Sparse Matrix Computations in the Exascale Era

Erin C. Carson
Seminar of Numerical Mathematics
Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

November 15, 2018

Exascale Computing: The Modern Space Race

- "Exascale": 10^{18} floating point operations per second

Exascale Computing: The Modern Space Race

- "Exascale": 10^{18} floating point operations per second
- Will enable new frontiers in science and engineering
- Environment and climate
- Material, manufacturing, design
- Healthcare, biology, biomedicine
- Cosmology and astrophysics
- High-energy physics

Nothing tends so much to the advancement of knowledge as the application of a new instrument.

- Sir Humphry Davy
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness

Exascale Computing: The Modern Space Race

- "Exascale": 10^{18} floating point operations per second
- Will enable new frontiers in science and engineering
- Environment and climate
- Material, manufacturing, design
- Healthcare, biology, biomedicine
- Cosmology and astrophysics
- High-energy physics

Nothing tends so much to the advancement of knowledge as the application of a new instrument.

- Sir Humphry Davy
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness
- Much research investment toward achieving exascale within 5-10 years
\Rightarrow EuroHPC declaration (2017): €1 billion investment in building exascale infrastructure by 2023

Exascale Computing: The Modern Space Race

- "Exascale": 10^{18} floating point operations per second
- Will enable new frontiers in science and engineering
- Environment and climate
- Material, manufacturing, design
- Healthcare, biology, biomedicine
- Cosmology and astrophysics
- High-energy physics

Nothing tends so much to the advancement of knowledge as the application of a new instrument.

- Sir Humphry Davy
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness
- Much research investment toward achieving exascale within 5-10 years
\Rightarrow EuroHPC declaration (2017): €1 billion investment in building exascale infrastructure by 2023
- Challenges at all levels
hardware to methods and to applications

Exascale Computing: The Modern Space Race

- "Exascale": 10^{18} floating point operations per second
- Will enable new frontiers in science and engineering
- Environment and climate
- Material, manufacturing, design
- Healthcare, biology, biomedicine
- Cosmology and astrophysics
- High-energy physics

Nothing tends so much to the advancement of knowledge as the application of a new instrument.

- Sir Humphry Davy
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness
- Much research investment toward achieving exascale within 5-10 years
\Rightarrow EuroHPC declaration (2017): €1 billion investment in building exascale infrastructure by 2023
- Challenges at all levels

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$
Node Memory Bandwidth Interconnect Bandwidth Memory Latency	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$
Interconnect Latency	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$
$10^{-7} \mathrm{~s} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$	

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$
Node Memory Bandwidth Interconnect Bandwidth	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$
Memory Latency Interconnect Latency	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$
$10^{-7} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$	

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$
Node Memory Bandwidth	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$
Interconnect Bandwidth Memory Latency	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$
Interconnect Latency	$10^{-7} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*	Factor Improvement
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$	100
Node Memory Bandwidth	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$	10
Interconnect Bandwidth Memory Latency	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$	10
Interconnect Latency	$10^{-7} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$	2

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*	Factor Improvement
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$	100
Node Memory Bandwidth	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$	10
Interconnect Bandwidth Memory Latency	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$	10
Interconnect Latency	$10^{-7} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$	2

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Movement of data (communication) is much more expensive than floating point operations (computation), in terms of both time and energy
- Gaps will only grow larger
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!

Iterative Solvers

- Focus: Iterative solvers for sparse
- Linear systems $A x=b$ and
- Eigenvalue problems $A x=\lambda x$

Iterative Solvers

- Focus: Iterative solvers for sparse
- Linear systems $A x=b$ and
- Eigenvalue problems $A x=\lambda x$
- Iterative solvers used when
- A is very large, very sparse
- A is represented implicitly
- Only approximate answer required
- Solving nonlinear equations

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

$$
\mathcal{K}_{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
$$

where A is an $N \times N$ matrix and r_{0} is a length- N vector

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

$$
\mathcal{K}_{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
$$

where A is an $N \times N$ matrix and r_{0} is a length- N vector

In each iteration:

- Add a dimension to the Krylov subspace
- Forms nested sequence of Krylov subspaces

$$
\mathcal{K}_{1}\left(A, r_{0}\right) \subset \mathcal{K}_{2}\left(A, r_{0}\right) \subset \cdots \subset \mathcal{K}_{i}\left(A, r_{0}\right)
$$

- Orthogonalize (with respect to some \mathcal{C}_{i})
- Linear systems: Select approximate solution

$$
x_{i} \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)
$$

using $r_{i}=b-A x_{i} \perp \mathcal{C}_{i}$

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

$$
\mathcal{K}_{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
$$

where A is an $N \times N$ matrix and r_{0} is a length- N vector

In each iteration:

- Add a dimension to the Krylov subspace
- Forms nested sequence of Krylov subspaces

$$
\mathcal{K}_{1}\left(A, r_{0}\right) \subset \mathcal{K}_{2}\left(A, r_{0}\right) \subset \cdots \subset \mathcal{K}_{i}\left(A, r_{0}\right)
$$

- Orthogonalize (with respect to some \mathcal{C}_{i})
- Linear systems: Select approximate solution

$$
x_{i} \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)
$$

using $r_{i}=b-A x_{i} \perp \mathcal{C}_{i}$

Conjugate gradient method: A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

$$
r_{i} \perp \mathcal{K}_{i}\left(A, r_{0}\right) \quad \Leftrightarrow \quad\left\|x-x_{i}\right\|_{A}=\min _{z \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)}\|x-z\|_{A} \quad \Rightarrow \quad r_{N+1}=\mathbf{0}
$$

Krylov Subspace Methods in the Wild

Climate Modeling

Computational Cosmology

Computer Vision

Latent Semantic Analysis

Medical Treatment

Financial Portfolio Optimization

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory
Manufacturer:	IBM
Cores:	$2,282,544$
Memory:	$2,801,664$ GB
Processor:	IBM POWER9 22C 3.07 GHz
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Theoretical peak:	187,659 TFlops/s
LINPACK benchmark:	122,300 Tflops/s
HPCG benchmark:	2,926 Tflops/s

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory
Manufacturer:	IBM
Cores:	$2,282,544$
Memory:	$2,801,664$ GB
Processor:	IBM POWER9 22C $3.07 G H z$
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Theoretical peak:	187,659 TFlops/s
LINPACK benchmark:	122,300 Tflops/s
HPCG benchmark:	2,926 Tflops/s

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory
Manufacturer:	IBM
Cores:	$2,282,544$
Memory:	$2,801,664$ GB
Processor:	IBM POWER9 22C 3.07 GHz
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Theoretical peak:	187,659 TFlops/s
LINPACK benchmark:	122,300 Tflops/s
HPCG benchmark:	2,926 Tflops/s

current \#1 on top500

LINPACK benchmark (dense $A x=b$, direct) 65% efficiency

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end } \quad
\end{array} .
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\text { end } \quad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\qquad \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\text { end }
\end{array} \quad \begin{array}{l}
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\qquad \\
\qquad \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end }
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Cost Per Iteration

\rightarrow Sparse matrix-vector multiplication (SpMV)

- O (nnz) flops
- Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)

Cost Per Iteration

\rightarrow Sparse matrix-vector multiplication (SpMV)

- O (nnz) flops
- Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)

\rightarrow Inner products
- $O(N)$ flops
- global synchronization (MPI_Allreduce)
- all processors must exchange data and wait for all communication to finish before proceeding

Cost Per Iteration

\rightarrow Sparse matrix-vector multiplication (SpMV)

- O (nnz) flops
- Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)

Low computation/communication ratio
\Rightarrow Performance is communication-bound

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Pipelined Krylov subspace methods
- s-step Krylov subspace methods

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Pipelined Krylov subspace methods
- Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
- Modifications also allow decoupling of matrixvector products and inner products - enables overlapping
- s-step Krylov subspace methods

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Pipelined Krylov subspace methods
- Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
- Modifications also allow decoupling of matrixvector products and inner products - enables overlapping
- s-step Krylov subspace methods
- Compute iterations in blocks of s using a different Krylov subspace basis
- Enables one synchronization per s iterations

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Pipelined Krylov subspace methods
- Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
- Modifications also allow decoupling of matrixvector products and inner products - enables overlapping

- s-step Krylov subspace methods
- Compute iterations in blocks of s using a different Krylov subspace basis
- Enables one synchronization per s iterations

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal Minimization of $\left\|x-x_{i}\right\|_{A}$ no longer exact

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

A: bcsstk03 from SuiteSparse, b : equal components in the eigenbasis of $A,\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal Minimization of $\left\|x-x_{i}\right\|_{A}$ no longer exact

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

A: bcsstk03 from SuiteSparse, b : equal components in the eigenbasis of $A,\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

$$
\text { runtime }=\text { (time/iteration }) \times(\# \text { iterations })
$$

- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy
- Crucial that we understand and take into account how algorithm modifications will affect the convergence rate and attainable accuracy!

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

$$
\text { runtime }=\text { (time/iteration }) \times(\# \text { iterations })
$$

- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy
- Crucial that we understand and take into account how algorithm modifications will affect the convergence rate and attainable accuracy!

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \widehat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$

Maximum attainable accuracy

- Accuracy $\left\|x-\hat{x}_{i}\right\|$ generally not computable, but $x-\hat{x}_{i}=A^{-1}\left(b-A \hat{x}_{i}\right)$
- Size of the true residual, $\left\|b-A \hat{x}_{i}\right\|$, used as computable measure of accuracy
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$
- Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
f_{i}=b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i}
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)
\end{aligned}
$$

$\left\|f_{i}\right\| \leq O(\varepsilon) \sum_{m=0}^{i} N_{A}\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\| \quad$ van der Vorst and $\mathrm{Ye}, 2000$
$\left\|f_{i}\right\| \leq O(\varepsilon)\|A\|\left(\|x\|+\max _{m=0, \ldots, i}\left\|\hat{x}_{m}\right\|\right) \quad$ Greenbaum, 1997
$\left\|f_{i}\right\| \leq O(\varepsilon) N_{A}\||A|\|\left\|A^{-1}\right\| \sum_{m=0}^{i}\left\|\hat{r}_{m}\right\| \quad$ Sleijpen and van der Vorst, 1995

Pipelined CG (GVCG)

- Overall idea: use auxiliary recurrences and modified formulas for recurrence coefficients α_{i} and β_{i} to reduce/decouple synchronization points

Pipelined CG (GVCG)

- Overall idea: use auxiliary recurrences and modified formulas for recurrence coefficients α_{i} and β_{i} to reduce/decouple synchronization points
- Long history of related work:
- Modified recurrence coefficient computation: Johnson [1983, 1984], van Rosendale [1983, 1984], Saad [1985]
- CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by Gutknecht and Strakoš [2000]

Pipelined CG (GVCG)

- Overall idea: use auxiliary recurrences and modified formulas for recurrence coefficients α_{i} and β_{i} to reduce/decouple synchronization points
- Long history of related work:
- Modified recurrence coefficient computation: Johnson [1983, 1984], van Rosendale [1983, 1984], Saad [1985]
- CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by Gutknecht and Strakoš [2000]

Pipelined CG (GVCG)

- Overall idea: use auxiliary recurrences and modified formulas for recurrence coefficients α_{i} and β_{i} to reduce/decouple synchronization points
- Long history of related work:
- Modified recurrence coefficient computation: Johnson [1983, 1984], van Rosendale [1983, 1984], Saad [1985]
- CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by Gutknecht and Strakoš [2000]
- Approach of Chronopoulos and Gear [1989]
- Uses auxiliary vector $s_{i} \equiv A p_{i}$ and different computation of α_{i} to reduce number of synchronizations per iteration from 2 to 1

Pipelined CG (GVCG)

- Overall idea: use auxiliary recurrences and modified formulas for recurrence coefficients α_{i} and β_{i} to reduce/decouple synchronization points
- Long history of related work:
- Modified recurrence coefficient computation: Johnson [1983, 1984], van Rosendale [1983, 1984], Saad [1985]
- CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by Gutknecht and Strakoš [2000]
- Approach of Chronopoulos and Gear [1989]
- Uses auxiliary vector $s_{i} \equiv A p_{i}$ and different computation of α_{i} to reduce number of synchronizations per iteration from 2 to 1
- Pipelined CG of Ghysels and Vanroose [2014]
- Uses 3 auxiliary vectors: $A p_{i}, A r_{i}$ and $A^{2} r_{i}$
- Removes sequential dependency between matrix-vector products and inner products
- Computations can then be overlapped using nonblocking (asynchronous) communication \Rightarrow hides the latency of global communications

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$r_{0}=b-A x_{0}, p_{0}=r_{0}$
$s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}$,
$\alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}$
for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$r_{0}=b-A x_{0}, p_{0}=r_{0}$
$s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}$,
$\alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}$
for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$r_{0}=b-A x_{0}, p_{0}=r_{0}$
$s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}$,
$\alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}$
for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$r_{0}=b-A x_{0}, p_{0}=r_{0}$
$s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}$,
$\alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}$
for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$r_{0}=b-A x_{0}, p_{0}=r_{0}$
$s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}$,
$\alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}$
for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Attainable accuracy of pipelined CG

- What is the effect of adding auxiliary recurrences to the CG method?

Attainable accuracy of pipelined CG

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0}, s_{0}=A p_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{\left(r_{i-1}, r_{i-1}\right)}{\left(p_{i-1}, s_{i-1}\right)} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
\beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
\\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end } \\
s_{i}=A r_{i}+\beta_{i} s_{i-1}
\end{array}
\end{aligned}
$$

Attainable accuracy of pipelined CG

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method
- Uses same update formulas for α and β as HSCG, but uses additional recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0}, s_{0}=A p_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{\left(r_{i-1}, r_{i-1}\right)}{\left(p_{i-1}, s_{i-1}\right)} \\
\\
\qquad x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
\\
r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
\\
\beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
\\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end } \\
s_{i}=A r_{i}+\beta_{i} s_{i-1}
\end{array}
\end{aligned}
$$

see [C., Rozložník, Strakoš, Tíchy, Tůma, 2018]

Attainable accuracy of simple pipelined CG

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i}=\hat{r}_{i}-\left(b-A \hat{x}_{i}\right)
\end{gathered}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
\hat{x}_{i}=\hat{x}_{i-1} & +\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i}
\end{aligned}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
\hat{x}_{i}=\hat{x}_{i-1} & +\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
\hat{x}_{i}=\hat{x}_{i-1} & +\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Classical CG: $f_{i}=f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
& \hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
& \qquad \begin{aligned}
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Classical CG: $f_{i}=f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)$

Attainable accuracy of simple pipelined CG

$$
\begin{array}{ll}
\left\|G_{i}\right\| \leq & \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\hat{P}_{i}\right\|+\|A\|\left\|\widehat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \\
0 & 1 & \hat{\beta}_{\hat{\beta}_{2}} & \cdots & \hat{\beta}_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right]
\end{array}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\left\|G_{i}\right\| \leq \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\hat{P}_{i}\right\|+\|A\|\left\|\widehat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
0 & 1 & \hat{\beta}_{2} & \cdots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right] \\
\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j}=\frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell-1}\right\|^{2}}, \quad \ell<j
\end{gathered}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\left\|G_{i}\right\| \leq \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\hat{P}_{i}\right\|+\|A\|\left\|\hat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
0 & 1 & \hat{\beta}_{2} & \cdots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
\vdots & \ddots & \ddots & \ddots & \hat{\beta}_{i} \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right] \\
\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j}=\frac{\left\|r_{j}\right\|^{2}}{\left\|r_{i-1}\right\|^{2}}, \quad \ell<j
\end{gathered}
$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\left\|G_{i}\right\| \leq \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\widehat{P}_{i}\right\|+\|A\|\left\|\hat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
0 & 1 & \hat{\beta}_{2} & \cdots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right] \\
\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j}=\frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell-1}\right\|^{2}}, \quad \ell<j
\end{gathered}
$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!
- Resembles results for attainable accuracy in STCG (3-term)

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\left\|G_{i}\right\| \leq \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\widehat{P}_{i}\right\|+\|A\|\left\|\widehat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
0 & 1 & \hat{\beta}_{2} & \cdots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right] \\
\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j}=\frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell-1}\right\|^{2}}, \quad \ell<j
\end{gathered}
$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!
- Resembles results for attainable accuracy in STCG (3-term)
- Seemingly innocuous change can cause drastic loss of accuracy
- For analysis of attainable accuracy in GVCG, see [Cools et al., 2018]

Simple pipelined CG

Simple pipelined CG

effect of using auxiliary vector $s_{i} \equiv A p_{i}$

Simple pipelined CG

effect of changing formula for recurrence coefficient α and using auxiliary vector $s_{i} \equiv A p_{i}$

Simple pipelined CG

effect of changing formula for recurrence coefficient α and using auxiliary vectors $s_{i} \equiv A p_{i}, w_{i} \equiv A r_{i}, z_{i} \equiv A^{2} r_{i}$

Towards understanding convergence delay

- Coefficients α and β (related to entries of T_{i}) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_{0} in terms of the i th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen \& Strakoš, 2013])
- A-norm of CG error for $f(\lambda)=\lambda^{-1}$ given as scaled quadrature error

$$
\int \lambda^{-1} d \omega(\lambda)=\sum_{\ell=1}^{i} \omega_{\ell}^{(i)}\left\{\theta_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-x_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}
$$

Towards understanding convergence delay

- Coefficients α and β (related to entries of T_{i}) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_{0} in terms of the i th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen \& Strakoš, 2013])
- A-norm of CG error for $f(\lambda)=\lambda^{-1}$ given as scaled quadrature error

$$
\int \lambda^{-1} d \omega(\lambda)=\sum_{\ell=1}^{i} \omega_{\ell}^{(i)}\left\{\theta_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-x_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}
$$

Towards understanding convergence delay

- Coefficients α and β (related to entries of T_{i}) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_{0} in terms of the i th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen \& Strakoš, 2013])
- A-norm of CG error for $f(\lambda)=\lambda^{-1}$ given as scaled quadrature error

$$
\int \lambda^{-1} d \omega(\lambda)=\sum_{\ell=1}^{i} \omega_{\ell}^{(i)}\left\{\theta_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-x_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}
$$

- For particular CG implementation, can the computed $\widehat{\omega}^{(i)}(\lambda)$ be associated with some distribution function $\widehat{\omega}(\lambda)$ related to the distribution function $\omega(\lambda)$, i.e.,

$$
\int \lambda^{-1} d \omega(\lambda) \approx \int \lambda^{-1} d \widehat{\omega}(\lambda)=\sum_{\ell=1}^{i} \widehat{\omega}_{\ell}^{(i)}\left\{\hat{\theta}_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-\hat{x}_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}+F_{i}
$$

where F_{i} is small relative to error term?

Towards understanding convergence delay

- Coefficients α and β (related to entries of T_{i}) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_{0} in terms of the i th Gauss-Christoffel quadrature
- CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen \& Strakoš, 2013])
- A-norm of CG error for $f(\lambda)=\lambda^{-1}$ given as scaled quadrature error

$$
\int \lambda^{-1} d \omega(\lambda)=\sum_{\ell=1}^{i} \omega_{\ell}^{(i)}\left\{\theta_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-x_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}
$$

- For particular CG implementation, can the computed $\widehat{\omega}^{(i)}(\lambda)$ be associated with some distribution function $\widehat{\omega}(\lambda)$ related to the distribution function $\omega(\lambda)$, i.e.,

$$
\int \lambda^{-1} d \omega(\lambda) \approx \int \lambda^{-1} d \widehat{\omega}(\lambda)=\sum_{\ell=1}^{i} \widehat{\omega}_{\ell}^{(i)}\left\{\hat{\theta}_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-\hat{x}_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}+F_{i}
$$

where F_{i} is small relative to error term?

- For classical CG, yes; proved by Greenbaum [1989]

Towards understanding convergence delay

- Coefficients α and β (related to entries of T_{i}) determine distribution functions $\omega^{(i)}(\lambda)$ which approximate distribution function $\omega(\lambda)$ determined by inputs A, b, x_{0} in terms of the i th Gauss-Christoffel quadrature
- CG method $=$ matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen \& Strakoš, 2013])
- A-norm of CG error for $f(\lambda)=\lambda^{-1}$ given as scaled quadrature error

$$
\int \lambda^{-1} d \omega(\lambda)=\sum_{\ell=1}^{i} \omega_{\ell}^{(i)}\left\{\theta_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-x_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}
$$

- For particular CG implementation, can the computed $\widehat{\omega}^{(i)}(\lambda)$ be associated with some distribution function $\widehat{\omega}(\lambda)$ related to the distribution function $\omega(\lambda)$, i.e.,

$$
\int \lambda^{-1} d \omega(\lambda) \approx \int \lambda^{-1} d \widehat{\omega}(\lambda)=\sum_{\ell=1}^{i} \widehat{\omega}_{\ell}^{(i)}\left\{\hat{\theta}_{\ell}^{(i)}\right\}^{-1}+\frac{\left\|x-\hat{x}_{i}\right\|_{A}^{2}}{\left\|r_{0}\right\|^{2}}+F_{i}
$$

where F_{i} is small relative to error term?

- For classical CG, yes; proved by Greenbaum [1989]
- For pipelined CG, THOROUGH ANALYSIS NEEDED!

Differences in entries γ_{i}, δ_{i} in Jacobi matrices T_{i} in HSCG vs. GVCG (matrix bcsstk03)

s-step Krylov Subspace Methods

- Idea: Compute blocks of s iterations at once
- Generate an $O(s)$ dimensional Krylov subspace basis; block orthogonalization
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s

s-step Krylov Subspace Methods

- Idea: Compute blocks of s iterations at once
- Generate an $O(s)$ dimensional Krylov subspace basis; block orthogonalization
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- First related work: s-dimensional steepest descent, least squares
- [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968]
- Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,
- [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991], [de Sturler and van der Vorst, 1995],...

s-step Krylov Subspace Methods

- Idea: Compute blocks of s iterations at once
- Generate an $O(s)$ dimensional Krylov subspace basis; block orthogonalization
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- First related work: s-dimensional steepest descent, least squares
- [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968]
- Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,
- [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991], [de Sturler and van der Vorst, 1995],...

Recent use in many applications

- combustion, cosmology [Williams, C., et al., IPDPS, 2014]
- geoscience dynamics [Anciaux-Sedrakian et al., 2016]
- far-field scattering [Zhang et al., 2016]
- wafer defect detection [Zhang et al., 2016]

s-step Krylov Subspace Methods

- Idea: Compute blocks of s iterations at once
- Generate an $O(s)$ dimensional Krylov subspace basis; block orthogonalization
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- First related work: s-dimensional steepest descent, least squares
- [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968]
- Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,
- [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991], [de Sturler and van der Vorst, 1995],...

Recent use in many applications

- combustion, cosmology [Williams, C., et al., IPDPS, 2014]
- geoscience dynamics [Anciaux-Sedrakian et al., 2016]
- far-field scattering [Zhang et al., 2016]
- wafer defect detection [Zhang et al., 2016]
up to $4.2 x$ on 24 K cores on Cray XE6

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:
Expand solution space s dimensions at once
Compute "basis" matrix y such that

$$
\operatorname{span}(Y)=\mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

according to the recurrence $A \underline{y}=y \mathcal{B}$
Compute inner products basis vectors in one synchronization

$$
\mathcal{G}=y^{T} \mathcal{Y}
$$

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:
Expand solution space \boldsymbol{s} dimensions at once
Compute "basis" matrix \mathcal{Y} such that

$$
\operatorname{span}(\mathcal{Y})=\mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

according to the recurrence $A \underline{\mathcal{Y}}=\mathcal{Y} \mathcal{B}$
Compute inner products basis vectors in one synchronization

$$
\mathcal{G}=y^{T} \mathcal{y}
$$

Compute s iterations of vector updates
Perform s iterations of vector updates by updating coordinates in basis \mathcal{Y} :
no data
movement

$$
x_{i+j}-x_{i}=\mathcal{Y} x_{j}^{\prime}, \quad r_{i+j}=\mathcal{Y} r_{j}^{\prime}, \quad p_{i+j}=\mathcal{Y} p_{j}^{\prime}
$$

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:
Number of synchronizations per step reduced by factor of $O(s)$!
Expand solution space s dimensions at once
Compute "basis" matrix \mathcal{Y} such that

$$
\operatorname{span}(Y)=\mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

according to the recurrence $A \underline{\mathcal{Y}}=\mathcal{Y} \mathcal{B}$

Compute s iterations of vector updates
Perform s iterations of vector updates by updating coordinates in basis y :

$$
x_{i+j}-x_{i}=\mathcal{Y} x_{j}^{\prime}, \quad r_{i+j}=\mathcal{Y} r_{j}^{\prime}, \quad p_{i+j}=\mathcal{Y} p_{j}^{\prime}
$$

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \quad \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime} G_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} G_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \quad \text { for } j=1: s
\end{aligned}
$$

$$
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} G_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}}
$$

$$
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime}
$$

$$
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime}
$$

$$
\beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}
$$

$$
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \text { nmax } / s
\end{aligned}
$$

Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

$$
\begin{aligned}
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}}
$$

$$
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime}
$$

$$
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime}
$$

$$
\beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}
$$

$$
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

Numerical Behavior of s-step CG

A : bcsstk03 from UFSMC
b : equal components in the eigenbasis of A and $\|b\|=1$
$N=112, \kappa(A) \approx 7 \mathrm{e} 6$
s-step CG with monomial basis $\left(\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Numerical Behavior of s-step CG

A: bcsstk03 from UFSMC
b : equal components in the eigenbasis of A and $\|b\|=1$
$N=112, \kappa(A) \approx 7 \mathrm{e} 6$
s-step CG with monomial basis $\left(\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Numerical Behavior of s-step CG

A: bcsstk03 from UFSMC
b : equal components in the eigenbasis of A and $\|b\|=1$
$N=112, \kappa(A) \approx 7 \mathrm{e} 6$
s-step CG with monomial basis $\left(\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Numerical Behavior of s-step CG

A: bcsstk03 from UFSMC
b : equal components in the eigenbasis of A and $\|b\|=1$
$N=112, \kappa(A) \approx 7 \mathrm{e} 6$
s-step CG with monomial basis $\left(\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Numerical Behavior of s-step CG

A: bcsstk03 from UFSMC
b : equal components in the eigenbasis of A and $\|b\|=1$
$N=112, \kappa(A) \approx 7 \mathrm{e} 6$
s-step CG with monomial basis $\left(\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Numerical Behavior of s-step CG

A: bcsstk03 from UFSMC
b : equal components in the eigenbasis of A and $\|b\|=1$
$N=112, \kappa(A) \approx 7 \mathrm{e} 6$
s-step CG with monomial basis $\left(\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Sources of Roundoff Error in s-step CG

Error in outer iteration k:
Computing the s-step Krylov subspace basis:

$$
A \underline{\hat{y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Updating coordinate vectors in the inner loop, $j=1$: s :

$$
\begin{aligned}
& \hat{x}_{j}^{\prime}=\hat{x}_{j-1}^{\prime}+\hat{q}_{j-1}^{\prime}+\xi_{j} \\
& \hat{r}_{j}^{\prime}=\hat{r}_{j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{j-1}^{\prime}+\eta_{j} \\
& \quad \text { with } \quad \hat{q}_{j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{j-1}^{\prime}\right)
\end{aligned}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{x}_{j}^{\prime}+\hat{x}_{s k}+\phi_{s k+s} \\
& \hat{r}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{r}_{j}^{\prime}+\psi_{s k+s}
\end{aligned}
$$

Sources of Roundoff Error in s-step CG

Error in outer iteration k:
Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop, $j=1: s$:

$$
\begin{aligned}
& \hat{x}_{j}^{\prime}=\hat{x}_{j-1}^{\prime}+\hat{q}_{j-1}^{\prime}+\xi_{j} \\
& \hat{r}_{j}^{\prime}=\hat{r}_{j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{j-1}^{\prime}+\eta_{j} \\
& \quad \text { with } \quad \hat{q}_{j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{j-1}^{\prime}\right)
\end{aligned}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{x}_{j}^{\prime}+\hat{x}_{s k}+\phi_{s k+s} \\
& \hat{r}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{r}_{j}^{\prime}+\psi_{s k+s}
\end{aligned}
$$

Sources of Roundoff Error in s-step CG

Error in outer iteration k:
Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop, $j=1$: s :

$$
\begin{aligned}
& \hat{x}_{j}^{\prime}=\hat{x}_{j-1}^{\prime}+\hat{q}_{j-1}^{\prime}+\xi_{j} \\
& \hat{r}_{j}^{\prime}=\hat{r}_{j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{j-1}^{\prime}+\eta_{j} \\
& \quad \text { with } \quad \hat{q}_{j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{j-1}^{\prime}\right)
\end{aligned}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{x}_{j}^{\prime}+\hat{x}_{s k}+\phi_{s k+s} \\
& \hat{r}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{r}_{j}^{\prime}+\psi_{s k+s}
\end{aligned}
$$

Sources of Roundoff Error in s-step CG

Error in outer iteration k :
Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Updating coordinate vectors in the inner loop, $j=1$: s :

$$
\begin{aligned}
& \hat{x}_{j}^{\prime}=\hat{x}_{j-1}^{\prime}+\hat{q}_{j-1}^{\prime}+\xi_{j} \\
& \hat{r}_{j}^{\prime}=\hat{r}_{j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{j-1}^{\prime}+\eta_{j} \longleftarrow \\
& \quad \text { with } \quad \hat{q}_{j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{j-1}^{\prime}\right)
\end{aligned}
$$

Error in updating coefficient vectors

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{x}_{j}^{\prime}+\hat{x}_{s k}+\phi_{s k+s} \\
& \hat{r}_{s k+s}=\hat{\mathcal{Y}}_{k} \hat{r}_{j}^{\prime}+\psi_{s k+s}
\end{aligned}
$$

Error in basis change

Attainable Accuracy of s-step CG

Residual gap: $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

e.g., [van der Vorst and Ye, 2000], [Greenbaum, 1997]

For s-step CG: $i \equiv s k+j$

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \Gamma \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

$$
\begin{gathered}
\Gamma=c \cdot \max _{l \leq k}\left\|\hat{y}_{\ell}^{+}\right\|\left\|\left|\hat{y}_{\ell}\right|\right\| \quad[\mathbf{c} ., 2015] \\
\text { where } c \text { is a low-degree polynomial in } s
\end{gathered}
$$

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{ccccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

for $i \in\{1, \ldots, m\}$,

$$
\begin{array}{rlrl}
\left\|\delta \hat{v}_{i}\right\|_{2} & \leq \varepsilon_{1} \sigma & \sigma & \equiv\|A\|_{2} \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| & \leq 2 \varepsilon_{0} \sigma & \theta \sigma \equiv\||A|\|_{2} \\
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| & \leq \varepsilon_{0} / 2 &
\end{array}
$$

Lanczos [Paige, 1976]

$$
\begin{aligned}
& \varepsilon_{0}=O(\varepsilon N) \\
& \varepsilon_{1}=O(\varepsilon n \theta)
\end{aligned}
$$

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$
\begin{gathered}
A \widehat{V}_{m}=\widehat{V}_{m} \widehat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \widehat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{ccccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

for $i \in\{1, \ldots, m\}$,

$$
\begin{aligned}
\left\|\delta \hat{v}_{i}\right\|_{2} & \leq \varepsilon_{1} \sigma & \sigma \equiv\|A\|_{2} \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| & \leq 2 \varepsilon_{0} \sigma & \theta \sigma \equiv\||A|\|_{2} \\
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| & \leq \varepsilon_{0} / 2 &
\end{aligned}
$$

Lanczos [Paige, 1976]

$$
\begin{aligned}
& \varepsilon_{0}=O(\varepsilon N) \\
& \varepsilon_{1}=O(\varepsilon n \theta)
\end{aligned}
$$

s-step Lanczos [C., Demmel, 2015]:

$$
\begin{aligned}
& \varepsilon_{0}=O\left(\varepsilon N \Gamma^{2}\right) \\
& \varepsilon_{1}=O(\varepsilon n \theta \Gamma)
\end{aligned}
$$

$$
\Gamma=c \cdot \max _{t \leq k}\left\|\hat{y}_{t}^{+}\right\|\| \| \hat{y}_{\ell} \mid \|
$$

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{t \leq k}\left\|\hat{y}_{t}^{+}\right\|\| \| \hat{y}_{t}\| \|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{t \leq k}\left\|\hat{y}_{t}^{+}\right\|\| \| \hat{y}_{t}\| \|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{t \leq K}\left\|\hat{y}_{t}^{+}\right\|\| \| \hat{y}_{t}\| \|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{t \leq K}\left\|\hat{y}_{t}^{+}\right\|\| \| \hat{y}_{t}\| \|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

Convergence of Ritz Values in s-step Lanczos

- All results of Paige [1980], e.g., loss of orthogonality \rightarrow eigenvalue convergence, hold for s-step Lanczos as long as

$$
\left(\Gamma=c \cdot \max _{t \leq k}\left\|\hat{y}_{t}^{+}\right\|\| \| \hat{y}_{\ell}\| \|\right)
$$

$$
\Gamma \leq(24 \varepsilon(N+11 s+15))^{-1 / 2} \approx \frac{1}{\sqrt{N \varepsilon}}
$$

- Bounds on accuracy of Ritz values depend on Γ^{2}

If $\Gamma \approx 1$:
s-step Lanczos behaves the same numerically as classical Lanczos

A different problem...

A : nos4 from SuiteSparse
b : equal components in the eigenbasis
of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from SuiteSparse
 b : equal components in the eigenbasis of A and $\|b\|=1$
 $N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from SuiteSparse

b : equal components in the eigenbasis of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from SuiteSparse

b : equal components in the eigenbasis of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from SuiteSparse

b : equal components in the eigenbasis of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$
If application only requires
$\left\|x-x_{i}\right\|_{A} \leq 10^{-10}$,
any of these methods will work!

A different problem...

A : nos4 from SuiteSparse

b : equal components in the eigenbasis of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$
If application only requires

$$
\left\|x-x_{i}\right\|_{A} \leq 10^{-10}
$$

any of these methods will work!

Need adaptive, problem-dependent approach based on understanding of finite precision behavior!

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

- If our application requires relative accuracy ε^{*}, we must have

$$
\Gamma_{k} \equiv c \cdot\left\|\hat{\mathcal{Y}}_{k}^{+}\right\|\left\|\left|\hat{y}_{k}\right|\right\| \lesssim \frac{\varepsilon^{*}}{\varepsilon \max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}
$$

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

- If our application requires relative accuracy ε^{*}, we must have

$$
\Gamma_{k} \equiv c \cdot\left\|\hat{\mathcal{Y}}_{k}^{+}\right\|\left\|\left|\hat{y}_{k}\right|\right\| \lesssim \frac{\varepsilon^{*}}{\left.\varepsilon \max _{j \in\{0, \ldots, s\}}\left\|\left|\hat{r}_{m+j}\right|\right\|\right)}
$$

- $\left\|\hat{r}_{i}\right\|$ large $\rightarrow \Gamma_{k}$ must be small; $\left\|\hat{r}_{i}\right\|$ small $\rightarrow \Gamma_{k}$ can grow

Adaptive s-step CG

- Consider the growth of the relative residual gap caused by errors in outer loop k, which begins with global iteration number m
- We can approximate an upper bound on this quantity by

$$
\frac{\left\|f_{m+s}-f_{m}\right\|}{\|A\|\|x\|} \lesssim \varepsilon\left(1+\kappa(A) \Gamma_{k} \frac{\max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}{\|A\|\|x\|}\right) \quad f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

- If our application requires relative accuracy ε^{*}, we must have

$$
\Gamma_{k} \equiv c \cdot\left\|\hat{y}_{k}^{+}\right\|\left\|\hat{y}_{k} \mid\right\| \lesssim \frac{\varepsilon^{*}}{\varepsilon \max _{j \in\{0, \ldots, s\}}\left\|\hat{r}_{m+j}\right\|}
$$

- $\left\|\hat{r}_{i}\right\|$ large $\rightarrow \Gamma_{k}$ must be small; $\left\|\hat{r}_{i}\right\|$ small $\rightarrow \Gamma_{k}$ can grow
\Rightarrow adaptive s-step approach [C., 2018]
- s starts off small, increases at rate depending on $\left\|\hat{r}_{i}\right\|$ and ε^{*}

Adaptive s-step CG

mesh3e1 (UFSMC)
$n=289$
$\kappa(A) \approx 10$
$b_{i}=1 / \sqrt{N}$

Adaptive s-step CG

mesh3e1 (UFSMC)
$n=289$
$\kappa(A) \approx 10$
$b_{i}=1 / \sqrt{N}$

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

$$
\begin{aligned}
A x=b \Rightarrow \quad M_{L}^{-1} A M_{R}^{-1} u & =M_{L}^{-1} b \\
x & =M_{R}^{-1} u
\end{aligned}
$$

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

$$
\begin{aligned}
A x=b \Rightarrow M_{L}^{-1} A M_{R}^{-1} u & =M_{L}^{-1} b \\
x & =M_{R}^{-1} u
\end{aligned}
$$

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

doubled precision \rightarrow twice as many bits moved

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

$$
\tilde{A} x \approx A x
$$

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce number of iterations

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\left(\begin{array}{c}
\text { num er } \\
\text { unt }{ }^{c} \text { itrat ons } \\
\text { un }
\end{array}\right)
$$

Reduce number of iterations

Takeaway

$$
\text { runtime }=\binom{\text { time per }}{\text { iteration }} \times\binom{\text { number of iterations }}{\text { until convergence }}
$$

Reduce time per iteration

Reduce number of iterations

To minimize runtime, must understand how modifications affect:

1) attainable accuracy
2) convergence rate
3) time per iteration

Future Work: Finite Precision Krylov Subspace Methods

- Convergence delay in high-performance CG variants
- Extending results of Greenbaum [1989] to s-step and pipelined versions

Future Work: Finite Precision Krylov Subspace Methods

- Convergence delay in high-performance CG variants
- Extending results of Greenbaum [1989] to s-step and pipelined versions
- Deviation from exact Krylov subspaces in Lanczos
- Can the space spanned by the computed \widehat{V}_{i} be related to some exactly Krylov subspace?

Future Work: Finite Precision Krylov Subspace Methods

- Convergence delay in high-performance CG variants
- Extending results of Greenbaum [1989] to s-step and pipelined versions
- Deviation from exact Krylov subspaces in Lanczos
- Can the space spanned by the computed \widehat{V}_{i} be related to some exactly Krylov subspace?
- Loss of orthogonality vs. backward error in finite precision GMRES

$$
\frac{\left\|\hat{r}_{i}\right\|}{\|b\|+\|A\| \hat{x}_{i} \|} \cdot\left\|I-\hat{V}_{i}^{T} \hat{V}_{i}\right\| \approx O(\varepsilon) ?
$$

Future Work: Finite Precision Krylov Subspace Methods

- Convergence delay in high-performance CG variants
- Extending results of Greenbaum [1989] to s-step and pipelined versions
- Deviation from exact Krylov subspaces in Lanczos
- Can the space spanned by the computed \widehat{V}_{i} be related to some exactly Krylov subspace?
- Loss of orthogonality vs. backward error in finite precision GMRES

$$
\frac{\left\|\hat{r}_{i}\right\|}{\|b\|+\|A\|\left\|\hat{x}_{i}\right\|} \cdot\left\|I-\hat{V}_{i}^{T} \hat{V}_{i}\right\| \approx O(\varepsilon) ?
$$

- Rigorous analysis of accuracy and convergence for various commonly-used techniques
- Deflation, incomplete preconditioning, matrix equilibration, lookahead, etc.

Simulation + Data + Learning

- Data analytics and machine learning increasingly important in scientific discovery
- Event identification, correlation in high-energy physics
- Climate simulation validation using sensor data
- Determine patterns and trends from astronomical data
- Genetic sequencing

- The convergence of simulation, data, and learning
- current hot topic: workshops, conferences, research initiatives, funding calls

Simulation + Data + Learning

- Data analytics and machine learning increasingly important in scientific discovery
- Event identification, correlation in high-energy physics
- Climate simulation validation using sensor data
- Determine patterns and trends from astronomical data
- Genetic sequencing

- The convergence of simulation, data, and learning
- current hot topic: workshops, conferences, research initiatives, funding calls
- Driving changes in supercomputer architecture
- Multiprecision hardware
- Specialized accelerators
- Memory at node

XC40

Numerical Linear Algebra for Data Analytics + ML

- Numerical linear algebra routines are the core computational kernels in many data science and machine learning applications

Numerical Linear Algebra for Data Analytics + ML

- Numerical linear algebra routines are the core computational kernels in many data science and machine learning applications
- Growing problem sizes, growing datasets \rightarrow need scalable performance

Numerical Linear Algebra for Data Analytics + ML

- Numerical linear algebra routines are the core computational kernels in many data science and machine learning applications
- Growing problem sizes, growing datasets \rightarrow need scalable performance

Challenges:

- Optimizing performance in different space: different/new architectures, matrix structures, accuracy requirements, etc.
- Translation between
(\% accuracy on test dataset) \leftrightarrow (number of FP digits)
- Designing efficient and effective preconditioners
- More general error analyses: How do approximations (e.g., sparsification, low-rank representation) affect convergence and accuracy of numerical algorithms?

Thank you!

carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~ carson

The effects of finite precision

Errors have two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

Many existing results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

Attainable accuracy of pipelined CG

- Both ChG CG and GVCG use the same update formulas for x_{i} and r_{i} :

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}, \quad r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1}
$$

- In finite precision:

$$
\begin{aligned}
\hat{x}_{i} & =\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)-G_{i} d_{i}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

- Bound on $\left\|G_{i}\right\|$ will differ depending on the method (other recurrences or auxiliary vectors used)

Preconditioning for s-step KSMs

- Much recent/ongoing work in developing communication-avoiding preconditioned methods
- Many approaches shown to be compatible
- Diagonal
- Sparse Approx. Inverse (SAI) - for s-step BICGSTAB by Mehri (2014)
- HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, C., Demmel, 2014); same general technique for any system that can be written as sparse + low-rank
- CA-ILU(0) - Moufawad and Grigori (2013)
- Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step GMRES (Yamazaki et al., 2014)
- Domain decomposition - avoid introducing additional communication by "underlapping" subdomains (Yamazaki et al., 2014)

SpMV Dependency Graph

$G=(V, E)$ where $V=\left\{y_{0}, \ldots, y_{n-1}\right\} \cup\left\{x_{0}, \ldots, x_{n-1}\right\}$ and $\left(y_{i}, x_{j}\right) \in E$ if $A_{i j} \neq 0$

Example: Tridiagonal matrix

Parallel Matrix Powers

Example: tridiagonal matrix, $s=3, n=40, p=4$

The Matrix Powers Kernel (Demmel et al, 2007)

Avoids communication:

- In serial, by exploiting temporal locality:
- Reading A, reading vectors
- In parallel, by doing only 1 'expand' phase (instead of s).
- Requires sufficiently low 'surface-to-volume' ratio

Tridiagonal Example:

Also works for general graphs!
 red $=1$-level dependencies green $=2$-level dependencies blue $=3$-level dependencies

Parallel

Complexity comparison

Example of parallel (per processor) complexity for s iterations of CG vs. s-step CG for a 2D 9-point stencil:
(Assuming each of p processors owns n / p rows of the matrix and $s \leq \sqrt{n / p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{s n}{p}$	$\frac{s n}{p}$	$s \sqrt{n / p}$	$s \log _{2} p$	s	$s \log _{2} p$
s-step CG	$\frac{s n}{p}$	$\frac{s^{2} n}{p}$	$s \sqrt{n / p}$	$s^{2} \log _{2} p$	1	$\log _{2} p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Choosing the Block Size s

- Parameter s is limited by machine parameters, matrix sparsity structure, and machine properties
- As we increase s, at some point the lower-order terms in flops and words moved will dominate runtime
- This point depends on relative costs of, e.g., a flop versus sending a message on the machine

S

- We can auto-tune to find the best s based on these properties
- That is, find s that gives the least time per iteration
- But s is also limited by numerical properties ...

Choosing a Polynomial Basis

- Recall: in each outer loop of CA-CG, we compute bases for some Krylov subspaces, $\mathcal{K}_{m}(A, v)=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\}$
- Simple loop unrolling gives monomial basis $Y=\left[p, A p, A^{2} p, A^{3} p, \ldots\right]$
- Condition number can grow exponentially with s
- Condition number = ratio of largest to smallest eigenvalues, $\lambda_{\text {max }} / \lambda_{\text {min }}$
- Recognized early on that this negatively affects convergence (Leland, 1989)
- Improve basis condition number to improve convergence: Use different polynomials to compute a basis for the same subspace.
- Two choices based on spectral information that usually lead to wellconditioned bases:
- Newton polynomials
- Chebyshev polynomials

History of s-step Krylov Methods

Recent Years...

Hopper, 4 MPI Processes per node CG is PETSc solver
2D Poisson on 512^2 grid

Hopper, 4 MPI Processes per node CG is PETSc solver 2D Poisson on 1024^2 grid

Hopper, 4 MPI Processes per node CG is PETSc solver 2D Poisson on 2048^2 grid

Hopper, 4 MPI Processes per node CG is PETSc solver 2D Poisson on $16^{\wedge} 2$ grid per process

Hopper, 4 MPI Processes per node CG is PETSc solver 2D Poisson on $32^{\wedge} 2$ grid per process

Hopper, 4 MPI Processes per node CG is PETSc solver
2D Poisson on $64^{\wedge} 2$ grid per process

Coarse-grid Krylov Solver on NERSC's Hopper (Cray XE6)
Weak Scaling: 4^{3} points per process (0 slope ideal)

Solver performance and scalability limited by communication!

Communication-Avoiding Krvlov Method Speedups

- Recent results: CA-BICGSTAB used as geometric multigrid (GMG) bottom-solve (Williams, Carson, et al., IPDPS '14)
- Plot: Net time spent on different operations over one GMG bottom solve using 24,576 cores, 64^{3} points/core on fine grid, 4^{3} points/core on coarse grid
- Hopper at NERSC (Cray XE6), 4 6-core Opteron chips per node, Gemini network, 3D torus
- 3D Helmholtz equation

$$
\begin{gathered}
a \alpha u-b \nabla \cdot \beta \nabla u=f \\
\alpha=\beta=1.0, a=b=0.9
\end{gathered}
$$

- CA-BICGSTAB with $s=4$
4.2x speedup in Krylov solve; 2.5x in overall GMG solve
- Implemented in BoxLib: applied to low-Mach number combustion and 3D

Benchmark timing breakdown

- Plot: Net time spent across all bottom solves at 24,576 cores, for BICGSTAB and CA-BICGSTAB with $s=4$
- 11.2x reduction in MPI_AllReduce time (red)
- BICGSTAB requires $6 s$ more MPI_AllReduce's than CA-BICGSTAB
- Less than theoretical $24 x$ since messages in CABICGSTAB are larger, not always latency-limited
- P2P (blue) communication doubles for CA-BICGSTAB
- Basis computation requires twice as many SpMVs (P2P) per iteration as BICGSTAB

Example: stencil with variable coefficients

Example: general sparse matrix

explicit structure explicit values

implicit structure implicit values

$$
\begin{aligned}
& \text { implicit structure } \\
& \text { explicit values }
\end{aligned}
$$

explicit structure implicit values
Example: Laplacian matrix of a graph
Representation of Matrix Structures

s-step (communication-avoiding) CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

$$
\begin{aligned}
& A p_{i+j} \quad=\quad \underline{\mathcal{Y}} p_{j}^{\prime}=\mathcal{Y}\left(\mathcal{B} p_{j}^{\prime}\right) \\
& \rightarrow \\
& \stackrel{O(s)}{O(s)} \square \times \square \\
& \left(r_{i+j}, r_{i+j}\right) \\
& =r_{j}^{\prime T} y^{T} \mathcal{y} r_{j}^{\prime} \\
& =\quad r_{j}^{\prime T} \mathcal{G} r_{j}^{\prime} \\
& \because \times \\
& \rightarrow \\
& =\times \square \times \rrbracket
\end{aligned}
$$

Residual replacement for s-step CG

- Use computable bound for $\left\|b-A x_{s k+j+1}-r_{s k+j+1}\right\|$ to update $d_{s k+j+1}$, an estimate of error in computing $r_{s k+j+1}$, in each iteration
- Set threshold $\hat{\varepsilon} \approx \sqrt{\varepsilon}$, replace whenever $d_{s k+j+1} /\left\|r_{s k+j+1}\right\|$ reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

$$
\begin{aligned}
& \text { if } d_{s k+j} \leq \hat{\varepsilon}\left\|r_{s k+j}\right\| \text { and } d_{s k+j+1}>\hat{\varepsilon}\left\|r_{s k+j+1}\right\| \text { and } d_{s k+j+1}>1.1 d_{\text {init }} \\
& z=z+y_{k} x_{k, j+1}^{\prime}+x_{s k+1} \text { group update of approximate solution } \\
& x_{s k+j+1}=0 ~ \text { set residual to true residual } \\
& r_{s k+j+1}=b-A z \longleftarrow \\
& d_{i n i t}=d_{s k+j+1}=\varepsilon\left(\left(1+2 N^{\prime}\right)\|A\|\|z\|+\left\|r_{s k+j+1}\right\|\right) \\
& \\
& p_{s k+j+1}=y_{k} p_{k, j+1}^{\prime} \\
& \text { break from inner loop and begin new outer loop }
\end{aligned}
$$

end

$$
\begin{equation*}
\left\|r_{i}\right\|_{2}=\mu_{i}^{(2)}\|A\|_{2}\left\|x-\widehat{x}_{i}\right\|_{2} \tag{2.10}
\end{equation*}
$$

We have

$$
x-\widehat{x}_{i}=V \Sigma^{-1} U^{T} r_{i}=\sum_{j=1}^{n} \frac{\left(u_{j}^{T} r_{i}\right) v_{j}}{\sigma_{j}}
$$

and so

$$
\left\|x-\widehat{x}_{i}\right\|_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{\left(u_{j}^{T} r_{i}\right)^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n}\left(u_{j}^{T} r_{i}\right)^{2}=\frac{\left\|P_{k} r_{i}\right\|_{2}^{2}}{\sigma_{n+1-k}^{2}}
$$

where $P_{k}=U_{k} U_{k}^{T}$ with $U_{k}=\left[u_{n+1-k}, \ldots, u_{n}\right]$. Hence from (2.10) we have

$$
\mu_{i}^{(2)} \leq \frac{\left\|r_{i}\right\|_{2}}{\left\|P_{k} r_{i}\right\|_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}
$$

The bound tells us that $\mu_{i}^{(2)}$ will be much less than 1 if r_{i} contains a significant component in the subspace $\operatorname{span}\left(U_{k}\right)$ for any k such that $\sigma_{n+1-k} \approx \sigma_{n}$.

This argument says that we can expect $\mu_{i}^{(2)} \ll 1$ when r_{i} is a "typical" vectorone having sizeable components in the direction of every left singular vector of A-in which case $x-\widehat{x}_{i}$ is not typical, in that it has large components in the direction of the right singular vectors of A corresponding to small singular values.

