Sparse Matrix Computations

In the
Exascale Era

Erin C. Carson

Seminar of Numerical Mathematics

Katedra numerické matematiky, Matematicko-fyzikalni fakulta, Univerzita Karlova

November 15, 2018

This research was partially supported by OP RDE project No. Cz.02.2.69/0.0/0.0/16_027/0008495

T EUROPEAN UNION
> *; European Structural and Investment Funds
* *

Operational Programme Research, 7 7 7
Development and Education MINISTRY OF EDUCHTION;




Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second



Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second

* Will enable new frontiers in science and engineering
* Environment and climate
» Material, manufacturing, design
* Healthcare, biology, biomedicine
* Cosmology and astrophysics
* High-energy physics

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

» Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness



Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second

* Will enable new frontiers in science and engineering
* Environment and climate
» Material, manufacturing, design
* Healthcare, biology, biomedicine
* Cosmology and astrophysics
* High-energy physics

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

» Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness

* Much research investment toward achieving exascale within 5-10 years

=) EuroHPC declaration (2017): €1 billion investment in building exascale
infrastructure by 2023



Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second

* Will enable new frontiers in science and engineering
* Environment and climate
» Material, manufacturing, design
* Healthcare, biology, biomedicine
* Cosmology and astrophysics
* High-energy physics

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

» Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness

* Much research investment toward achieving exascale within 5-10 years

=) EuroHPC declaration (2017): €1 billion investment in building exascale
infrastructure by 2023

* Challenges at all levels

hardware to methods and to applications

algorithms



Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second

* Will enable new frontiers in science and engineering
* Environment and climate
» Material, manufacturing, design
* Healthcare, biology, biomedicine
* Cosmology and astrophysics
* High-energy physics

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

» Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness

* Much research investment toward achieving exascale within 5-10 years

=) EuroHPC declaration (2017): €1 billion investment in building exascale
infrastructure by 2023

* Challenges at all levels

hardware to methods and to applications

algorithms PN
N

~ V
\-'7 -~



Exascale System Projections

Today's Systems Predicted Exascale

Systems*
System Peak 10 flops/s 108 flops/s

Node Memory 2 S

Bandwidth 10“ GB/s 10° GB/s
Interconnect 1 2

Bandwidth 10" GB/s 104 GB/s

Memory Latency 1077 s 5.107 8¢

Interconnect Latency 10=6 s 5.10"7 ¢

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)
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y's oY Systems* Improvement
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Exascale System Projections

, Predicted Exascale Factor
Today's Systems 5
Systems Improvement

System Peak 101 flops/s 1018 flops/s 100
Node Memory 2 3

Bandwidth 10“ GB/s 10° GB/s 10
Interconnect 1 2

Bandwidth 10 GB/s 104 GB/s 10

Memory Latency 10~7 s 5.10" 8¢ 2

Interconnect Latency 10~ s 5-10"7s \ 2 /
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

* Gaps will only grow larger

* Reducing time spent moving data/waiting for data will be essential for
applications at exascale!
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Iterative Solvers

* Focus: Iterative solvers for sparse
* Linear systems Ax = b and
* Eigenvalue problems Ax = Ax Initial guess

* lterative solvers used when
* A is very large, very sparse
» A is represented implicitly
* Only approximate answer required

* Solving nonlinear equations
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Krylov Subspace Method: projection process onto the Krylov subspace

:;CL(A, To) = Span{T'O,AT'O,AZT'O, ,Ai_lro}

where A is an N X N matrix and ry is a length-N vector

In each iteration:
* Add a dimension to the Krylov subspace

— Forms nested sequence of Krylov subspaces

Ki(A,1y) cKy(A 1) € - €Ki (A1)

* Orthogonalize (with respect to some ;)
Linear systems: Select approximate solution 0

x; € xg + K;i(A,1p)
using 1; = b — Ax; L C;

Conjugate gradient method: A is symmetric positive definite, C; = K;(4,1y)

nlKiArn) <  lx-xlla= _ min Jx-zl, =

r =0
ZEXO+jCi(A,T0) N+1



Krylov Subspace Methods in the Wild
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Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz
Interconnect: Dual-rail Mellanox EDR Infiniband
Performance
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Theoretical peak:

187,659 TFlops/s /

LINPACK benchmark

HPCG benchmark:

: 22,300 Tflops/s
2,926 Tflops/s

| HPCG benchmark

(sparse Ax = b, iterative)

1.5% efficiency




The Conjugate Gradient (CG) Method

— — Iteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax Sparse Matrix
T
ol X Vector
pl—l Pi-1

Inner Products
Xi =Xj—1 + Ai_1Pi-1

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop




The Conjugate Gradient (CG) Method

— — Iteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax Sparse Matrix
T
ol X Vector
pl—l Pi-1

Inner Products
Xi =Xj—1 + Ai_1Pi-1

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop




The Conjugate Gradient (CG) Method

— — Iteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax Sparse Matrix

T .. X Vector
_ _Ti—aTi-1

M1 T T ap,

Xi =Xj—1 T QAj_1Pi-1

Inner Products

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop




The Conjugate Gradient (CG) Method

— — Iteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax Sparse Matrix

T .. X Vector
Ti—1Ti-1

M1 T T ap,

Xi =Xj—1 T Aj_1Pi-1

Inner Products

r; =Ti—1 — Aj_1Ap;—4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop




The Conjugate Gradient (CG) Method

— — Iteration Loo
ro—b_Axo, po—ro p

for i = 1:nmax Sparse Matrix

T .. X Vector
Ti—1Ti-1

di—1 = 7T
Di_ -
t=1 Inner Products

Xi =Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;—4

T
Ti ri

Bi = —F

Ti_1Ti-1

Inner Products

pi =71 + BiPi—1

end

End Loop




The Conjugate Gradient (CG) Method
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r; =Ti—1 — Aj_1Ap;—4

T
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end

End Loop
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— Sparse matrix-vector multiplication (SpMV)
X a

* O(nnz) flops
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)

— Inner products

* O(N) flops
* global synchronization (MPI Allreduce) —
* all processors must exchange data and wait for a//

communication to finish before proceeding

SpMV
Low computation/communication ratio
e

orthogonali = Performance is communication-bound
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Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

* Pipelined Krylov subspace methods

» Uses modified coefficients and auxiliary vectors to
reduce synchronization points to 1 per iteration

* Modifications also allow decoupling of matrix-

vector products and inner products - enables \
overlapping Both approaches are

mathematically equivalent
/ to classical CG
» s-step Krylov subspace methods

* Compute iterations in blocks of s using a different
Krylov subspace basis

* Enables one synchronization per s iterations



The effects of finite precision

Well-known that roundoff error has two

— CG (double)

effects:
_ 107
=
1. Delay of convergence @
* No longer have exact Krylov = .
o - L
subspace e 10
« Can lose numerical rank deficiency &
<

* Residuals no longer orthogonal -

. . . -15 |
Minimization of ||x — x;||4 no 10

longer exact
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_ lteration
2. Loss of attainable accuracy A: besstk03 from SuiteSparse,

* Rounding errors cause true b: equal components in the eigenbasis of 4,||b|| = 1
residual b — Ax; and updated N =112,k(A) =~ 7e6

residual 7; deviate!
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Minimization of ||x — x;||4 no 10

longer exact
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_ Iteration
2. Loss of attainable accuracy A: besstk03 from SuiteSparse,

* Rounding errors cause true b: equal components in the eigenbasis of 4,||b|| = 1
residual b — Ax; and updated N =112,k(A) =~ 7e6

residual 7; deviate!

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough

summary of early developments in finite precision analysis of Lanczos and CG ”
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runtime = (time/iteration) x (# iterations)

* Changes to how the recurrences are
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precision effects of convergence delay I N W exact
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Maximum attainable accuracy

 Accuracy ||x — X;|| generally not computable, but x — %; = A=Y (b — AX;)
* Size of the true residual, ||b — AX;||, used as computable measure of accuracy

* Rounding errors cause the true residual, b — AX;, and the updated residual, 7;,
to deviate

° Writing b —AjC\i = 7,’\'1' + b —AjC\i — 7,’\'1',

b = A%l < |71l + [Ib — A%; — 7]l

* As [[%]l = 0, ||[b — AX;|| depends on ||b — A%x; — 7|

* Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Bjorck, Elfving and Strakos (1998) and Gutknecht
and Strakos (2000). .



Maximum attainable accuracy of HSCG
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Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N A

Xi = 5C\i a 1Pi-1 — Sxi and i =71i—1 — ai—lApi—l — STi

e Let f,=b — A%, — 7

fi =b—AX;_1 + Qj_1P;—1 — 6x;) — (fi—1 — @;_1AP;—1 — 617)
= fi_1 + Adx; + 67y
— fO + Z;.nzl(A5xm + 5rm)

Il < 0(e) 3L _o NallAIlNIZ ]l + £l van der Vorst and Ye, 2000

If;ll < 0(5)||A||(||X|| + max l.||9?m||) Greenbaum, 1997

AN < OENLNANNAT ZE ol Sleijpen and van der Vorst, 1995 .
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Pipelined CG (GVCG)

* Overall idea: use auxiliary recurrences and modified formulas for recurrence
coefficients a; and f3; to reduce/decouple synchronization points

* Long history of related work:

* Modified recurrence coefficient computation: Johnson [1983, 1984], van
Rosendale [1983, 1984], Saad [1985]

* CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by
Gutknecht and Strakos [2000]

 Approach of Chronopoulos and Gear [1989]

» Uses auxiliary vector s; = Ap; and different computation of a; to reduce
number of synchronizations per iteration from 2 to 1

* Pipelined CG of Ghysels and Vanroose [2014]

 Uses 3 auxiliary vectors: Ap;, Ar; and A%r;
* Removes sequential dependency between matrix-vector products and inner
products
» Computations can then be overlapped using nonblocking (asynchronous)
communication = hides the latency of global communications
14



GVCG (Ghysels and Vanroose 2014)

T'O - b_Axo, pO =T0
So = AZI?(), WOT: Aro, Zoy = AWO,
o = 7o To/Po So
for i = 1:nmax
Xi =Xj_1ta&_1Di—1
i ="i-1 — &j-1Si-1

Wi =W;j_1 —&i—1Zj—1

q; = Aw;
T

B; = i Ti

i — T

Ti—1Ti-1
T

o = i Ti

l

— wiri=(Bi/air{T
pi =T1i t BiPi-1
S = wi + BiSi—1
zi = q; + Pizi—1

end
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GVCG (Ghysels and Vanroose 2014)

TO = b_Axo, po =T0

So = Apo, Wo = Aro,ZO == AWO,
Y T .

@y = 7o To/Po So Iteration Loop

for i = 1:nmax
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Attainable accuracy of pipelined CG

* What is the effect of adding auxiliary recurrences to the CG method?
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* What is the effect of adding auxiliary recurrences to the CG method?

* To isolate the effects, we consider a simplified version of a pipelined
method
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i A = (ri—1,7i-1)
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Attainable accuracy of pipelined CG

* What is the effect of adding auxiliary recurrences to the CG method?

* To isolate the effects, we consider a simplified version of a pipelined
method

* Uses same update formulas for @ and f as HSCG, but uses
additional recurrence for Ap;

o = b — Axy,po = 10,50 = APy
for i = 1:nmax

i A = (ri—1,7i-1)
=1 (Pi-1,Si-1)
Xi = Xj_1 T+ Ai_1Pi—1

ri =71 — &i—1Si-1

_ (ryry)
'Bi B (ri-17i-1)
pi =1 + Bibi—1
S; = Ary + Bisi—1 see [C., Rozloznik, Strakos,
end Tichy, Ttma, 2018]
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Attainable accuracy of simple pipelined CG

N\

Xi = Xj_1 + &;_1pi—1 + 0x; 1y =Tj—q — 0j_q Si—1 T OT;
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Attainable accuracy of simple pipelined CG
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* Residual oscillations can cause these factors to be large!
* Errors in computed recurrence coefficients can be amplified!
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Attainable accuracy of simple pipelined CG

0(g) . " S s
16:ll < 75z CcCOANA] + IAllR: | T7)
o - 1B e e BB b
o YD a0 B BB
l : 1 _Ai— [ . .. . K
0 .. 0 ﬁll- 0 . (1) ﬁil‘l
T iy 1 !

* Residual oscillations can cause these factors to be large!
* Errors in computed recurrence coefficients can be amplified!
* Resembles results for attainable accuracy in STCG (3-term)

* Seemingly innocuous change can cause drastic loss of accuracy

* For analysis of attainable accuracy in GVCG, see [Cools et al., 2018] .



Simple pipelined CG
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Towards understanding convergence delay

* Coefficients a and f (related to entries of T;) determine distribution functions
0@ (1) which approximate distribution function w(1) determined by inputs 4, b, x,
in terms of the ith Gauss-Christoffel quadrature

* CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakos, 2013])

« A-norm of CG error for f(1) = 271 given as scaled quadrature error
i

_ 3 (-t X = x5
]/1 1dw(/1)=zw§‘){9§”} + ”rO”;A

=1
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* Coefficients a and f (related to entries of T;) determine distribution functions
0@ (1) which approximate distribution function w(1) determined by inputs 4, b, x,
in terms of the ith Gauss-Christoffel quadrature

* CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakos, 2013])

« A-norm of CG error for f(1) = 271 given as scaled quadrature error
i

_ 3 (-t X = x5
]/1 1dw(/1)=zw§‘){9§”} + ”rO”;A

=1

« For particular CG implementation, can the computed &@® (1) be associated with
some distribution function @(A) related to the distribution function w(A), i.e.,
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1 1A @ (st lx = %l
1 tdo() ~ | 2 da)(/l)=Za){, o + +F,
2. ol

where F; is small relative to error term?
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1 tdo() ~ | 2 da)(/l)=Za){, o + +F,
2. ol

where F; is small relative to error term?
* For classical CG, yes; proved by Greenbaum [1989]
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Towards understanding convergence delay

* Coefficients a and f (related to entries of T;) determine distribution functions

0@ (1) which approximate distribution function w(1) determined by inputs 4, b, x,
in terms of the ith Gauss-Christoffel quadrature

* CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakos, 2013])

« A-norm of CG error for f(1) = 271 given as scaled quadrature error
i

_ 3 (-t X = x5
[ atao@ = 3 o (o) +

=1

« For particular CG implementation, can the computed &@® (1) be associated with
some distribution function @(A) related to the distribution function w(A), i.e.,

i

_1 1 g~ () (AT llx — %115
1 tdo() ~ | 2 da)(/l)=Za){, o + +F,

'r" 2

where F; is small relative to error term?
* For classical CG, yes; proved by Greenbaum [1989]

* For pipelined CG, THOROUGH ANALYSIS NEEDED!
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Differences in entries y;, 6; in Jacobi matrices T; in HSCG vs. GVCG
(matrix bcsstk03)
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s-step Krylov Subspace Methods

* Idea: Compute blocks of s iterations at once
* Generate an O(s) dimensional Krylov subspace basis; block orthogonalization
« Communicate every s iterations instead of every iteration
* Reduces number of synchronizations per iteration by a factor of s
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* Idea: Compute blocks of s iterations at once
* Generate an O(s) dimensional Krylov subspace basis; block orthogonalization
« Communicate every s iterations instead of every iteration
* Reduces number of synchronizations per iteration by a factor of s

» First related work: s-dimensional steepest descent, least squares
 [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968|

* Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,

 [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991],
[de Sturler and van der Vorst, 1995],..
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* Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,

 [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991],
[de Sturler and van der Vorst, 1995],...

Recent use in many applications

» combustion, cosmology [Williams, C., et al., IPDPS, 2014|
* geoscience dynamics [Anciaux-Sedrakian et al., 2016]
» far-field scattering [Zhang et al., 2016]

 wafer defect detection [Zhang et al., 2016]
21



s-step Krylov Subspace Methods

* Idea: Compute blocks of s iterations at once
* Generate an O(s) dimensional Krylov subspace basis; block orthogonalization
« Communicate every s iterations instead of every iteration
* Reduces number of synchronizations per iteration by a factor of s

» First related work: s-dimensional steepest descent, least squares
 [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968|

* Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,

 [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991],
[de Sturler and van der Vorst, 1995],...

Recent use in many applications

» combustion, cosmology [Williams, C., et al., IPDPS, 2014| ﬁ

* geoscience dynamics [Anciaux-Sedrakian et al., 2016]
up to 4.2x on 24K

» far-field scattering [Zhang et al., 2016] cores on Cray XE6

 wafer defect detection [Zhang et al., 2016]
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Key observation: After iteration i, for j € {0,.., s},

Xivj — Xiy Tivjr, DPivj € Key1(4,p) +HKs(4, 1)
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Key observation: After iteration i, for j € {0,.., s},

Xivj — Xiy Tivjr, DPivj € Key1(4,p) +HKs(4, 1)

s steps of s-step CG:

Expand solution space s dimensions at once
Compute “basis” matrix Y such that
span(Y) = K1 (A, py) + Ks(A,17)
according to the recurrence AY =Y B

0(1)
-

messages

Compute inner products basis vectors in one synchronization

G=Y"y
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Xivj — Xiy Tivjr, DPivj € Key1(4,p) +HKs(4, 1)

s steps of s-step CG: Number of synchronizations per step reduced by factor of O(s)/

: : : )
Expand solution space s dimensions at once
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s-step CG

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y;, and By, such that AY, = Y, By and .
= Compute basis

span(yk) = jCS+1(A' psk) + f}CS(A, rsk) O(S) SPMVS

Gk = Y'Yk
/ ’ / 2
xo = 0,79 = €s42,00 = €1 PO(j )tln(ner
roducts (one
for j = 1: L
o ’ synchronization)
T /
_ _Tj=19kTj-1
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p;Z 1ngkp;'_ 1
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! !
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PTG ! Local Vector S
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Bsk+j = T GkTl_s Updates (no times

S , comm.)
P =71 + Bsk+jPj-1

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser )] = Yielxs, 75, s Inner Outer Loop 23

end




s-step CG

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y;, and By, such that AY, = Y, By and .
= Compute basis

span(Yyx) = Ksy1 (A, psr) + Ks(4, 751 O(S) SPMVs

Gk = Yr U
/ ’ / 2
xo = 0,79 = €s42,00 = €1 PO(j )tln(ner
roducts (one
for j = 1: L
o ’ synchronization)
T /
_ _Tj=19kTj-1
Ask+j-1 =

p;Z 1ngkp;'_ 1

' , Inner Loo
Xj = Xj_q T Ask4j-1Pj-1 P

! !

/
T =Tj—q — Asp+j—1BrkPj-1
PTG ! Local Vector S
_ _Tj 9kTj :
Bsk+j = T GkTl_s Updates (no times

S , comm.)
P =71 + Bsk+jPj-1

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser )] = Yielxs, 75, s Inner Outer Loop 23

end




s-step CG

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y;, and By, such that AY, = Y, By and .
= Compute basis

span(Yyx) = Ksy1 (A, psr) + Ks(4, 751 O(S) SPMVs

Gk = Y'Y
! / / 2
xo = 0,79 = €s42,00 = €1 PO(j )tln(ner
roducts (one
for j = 1: L
o ’ synchronization)
T /
_ _Tj=19kTj-1
Ask+j-1 =

p;Z 1ngkp;'_ 1

' , Inner Loo
Xj = Xj_q T Ask4j-1Pj-1 P

! !

/
T =Tj—q — Asp+j—1BrkPj-1
PTG ! Local Vector S
_ _Tj 9kTj :
Bsk+j = T GkTl_s Updates (no times

S , comm.)
P =71 + Bsk+jPj-1

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser )] = Yielxs, 75, s Inner Outer Loop 23

end




s-step CG

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y;, and By, such that AY, = Y, By and .
= Compute basis

span(Yyx) = Ksy1 (A, psr) + Ks(4, 751 O(S) SPMVs

Gk = Y'Y
! / / 2
xo = 0,79 = €s42,00 = €1 PO(j )tln(ner
roducts (one
for j = 1: L
o ’ synchronization)
T !
_ 119k
Ask+j-1 =

Pl 1GkBrDj_4

' / Inner Loo
Xj = Xj_1 + Qs j-1Dj-1 P

! !

!
T =Tj_q — Ask+j—1BrkPj—1

Local Vector S
Updates (no times
comm.)

IT !

Ti GkTj

IT !
Ti—19kTj—1

I /
p; =1 + Bsk+jPj-1

ﬁsk+j =

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser )] = Yielxs, 75, s Inner Outer Loop 23

end




Numerical Behavior of s-step CG

A: bcsstk03 from UFSMC
b: equal components in the eigenbasis of A and ||b|| = 1
N =112,k(A) = 7e6

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 13, A1y, .. AS711])
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b: equal components in the eigenbasis of A and ||b|| = 1
N =112,k(A) = 7e6

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 13, A1y, .. AS711])

5 ——CG
| s-step CG, s=2 |
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< K Effects of roundoff error:
‘5 | 1. convergence delay
g | 2. loss of accuracy
c K
< i
L
|
|
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Sources of Roundoff Error in s-step CG

Error in outer iteration k:

Computing the s-step Krylov subspace basis:

ATk = Y Bx + Ay

Updating coordinate vectors in the inner loop, j = 1:s:

Al

=X%_1+qj1+§;
=7fi_1 —Bx Gj_1 +1;

with  §i_q = fl(@sxsj-1Pj-1)

~ -

_%
|

Recovering CG vectors for use in next outer loop:

A _ 3OAT A
Xsk+s = ykxj T Xsi T ¢sk+s

Psk+s = ‘ykfj, + Ysicss .
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Sources of Roundoff Error in s-step CG

Error in outer iteration k:

Computing the s-step Krylov subspace basis:

Agk = U, By + AUy < Error in computing

s-step basis

Updating coordinate vectors in the inner loop, j = 1:s:

ATl _ ATl A .

= Xj—1 + qdj-1 + 5] > Error in updating
R ~ ..
1‘] _ Bk CIj—l + 77j coefficient vectors

]
With qi—1 = 1(Qsksj-1Dj-1)

<

~

Recovering CG vectors for use in next outer loop:

Xsk+s = yk + xsk + ¢sk+s Errorin
A ~ basis change
Tsk+s = ‘ykr] + Ysicss
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Attainable Accuracy of s-step CG

Residual gap: f; = b—AX;—T;
For CG i
Il < Mfoll + ) L+ MIANIZ + 1]

m=1

e.g., [van der Vorst and Ye, 2000], [Greenbaum, 1997]

For s-step CG: i = sk +j

i
1Al < Mfoll + 27 D (4 + NANZyel| + 1
m=1

r=coma GG 20

where c is a low-degree polynomial in s o



Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is N X N with at most n nonzeros per row)

AV = VT + Bt Omerem + 6V )
a b
U = 01, es Ol SV = [600,,60],  Tu=[P 7
C o B
Bm C’Em
fori € {1,...,m},
16D;ll, < €10
. e o = ||All,
. V: U: < 28
Bisa|0] Dig1 | < 200 6o = |||Alll;

~T -~
|vi+1vi+1 —1|<¢&/2
|B%., + @? + B? — |lAD 13| < 4i(3¢, + 1) 02

Lanczos [Paige, 1976]
Eop = O(EN)
g1 = 0(enb)
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Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is N X N with at most n nonzeros per row)

AVm — Vme + ,ém+1i7\m+1e771wz + 5I7m A
6{:1 IBZ
U = [01,0, 0], 8V = [601,..,60m),  Tu=|2 7 ;
Bm &m
fori € {1,..,m},
160;]l; < €10
5 AT o=|A
,Bi+1|viTvi+1 < 2¢00 05 = |||||A”|T|
AT - = 2
i |vAi+1vi+1 —1|<¢&/2
|BZ + @7 + B7 — 114113 < 43¢ + e1)0?
Lanczos [Paige, 1976] s-step Lanczos [C., Demmel, 2015]:
&9 = 0(eN) g0 = 0(eNT?)
&1 = 0(enb) g, = 0(endr)

F=c- max “‘g;” “|y€|” 27



Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality — eigenvalue

convergence, hold for s-step Lanczos as long as
(r = c-max 97 17.1)

f<k

[ < (24e(NV + 115+ 15)) 7% »

1
\/Ne

28



Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality — eigenvalue

convergence, hold for s-step Lanczos as long as
(r = c-max 97 17.1)

f<k

[ < (24e(NV + 115+ 15)) 7% »

1
\/Ne

 Bounds on accuracy of Ritz values depend on I'?

28



Convergence of Ritz Values in s-step Lanczos
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Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality — eigenvalue

convergence, hold for s-step Lanczos as long as
(r = c-max 97 17.1)

f<k

[ < (24e(NV + 115+ 15)) 7% »

1
\/Ne
 Bounds on accuracy of Ritz values depend on I'?

Lanczos
0(eN3|IAll)
N

| | Ao

'

0(eN3|IAlIT?)
s-step Lanczos

~
I
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Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality — eigenvalue

convergence, hold for s-step Lanczos as long as
(r = max 1921 1:I1)
1/2

1
[ < (24e(N +11s + 15)) ~
&

 Bounds on accuracy of Ritz values depend on I'?

IfI' = 1:

s-step Lanczos behaves Lanczos

the same numerically 0(eN3||AlD

as classical Lanczos N
- 1 I
| . |
\_ /

T
O(eN3All)

s-step Lanczos
28



A different problem...

A: nos4 from SuiteSparse

b: equal components in the eigenbasis
of Aand ||b|| =1

N =100,k(A) = 2e3
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A different problem...

A: nos4 from SuiteSparse
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A different problem...

A: nos4 from SuiteSparse
. . Y s EE e I exact HSCG
b: equal components in the eigenbasis — HSCG '
of Aand ||b|| =1 5 STCS
N =100,k(A) = 2e3 o
L
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A different problem...

A: nos4 from SuiteSparse
. . Y s EE e I exact HSCG
b: equal components in the eigenbasis — Hsce '
—STCG

of Aand ||b|| =1
N =100,k(A) = 2e3

If application only requires
”x - xl”A S 10_10:
any of these methods will work!

s .
Need adaptive, problem-dependent approach based

A-norm of the error

on understanding of finite precision behavior!

S . m =
2 10°¢ \'-.\ 2 1077 \ 1
g 107 \ 107}

107" ' ' ' 10715 . ,
50 100 150 200 0 50 100 150 200
Iteration

[teration



Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m
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* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m

* We can approximate an upper bound on this quantity by

Ufinss = fonll (
Se\1+ k(AT
AN k

jer{rg,ﬁzfs}llfmﬂII) £ = b—AZ—F,
| A]l[|x]]

* If our application requires relative accuracy €*, we must have
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Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m

* We can approximate an upper bound on this quantity by

| fimas — finll je%?.’fs}”’”mﬂ” f; = b—AZ;—7;
Sell+ k(A
|A|l]]x]| |A]l]]x]|

* If our application requires relative accuracy €*, we must have

~ R &E
O = ¢ - || T |||yk|||sg max (||#ma ]
J€{0,...s ]
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Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m

* We can approximate an upper bound on this quantity by
finrs = frnll _ 0, ”’"m+f”> f = b—AR—1,

€{0,...,s}
Sel\l1+ k(AT S
A[[{[x]l ( “ AN

* If our application requires relative accuracy €*, we must have

%

) ~ 3
fie = e (el 9l = T
j€{o,...s} e

o |||l large = T} must be small; [|7;]| small = T} can grow
L g k l k

= adaptive s-step approach [C., 2018]

* s starts off small, increases at rate depending on [|#]| and &*
30



Adaptive s-step CG

mesh3el (UFSMC)

n = 289
k(A) = 10
bi = 1/VN s—8, e*=1.0e-14
10 —
7 —5— s-step CG
%Ié adpt. s-step CG
— CG

O Ty Ty Ty
RN N N

True residual 2-norm

20 40 60 80 100
lteration
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Adaptive s-step CG

mesh3el (UFSMC)

n = 289
k(A) = 10
bi = 1NN s=8,[e*=1e-6
g —5— s-step CG
@] %Ié adpt. s-step CG
< —— (G
AN
- i e
=2
O
w
© 1071
D
~
|_
10-15
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time per ) (number of iterations )

runtime = ( _ .
iteration until convergence
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Takeaway
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doubled precision — twice as many bits moved
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Takeaway

runtime = (tlme per

Reduce time_per iteration

approximate
operators

modify algorithm
to reduce

communication
asynchronous

execution

reduced precision

convergence criteria never met: divergence,

iteration) (

number of iterations

until convergence )

Reduce number of iterations

block methods
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Takeaway

time per ) (number of iterations )

runtime = ( _ .
iteration until convergence

Reduce time per iteration Reduce number of iterations

| PIRITONIAENL block methods

operators
modify algorithm preconditioning
subspace
to reduce )
L recycling
communication _
asynchronous eigenvalue
execution deflation
. increased
reduced precision .
nrecision

To minimize runtime, must understand how modifications affect:

1) attainable accuracy 2) convergence rate 3) time per iteration
32



Future Work: Finite Precision Krylov Subspace Methods

* Convergence delay in high-performance CG variants
 Extending results of Greenbaum [1989] to s-step and pipelined versions
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Future Work: Finite Precision Krylov Subspace Methods

Convergence delay in high-performance CG variants
 Extending results of Greenbaum [1989] to s-step and pipelined versions

Deviation from exact Krylov subspaces in Lanczos

« Can the space spanned by the computed V; be related to some
exactly Krylov subspace?

Loss of orthogonality vs. backward error in finite precision GMRES

1741 ol
TR lT =V ~ o) ?

Rigorous analysis of accuracy and convergence for various commonly-used
techniques
» Deflation, incomplete preconditioning, matrix equilibration, look-
ahead, etc.
33



Simulation + Data + Learning

* Data analytics and machine learning increasingly important
in scientific discovery

» Event identification, correlation in high-energy physics
* Climate simulation validation using sensor data
* Determine patterns and trends from astronomical data

* Genetic sequencing

* The convergence of simulation, data, and learning
 current hot topic: workshops, conferences, research initiatives, funding calls
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* Data analytics and machine learning increasingly important
in scientific discovery

» Event identification, correlation in high-energy physics
* Climate simulation validation using sensor data

* Determine patterns and trends from astronomical data
* Genetic sequencing

* The convergence of simulation, data, and learning
 current hot topic: workshops, conferences, research initiatives, funding calls

XC40
World’s leading Supercomputer

. Driving changes Wl e |25
riving changes in pEit =
supercomputer architecture =

N7,
Ll

Vi
Ia

| Cray Graph Engine >

* Multiprecision hardware =
T . Open analytics frameworl> == “p ”
» Specialized accelerators Urlka-GD - b
ustom

Graph Urika-GX
* Memory at nOde Analytics  |jrika-XA Integrated system:

engine Hadoop Hadoop/Spark +

Spark, ’ Graph analytics +

NoSQL BES 34



Numerical Linear Algebra for Data Analytics + ML

* Numerical linear algebra routines are the core computational kernels in
many data science and machine learning applications
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Numerical Linear Algebra for Data Analytics + ML

* Numerical linear algebra routines are the core computational kernels in
many data science and machine learning applications

» Growing problem sizes, growing datasets — need scalable performance

Challenges:

* Optimizing performance in different space: different/new architectures,
matrix structures, accuracy requirements, etc.

* Translation between
(% accuracy on test dataset) <> (number of FP digits)
* Designing efficient and effective preconditioners

* More general error analyses: How do approximations (e.g.,
sparsification, low-rank representation) affect convergence and accuracy

of numerical algorithms?

35



Thank you!

carson@karlin.mff.cuni.cz
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The effects of finite precision

Errors have two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual 7; deviate!

A-norm of the error

— HSCG, double precision
---------- exact HSCG
107
10'10‘ L
10'15 L

0 200 400 600 800 1000 1200
Iteration
A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6

Many existing results for CG; See Meurant and Strakos (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG



Attainable accuracy of pipelined CG

* Both ChG CG and GVCG use the same update formulas for x; and r;:
Xi = Xj—1 T &i_1Pi—1, i = Ti-1 — @i-1Si—1

* In finite precision:

A

Xi =Xj—q+ a&_1D;—1 + 6x; f; =11 — Aj_1 §;—1 + 6T
fi =7 — (b — Ax;)
= fic1 — Q-1 (81 — AP;j_1) + 61y + Adx;
= fo + Xh—1(A8xy, + 1) — Gid;

where

* Bound on ||G;|| will differ depending on the method (other recurrences or

auxiliary vectors used)
23



Preconditioning for s-step KSMs

* Much recent/ongoing work in developing communication-avoiding
preconditioned methods

* Many approaches shown to be compatible

Diagonal

Sparse Approx. Inverse (SAl) — for s-step BICGSTAB by Mehri
(2014)

HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight,
C., Demmel, 2014); same general technique for any system that can
be written as sparse + low-rank

CA-ILU(0) — Moufawad and Grigori (2013)

Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step
GMRES (Yamazaki et al., 2014)

Domain decomposition — avoid introducing additional communication
by “underlapping” subdomains (Yamazaki et al., 2014)



SpMV Dependency Graph

G = (V,E)whereV = {yq, ..., Yn-1} U {x0, ..., X,—1 } and (yi,xj) eEifd;;+ 0

Example: Tridiagonal matrix

Yo
Y1

Y2
Ys
Ya

Y

X

X

X1 X9 I3



Parallel Matrix Powers
n

I
.‘ optimization: , ."‘
1 message per neighbor ’ ’

V 1228 RR {20202
30 processor 4

X
0 processor 1 10 processor 2 20 processor 3

{




The Matrix Powers Kernel pemmel et al., 2007)

Avoids communication:

* In serial, by exploiting temporal locality:
* Reading A, reading vectors

* In parallel, by doing only 1 ‘expand’ phase
(instead of s). |
. rRaet?slres sufficiently low ‘surface-to-volume /l:lack=localelements

Also works for red = 1-level dependencies
o eneral eraphs! green = 2-level dependencies
Tridiagonal Example: 8 grap blue = 3-level dependencies

A3y
A |
Av |
v

Adv 5, - &g

o A ik NN -

AA: %;:/// NN -ﬁ ﬂ Parallel
442%§ﬂ24/ . ,é.. NN _

vV L
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Complexity comparison

Example of parallel (per processor) complexity for s iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and s < /n/p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.
Classical Sn SN
G ? ? s\n/p slog, p S slog, p
sn 2
s-step CG ? ikl s\n/p s?log, p 1 log, p
p

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)



Choosing the Block Size s

* Parameter s is limited by machine
parameters, matrix sparsity structure,
and machine properties

* As we increase s, at some point
the lower-order terms in flops and
words moved will dominate
runtime

* This point depends on relative
costs of, e.g., a flop versus !
sending a message on the machine

time per iteration

* We can auto-tune to find the best s based on these properties
* Thatis, find s that gives the least time per iteration

e But s is also limited by numerical properties ...



Choosing a Polynomial Basis

* Recall: in each outer loop of CA-CG, we compute bases for some
Krylov subspaces, X,,(4,v) = span{v, Av, ..., AT 1v}

* Simple loop unrolling gives monomial basis Y = [p, Ap, A%p, A3p, ...]
e Condition number can grow exponentially with s
* Condition number = ratio of largest to smallest eigenvalues,
Amax//lmin
* Recognized early on that this negatively affects convergence

(Leland, 1989)

. Use different
polynomials to compute a basis for the same subspace.

* Two choices based on spectral information that usually lead to well-
conditioned bases:



of s-step Krvlov Methods

Bai, Hu, and Reichel:

GMRES
|
de Sturler:
GMRES
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Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 1024”2 grid
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Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 2048”2 grid
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Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 16”2 grid per process
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Hopper, 4 MPI Processes per node
CG is PETSc solver
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Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 642 grid per process



Coarse-grid Krylov Solver on NERSC’s Hopper (Cray XE6)

Weak Scaling: 43 points per process (0 slope ideal)
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i= 'Y -A- Solver Time
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0 512 1024 1536 2048 2560 3072 3584 4096

Processes (6 threads each)

Solver performance and scalability limited by communication!



Communication-Avoiding Kryvlov Method Speedups

Recent results: CA-BICGSTAB used as geometric multigrid (GMG) bottom-solve
(Williams, Carson, et al., IPDPS ‘14)

Plot: Net time spent on different operations over one GMG bottom solve using
24,576 cores, 643 points/core on fine grid, 43 points/core on coarse grid

Hopper at NERSC (Cray XE6), 4 6-core Opteron chips per node, Gemini network,
3D torus

3D Helmholtz equation :
B MPI (collectives)

aaw — bV - BVu = f 1.250 - m MPI (P2P)
@ BLAS3
a==10,a=b=0.9 1.000 - W BLAS1
W applyOp

CA-BICGSTAB with s = 4

4.2x speedup in Krylov solve;
2.5x in overall GMG solve 0.250

O residual

Time (seconds)
o
~J
U
=
|

0.500 -+

Implemented in BoxLib: applied to 0.000 -
low-Mach number combustion and 3D BICGSTAB CA-BICGSTAB
N-body dark matter simulation apps



Benchmark timing breakdown

Plot: Net time spent across all bottom solves at 24,576 cores, for
BICGSTAB and CA-BICGSTAB with s = 4

11.2x reduction in MPI_AlIReduce time (red)
— BICGSTAB requires 6s more MPI_AlIReduce’s than CA-BICGSTAB

— Less than theoretical 24x L 500 Breakdown of Bottom Solver
since messages in CA- | B MPI (collectives)
BICGSTAB are larger, not 1.250 1 W MPI (P2P) 1

o - @ BLAS3
always latency-limited .g 1.000 - LAY |
P2P (blue) communication 2 0750 _ W applyOp |
doubles for CA-BICGSTAB ‘g O residual
£

— Basis computation
requires twice as many 0.250 -

SpMVs (P2P) per iteration 0.000 -
as BICGSTAB BICGSTAB CA-BICGSTAB




Example: stencil with
variable coefficients

implicit structure
explicit values

Example: general
sparse matrix

explicit structure
explicit values

implicit structure
implicit values

Representation of Matrix Values

Example: stencil with
constant coefficients

explicit structure
implicit values

Example: Laplacian
matrix of a graph

Representation of Matrix Structures

Hoemmen (2010), Fig 2.5



s-step (communication-avoiding) CG

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiyj = AlYp; = Y(Bpj)
n
e
rivpprie) = oYYy = gy

X
% —> = x [ x|



Residual replacement for s-step CG

* Use computable bound for ||b — AXgpqj41 — rsk+j+1|| to update dgp4j41, an
estimate of error in computing 75,441, in each iteration

* Set threshold € = /¢, replace whenever dsk+j+1/||rsk+j+1|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

ﬁf Ask+j = <§||7”sk+j” and dgpijy1 > é||7”sk+j+1” and dgpijyq1 > 1-1dinit\

Z=Z+Yp x4, + % : :
Yx W group update of approximate solution

Xsk+j+1 = 0
Tsk+j+1 = b— Az < set residual to true residual

dinit = Ask+j+1= € ((1 + 2N)[[Allllz]l + ||7‘sk+j+1||)

Psk+j+1 = ykp;c,j+1
break from inner loop and [begin new outer loop]

/

176




(2.10) Irillz = 1P| All2llz — Zillo-
We have

r—3=VETUT =Y

and so

n

lz—Zl3> ) —“Li—>— > (u}hri)2=”2k—%”2,

g ag . a .
j=n+1-k J n+l-k j=n+1—k n+l—~k

where P, = UpUl' with Uy = [up41-k, ..., u,). Hence from (2.10) we have

#52)3 ||‘»'°z||2 On+1—k
| Pxrill2 o1

The bound tells us that u§2) will be much less than 1 if r; contains a significant
component in the subspace span(Uy) for any k such that o,41- =~ oy,.

This argument says that we can expect u(2)

;7 < 1 when r; is a “typical” vector—
one having sizeable components in the direction of every left singular vector of A—in
which case x — T; is not typical, in that it has large components in the direction of the

right singular vectors of A corresponding to small singular values.



