎



Krylov Subspace Methods in the Wild

Climate Modeling 

Computational Cosmology
(Dark Matter Simulation, 
Almgren et al., LBNL)

Medical Treatment

Computer Vision

Power Grid Modeling

Chemical Engineering
(Low-Emission Combustion 
Simulation, CCSE, LBNL)

Financial Portfolio 
Optimization 

Latent Semantic Analysis
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Conjugate Gradient on the World's Fastest Computer

6

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922
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Summit - IBM Power System AC922

HPCG benchmark 
(sparse 𝐴𝑥 = 𝑏, iterative)

1.5% efficiency



The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end
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 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring 

processors (nearest neighbor MPI collective)

×

Cost Per Iteration

8



 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding
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 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring 

processors (nearest neighbor MPI collective)

Low computation/communication ratio 

⇒ Performance is communication-bound

SpMV

orthogonalize

×

Cost Per Iteration
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×



Synchronization-reducing variants

Communication cost has motivated many approaches to reducing 
synchronization in CG:
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• Pipelined Krylov subspace methods

• s-step Krylov subspace methods
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Synchronization-reducing variants

Communication cost has motivated many approaches to reducing 
synchronization in CG:

9

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to 
reduce synchronization points to 1 per iteration 

• Modifications also allow decoupling of matrix-
vector products and inner products - enables 
overlapping

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different 
Krylov subspace basis

• Enables one synchronization per s iterations

Both approaches are 
mathematically equivalent 

to classical CG



The effects of finite precision

Well-known that roundoff error has two 
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no 
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

10
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• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no 
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG
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CG (double)
exact CG



• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint 
on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

• Changes to how the recurrences are 
computed can exacerbate finite 
precision effects of convergence delay 
and loss of accuracy

• Crucial that we understand and take 
into account how algorithm 
modifications will affect the 
convergence rate and attainable 
accuracy!

12

CG (double)
exact CG
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• Accuracy 𝑥 −  𝑥𝑖 generally not computable, but 𝑥 −  𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy 

Maximum attainable accuracy
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𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀  𝑚=0
𝑖 𝑁𝐴 𝐴  𝑥𝑚 +  𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1  𝑚=0
𝑖  𝑟𝑚 Sleijpen and van der Vorst, 1995
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Rosendale [1983, 1984], Saad [1985]

• CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by 
Gutknecht and Strakoš [2000]

• Approach of Chronopoulos and Gear [1989]

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and different computation of 𝛼𝑖 to reduce 
number of synchronizations per iteration from 2 to 1

• Pipelined CG of Ghysels and Vanroose [2014]

• Uses 3 auxiliary vectors: 𝐴𝑝𝑖, 𝐴𝑟𝑖 and 𝐴2𝑟𝑖
• Removes sequential dependency between matrix-vector products and inner 

products

• Computations can then be overlapped using nonblocking (asynchronous) 
communication ⇒ hides the latency of global communications
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GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax 

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖−  𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
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Precond
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Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?
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Attainable accuracy of simple pipelined CG

 𝑥𝑖 =  𝑥𝑖−1 +  𝛼𝑖−1  𝑝𝑖−1 + 𝜹𝒙𝒊  𝑟𝑖 =  𝑟𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 + 𝜹𝒓𝒊
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17



Attainable accuracy of simple pipelined CG

 𝑥𝑖 =  𝑥𝑖−1 +  𝛼𝑖−1  𝑝𝑖−1 + 𝜹𝒙𝒊  𝑟𝑖 =  𝑟𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 =  𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 − 𝐴  𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

17



Attainable accuracy of simple pipelined CG

 𝑥𝑖 =  𝑥𝑖−1 +  𝛼𝑖−1  𝑝𝑖−1 + 𝜹𝒙𝒊  𝑟𝑖 =  𝑟𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 =  𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 − 𝐴  𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 +  𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where 

𝐺𝑖 =  𝑆𝑖 − 𝐴  𝑃𝑖,   𝑑𝑖 =  𝛼0, … ,  𝛼𝑖−1
𝑇

17



Attainable accuracy of simple pipelined CG

 𝑥𝑖 =  𝑥𝑖−1 +  𝛼𝑖−1  𝑝𝑖−1 + 𝜹𝒙𝒊  𝑟𝑖 =  𝑟𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 =  𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 − 𝐴  𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 +  𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where 

𝐺𝑖 =  𝑆𝑖 − 𝐴  𝑃𝑖,   𝑑𝑖 =  𝛼0, … ,  𝛼𝑖−1
𝑇

Classical CG:  𝑓𝑖 = 𝑓0 +  𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚
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Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅( 𝑈𝑖) 𝐴  𝑃𝑖 + 𝐴  𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 −  𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 −  𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1  𝛽1 … …  𝛽1
 𝛽2 ⋯  𝛽𝑖−1

0 1  𝛽2 …  𝛽2 ⋯  𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1  𝛽𝑖−1

0 ⋯ ⋯ 0 1
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𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗
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• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!
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• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Resembles results for attainable accuracy in STCG (3-term)
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⋮ ⋱ 1  𝛽𝑖−1
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• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Resembles results for attainable accuracy in STCG (3-term)

• Seemingly innocuous change can cause drastic loss of accuracy
• For analysis of attainable accuracy in GVCG, see [Cools et al., 2018]
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Simple pipelined CG
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Simple pipelined CG

effect of using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖
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Simple pipelined CG

effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖
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Simple pipelined CG

effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖
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Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions 
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =  

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2
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 𝜆−1𝑑𝜔 𝜆 =  
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𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed  𝜔 𝑖 (𝜆) be associated with 
some distribution function  𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e., 

 𝜆−1𝑑𝜔 𝜆 ≈  𝜆−1𝑑  𝜔 𝜆 =  

ℓ=1

𝑖

 𝜔ℓ
𝑖  𝜃ℓ

𝑖
−1

+
𝑥 −  𝑥𝑖 𝐴

2

𝑟0
2

+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?
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where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]
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where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

• For pipelined CG, THOROUGH ANALYSIS NEEDED!
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(matrix bcsstk03)

Differences in entries 𝛾𝑖 , 𝛿𝑖 in Jacobi matrices 𝑇𝑖 in HSCG vs. GVCG



*

o
x

eigenvalues of 𝐴

eigenvalues of  𝑇400, HSCG

eigenvalues of  𝑇400, GVCG

value

fr
eq

u
en

cy



s-step Krylov Subspace Methods

21

• Idea: Compute blocks of 𝑠 iterations at once 

• Generate an 𝑂(𝑠) dimensional Krylov subspace basis; block orthogonalization

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s



s-step Krylov Subspace Methods

• First related work: s-dimensional steepest descent, least squares

• [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968]

• Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,

• [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991], 
[de Sturler and van der Vorst, 1995],...
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s-step CG

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖
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s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and 

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1 ] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
23

Outer Loop

Compute basis 
O(s) SPMVs

O(𝑠2) Inner 
Products (one 

synchronization)

Inner Loop

Local Vector 
Updates (no 

comm.)

End Inner Loop

Inner Outer Loop

s 
times
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s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , …𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Numerical Behavior of s-step CG
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1. convergence delay
2. loss of accuracy
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Sources of Roundoff Error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴  𝒴𝑘 =  𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop, 𝑗 = 1: 𝑠:

 𝑥𝑗
′ =  𝑥𝑗−1

′ +  𝑞𝑗−1
′ + 𝜉𝑗

 𝑟𝑗
′ =  𝑟𝑗−1

′ − ℬ𝑘  𝑞𝑗−1
′ + 𝜂𝑗

with    𝑞𝑗−1
′ = fl(  𝛼𝑠𝑘+𝑗−1  𝑝𝑗−1

′ )

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑠 =  𝒴𝑘  𝑥𝑗
′ +  𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑠

 𝑟𝑠𝑘+𝑠 =  𝒴𝑘  𝑟𝑗
′ + 𝜓𝑠𝑘+𝑠

Error in outer iteration k:

25
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coefficient vectors
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Sources of Roundoff Error in s-step CG

Error in computing 
𝑠-step basis

Error in updating 
coefficient vectors

Error in outer iteration k:
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Error in 
basis change

Computing the 𝑠-step Krylov subspace basis:

𝐴  𝒴𝑘 =  𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop, 𝑗 = 1: 𝑠:

 𝑥𝑗
′ =  𝑥𝑗−1

′ +  𝑞𝑗−1
′ + 𝜉𝑗

 𝑟𝑗
′ =  𝑟𝑗−1

′ − ℬ𝑘  𝑞𝑗−1
′ + 𝜂𝑗
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Attainable Accuracy of s-step CG

For CG:

𝑓𝑖 ≤ 𝑓0 + 𝜀𝛤  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+  𝒴ℓ

where 𝑐 is a low-degree polynomial in 𝑠

[C., 2015]

e.g., [van der Vorst and Ye, 2000], [Greenbaum, 1997]

Residual gap: 𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976] 

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

27

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2
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𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976] 

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

s-step Lanczos [C., Demmel, 2015]:

𝜀0 = 𝑂 𝜀𝑁𝚪𝟐

𝜀1 = 𝑂 𝜀𝑛𝜃𝚪

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+  𝒴ℓ 27



Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
−  1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 
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s-step Lanczos
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Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 

𝜆

𝑂(𝜀𝑁3 𝐴 )

𝑂(𝜀𝑁3 𝐴 )

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos behaves 
the same numerically 
as classical Lanczos

If 𝚪 ≈ 𝟏:

s-step Lanczos

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
−  1 2

≈
1

𝑁𝜀
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If application only requires 
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10, 

any of these methods will work!
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A different problem...

If application only requires 
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10, 

any of these methods will work!

𝐴: nos4 from SuiteSparse
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

Need adaptive, problem-dependent approach based 
on understanding of finite precision behavior!
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𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have 

Γ𝑘 ≡ 𝑐 ⋅  𝒴𝑘
+  𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

•  𝑟𝑖 large → Γ𝑘 must be small;  𝑟𝑖 small → Γ𝑘 can grow

⇒ adaptive s-step approach [C., 2018]

• 𝑠 starts off small, increases at rate depending on  𝑟𝑖 and 𝜀∗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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mesh3e1 (UFSMC)
𝑛 = 289
𝜅 𝐴 ≈ 10

𝑏𝑖 = 1/ 𝑁

s-step CG

adpt. s-step CG

CG

Adaptive s-step CG
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runtime =
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×
number of iterations

until convergence

Takeaway

reduced precision

approximate 
operators

asynchronous 
execution

modify algorithm 
to reduce 

communication

increased 
precision

preconditioning

block methods

eigenvalue 
deflation

Reduce number of iterationsReduce time per iteration

subspace 
recycling

To minimize runtime, must understand how modifications affect:

1) attainable accuracy      2) convergence rate      3) time per iteration
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Future Work: Finite Precision Krylov Subspace Methods

33

• Convergence delay in high-performance CG variants
• Extending results of Greenbaum [1989] to s-step and pipelined versions

• Deviation from exact Krylov subspaces in Lanczos

• Can the space spanned by the computed  𝑉𝑖 be related to some 
exactly Krylov subspace?

• Loss of orthogonality vs. backward error in finite precision GMRES
 𝑟𝑖

𝑏 + 𝐴  𝑥𝑖
⋅ 𝐼 −  𝑉𝑖

𝑇  𝑉𝑖 ≈ 𝑂(𝜀) ?

• Rigorous analysis of accuracy and convergence for various commonly-used 
techniques 
• Deflation, incomplete preconditioning, matrix equilibration, look-

ahead, etc. 



Simulation + Data + Learning

• Data analytics and machine learning increasingly important 
in scientific discovery

• Event identification, correlation in high-energy physics

• Climate simulation validation using sensor data

• Determine patterns and trends from astronomical data

• Genetic sequencing

• The convergence of simulation, data, and learning

• current hot topic: workshops, conferences, research initiatives, funding calls
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• Data analytics and machine learning increasingly important 
in scientific discovery

• Event identification, correlation in high-energy physics

• Climate simulation validation using sensor data

• Determine patterns and trends from astronomical data

• Genetic sequencing

• Driving changes in 
supercomputer architecture

• Multiprecision hardware

• Specialized accelerators

• Memory at node

• The convergence of simulation, data, and learning

• current hot topic: workshops, conferences, research initiatives, funding calls
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• Numerical linear algebra routines are the core computational kernels in 
many data science and machine learning applications
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• Numerical linear algebra routines are the core computational kernels in 
many data science and machine learning applications

• Growing problem sizes, growing datasets → need scalable performance

Challenges:

• Optimizing performance in different space: different/new architectures, 
matrix structures, accuracy requirements, etc. 

• Translation between 

(% accuracy on test dataset) ↔ (number of FP digits)

• Designing efficient and effective preconditioners

• More general error analyses: How do approximations (e.g., 
sparsification, low-rank representation) affect convergence and accuracy 
of numerical algorithms?

Numerical Linear Algebra for Data Analytics + ML

35
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Thank You!Thank you! 



The effects of finite precision

Errors have two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank 

deficiency
• Residuals no longer orthogonal 

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Many existing results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG



Attainable accuracy of pipelined CG

• In finite precision:

 𝑥𝑖 =  𝑥𝑖−1 +  𝛼𝑖−1  𝑝𝑖−1 + 𝜹𝒙𝒊  𝑟𝑖 =  𝑟𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 =  𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 −  𝛼𝑖−1  𝑠𝑖−1 − 𝐴  𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 +  𝑚=1
𝑖 (𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚) − 𝐺𝑖𝑑𝑖

where 

𝐺𝑖 =  𝑆𝑖 − 𝐴  𝑃𝑖,   𝑑𝑖 =  𝛼0, … ,  𝛼𝑖−1
𝑇

• Bound on 𝐺𝑖 will differ depending on the method (other recurrences or 
auxiliary vectors used)

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1,         𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
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Preconditioning for s-step KSMs

• Much recent/ongoing work in developing communication-avoiding 
preconditioned methods 

• Many approaches shown to be compatible

• Diagonal

• Sparse Approx. Inverse (SAI) – for s-step BICGSTAB by Mehri
(2014)

• HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, 
C., Demmel, 2014); same general technique for any system that can 
be written as sparse + low-rank

• CA-ILU(0) – Moufawad and Grigori (2013)

• Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step 
GMRES (Yamazaki et al., 2014) 

• Domain decomposition – avoid introducing additional communication 
by “underlapping” subdomains (Yamazaki et al., 2014)



Example: Tridiagonal matrix

SpMV Dependency Graph

𝐺 = (𝑉, 𝐸) where 𝑉 = 𝑦0, … , 𝑦𝑛−1 ∪ {𝑥0, … , 𝑥𝑛−1} and 𝑦𝑖 , 𝑥𝑗 ∈ 𝐸 if 𝐴𝑖𝑗 ≠ 0
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Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Matrix powers 
optimization:

1 message per neighbor

Parallel Matrix Powers



Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase 
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’ 
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Sequential

Parallel

A3v
A2v
Av
v

A3v
A2v
Av
v

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Also works for 
general graphs!



Complexity comparison

Example of parallel (per processor) complexity for 𝑠 iterations of  CG vs. s-step 
CG for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms 
and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical 
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠  𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

s-step CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠  𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝



Choosing the Block Size s

• Parameter 𝑠 is limited by machine 
parameters, matrix sparsity structure, 
and machine properties

• As we increase s, at some point 
the lower-order terms in flops and 
words moved will dominate 
runtime

• This point depends on relative 
costs of, e.g., a flop versus 
sending a message on the machine 
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• But 𝑠 is also limited by numerical properties ...

• We can auto-tune to find the best 𝑠 based on these properties
• That is, find 𝑠 that gives the least time per iteration



Choosing a Polynomial Basis

• Recall: in each outer loop of CA-CG, we compute bases for some 
Krylov subspaces,  𝒦𝑚 𝐴, 𝑣 = span{𝑣, 𝐴𝑣, … , 𝐴𝑚−1𝑣}

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials 

• Chebyshev polynomials

• Simple loop unrolling gives monomial basis 𝑌 = 𝑝, 𝐴𝑝, 𝐴2𝑝, 𝐴3𝑝, …

• Condition number can grow exponentially with 𝑠

• Condition number = ratio of largest to smallest eigenvalues, 
𝜆max/𝜆min

• Recognized early on that this negatively affects convergence 
(Leland, 1989)

• Improve basis condition number to improve convergence:  Use different 
polynomials to compute a basis for the same subspace. 



History of 𝑠-step Krylov Methods

1983

Van 
Rosendale: 

CG

1988

Walker: 
GMRES

Chronopoulos
and Gear: CG

1990 1991 1992

First termed 
“s-step 

methods”

de Sturler: 
GMRES

1989

Bai, Hu, and Reichel:
GMRES

Chronopoulos
and Kim: 

Nonsymm. 
Lanczos

Joubert and 
Carey: GMRES

Erhel:
GMRES

Toledo: CG

de Sturler and 
van der Vorst: 

GMRES

1995 2001

Chronopoulos
and Kinkaid: 

Orthodir

Chronopoulos and 
Kim: Orthomin, 

GMRES Chronopoulos: 
MINRES, GCR, 

Orthomin

Kim and 
Chronopoulos:  
Arndoli, Symm. 

Lanczos

Leland: 
CG



Recent Years…

2010 2011 2014

Hoemmen:
Arnoldi, 
GMRES, 

Lanczos, CG

First termed 
“CA” methods; first TSQR, 

general matrix powers 
kernel

Carson, 
Knight, and 
Demmel: 

BICG, CGS, 
BICGSTAB

Ballard, Carson, 
Demmel, Hoemmen, 

Knight, Schwartz:
Arnoldi, GMRES, 

Nonsymm. Lanczos

Carson and 
Demmel: 2-term 

Lanczos

Carson and 
Demmel:
CG-RR, 

BICG-RR

First theoretical 
results on finite 

precision behavior

2012 2013

Feuerriegel
and Bücker: 
Lanczos, 
BICG, QMR

Grigori, 
Moufawad, Nataf: 

CG

First 
CA-BICGSTAB 

method



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 512^2 grid



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 1024^2 grid



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 2048^2 grid



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 16^2 grid per process



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 32^2 grid per process



Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 64^2 grid per process
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Coarse-grid Krylov Solver on NERSC’s Hopper (Cray XE6)

Weak Scaling: 43 points per process (0 slope ideal)

Solver performance and scalability limited by communication!



Communication-Avoiding Krylov Method Speedups

• Recent results: CA-BICGSTAB used as geometric multigrid (GMG) bottom-solve 
(Williams, Carson, et al., IPDPS ‘14)

• Plot: Net time spent on different operations over one GMG bottom solve using 
24,576 cores, 643 points/core on fine grid, 43 points/core on coarse grid

• Hopper at NERSC (Cray XE6),  4  6-core Opteron chips per node, Gemini network, 
3D torus

• CA-BICGSTAB with 𝒔 = 𝟒

• 3D Helmholtz equation 

𝑎𝛼𝑢 − 𝑏𝛻 ⋅ 𝛽𝛻𝑢 = 𝑓

𝛼 = 𝛽 = 1.0, 𝑎 = 𝑏 = 0.9

4.2x speedup in Krylov solve;  
2.5x in overall GMG solve

• Implemented in BoxLib: applied to 
low-Mach number combustion and 3D 
N-body dark matter simulation apps



Benchmark timing breakdown

• Plot: Net time spent across all bottom solves at 24,576 cores, for 
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB 

– Less than theoretical 24x 
since messages in CA-
BICGSTAB are larger, not 
always latency-limited

• P2P (blue) communication 
doubles for CA-BICGSTAB

– Basis computation 
requires twice as many 
SpMVs (P2P) per iteration 
as BICGSTAB
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Representation of Matrix Structures
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Example: stencil with 
variable coefficients

explicit structure
explicit values

explicit structure
implicit values

implicit structure
explicit values

implicit structure
implicit values

Example: stencil with 
constant coefficients

Example: Laplacian
matrix of a graph

Example: general 
sparse matrix

Hoemmen (2010), Fig 2.5



→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

s-step (communication-avoiding) CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be 
computed by independently by each processor without communication: 



if 𝑑𝑠𝑘+𝑗 ≤  𝜀 𝑟𝑠𝑘+𝑗 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗+1 >  𝜀 𝑟𝑠𝑘+𝑗+1 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗+1 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗+1
′ + 𝑥𝑠𝑘+1

𝑥𝑠𝑘+𝑗+1 = 0

𝑟𝑠𝑘+𝑗+1 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑠𝑘+𝑗+1= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑠𝑘+𝑗+1

𝑝𝑠𝑘+𝑗+1 = 𝒴𝑘𝑝𝑘,𝑗+1
′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴𝑥𝑠𝑘+𝑗+1 − 𝑟𝑠𝑘+𝑗+1 to update 𝑑𝑠𝑘+𝑗+1, an 
estimate of error in computing 𝑟𝑠𝑘+𝑗+1, in each iteration

• Set threshold  𝜀 ≈ 𝜀, replace whenever 𝑑𝑠𝑘+𝑗+1/ 𝑟𝑠𝑘+𝑗+1 reaches threshold
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Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

set residual to true residual




