
Erin C. Carson

Seminar of Numerical Mathematics

Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

November 15, 2018

Sparse Matrix Computations
in the

Exascale Era

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16_027/0008495

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

1

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• Will enable new frontiers in science and engineering
• Environment and climate
• Material, manufacturing, design
• Healthcare, biology, biomedicine
• Cosmology and astrophysics
• High-energy physics

1

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

• Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• Will enable new frontiers in science and engineering
• Environment and climate
• Material, manufacturing, design
• Healthcare, biology, biomedicine
• Cosmology and astrophysics
• High-energy physics

1

• Much research investment toward achieving exascale within 5-10 years

EuroHPC declaration (2017): €1 billion investment in building exascale
infrastructure by 2023

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

• Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• Will enable new frontiers in science and engineering
• Environment and climate
• Material, manufacturing, design
• Healthcare, biology, biomedicine
• Cosmology and astrophysics
• High-energy physics

1

• Much research investment toward achieving exascale within 5-10 years

EuroHPC declaration (2017): €1 billion investment in building exascale
infrastructure by 2023

• Challenges at all levels

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

• Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness

hardware to to applicationsmethods and
algorithms

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• Will enable new frontiers in science and engineering
• Environment and climate
• Material, manufacturing, design
• Healthcare, biology, biomedicine
• Cosmology and astrophysics
• High-energy physics

1

• Much research investment toward achieving exascale within 5-10 years

EuroHPC declaration (2017): €1 billion investment in building exascale
infrastructure by 2023

• Challenges at all levels

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

• Advancing knowledge, addressing social challenges, improving quality of life,
influencing policy, economic competitiveness

hardware to to applicationsmethods and
algorithms

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

2

CPU
Cache

CPU
DRAM

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

2

CPU
Cache

CPU
DRAM

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

2

CPU
Cache

CPU
DRAM

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

2

Exascale System Projections

• Gaps will only grow larger

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Reducing time spent moving data/waiting for data will be essential for
applications at exascale!

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

• Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

2

• Focus: Iterative solvers for sparse
• Linear systems 𝐴𝑥 = 𝑏 and
• Eigenvalue problems 𝐴𝑥 = 𝜆𝑥

3

Iterative Solvers

Initial guess

Convergence
to sufficient
accuracy?

Return
solution

Yes

No

Refine
Solution

• Iterative solvers used when

• 𝐴 is very large, very sparse

• 𝐴 is represented implicitly

• Only approximate answer required

• Solving nonlinear equations

• Focus: Iterative solvers for sparse
• Linear systems 𝐴𝑥 = 𝑏 and
• Eigenvalue problems 𝐴𝑥 = 𝜆𝑥

3

Iterative Solvers

Initial guess

Convergence
to sufficient
accuracy?

Return
solution

Yes

No

Refine
Solution

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

4

Krylov Subspace Methods

In each iteration:

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Linear systems: Select approximate solution

𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

4

Krylov Subspace Methods

In each iteration:

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Linear systems: Select approximate solution

𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

4

Conjugate gradient method: 𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 ⟹ 𝒓𝑵+𝟏 = 𝟎

Krylov Subspace Methods in the Wild

Climate Modeling

Computational Cosmology
(Dark Matter Simulation,
Almgren et al., LBNL)

Medical Treatment

Computer Vision

Power Grid Modeling

Chemical Engineering
(Low-Emission Combustion
Simulation, CCSE, LBNL)

Financial Portfolio
Optimization

Latent Semantic Analysis

5

Conjugate Gradient on the World's Fastest Computer

6

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922

current #1
on top500

Conjugate Gradient on the World's Fastest Computer

6

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

current #1
on top500

LINPACK benchmark
(dense 𝐴𝑥 = 𝑏, direct)

65% efficiency

Conjugate Gradient on the World's Fastest Computer

6

Summit - IBM Power System AC922

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

current #1
on top500

LINPACK benchmark
(dense 𝐴𝑥 = 𝑏, direct)

65% efficiency

Conjugate Gradient on the World's Fastest Computer

6

Summit - IBM Power System AC922

HPCG benchmark
(sparse 𝐴𝑥 = 𝑏, iterative)

1.5% efficiency

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

7

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

7

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

7

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

7

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

7

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

7

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)

×

Cost Per Iteration

8

 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)

×

Cost Per Iteration

8

×

 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)

Low computation/communication ratio

⇒ Performance is communication-bound

SpMV

orthogonalize

×

Cost Per Iteration

8

×

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

9

• Pipelined Krylov subspace methods

• s-step Krylov subspace methods

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

9

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to
reduce synchronization points to 1 per iteration

• Modifications also allow decoupling of matrix-
vector products and inner products - enables
overlapping

• s-step Krylov subspace methods

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

9

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to
reduce synchronization points to 1 per iteration

• Modifications also allow decoupling of matrix-
vector products and inner products - enables
overlapping

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different
Krylov subspace basis

• Enables one synchronization per s iterations

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

9

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to
reduce synchronization points to 1 per iteration

• Modifications also allow decoupling of matrix-
vector products and inner products - enables
overlapping

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different
Krylov subspace basis

• Enables one synchronization per s iterations

Both approaches are
mathematically equivalent

to classical CG

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

10

CG (double)

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG

10

CG (double)
exact CG

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

• Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

12

CG (double)
exact CG

11

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

• Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

11

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

Maximum attainable accuracy

13

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

Maximum attainable accuracy

13

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

13

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

13

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht
and Strakoš (2000).

Maximum attainable accuracy

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy of HSCG

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀 𝑚=0
𝑖 𝑁𝐴 𝐴 𝑥𝑚 + 𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1 𝑚=0
𝑖 𝑟𝑚 Sleijpen and van der Vorst, 1995

13

Pipelined CG (GVCG)

• Overall idea: use auxiliary recurrences and modified formulas for recurrence
coefficients 𝛼𝑖 and 𝛽𝑖 to reduce/decouple synchronization points

14

Pipelined CG (GVCG)

• Overall idea: use auxiliary recurrences and modified formulas for recurrence
coefficients 𝛼𝑖 and 𝛽𝑖 to reduce/decouple synchronization points

• Long history of related work:

• Modified recurrence coefficient computation: Johnson [1983, 1984], van
Rosendale [1983, 1984], Saad [1985]

• CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by
Gutknecht and Strakoš [2000]

14

Pipelined CG (GVCG)

• Overall idea: use auxiliary recurrences and modified formulas for recurrence
coefficients 𝛼𝑖 and 𝛽𝑖 to reduce/decouple synchronization points

• Long history of related work:

• Modified recurrence coefficient computation: Johnson [1983, 1984], van
Rosendale [1983, 1984], Saad [1985]

• CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by
Gutknecht and Strakoš [2000]

14

Pipelined CG (GVCG)

• Overall idea: use auxiliary recurrences and modified formulas for recurrence
coefficients 𝛼𝑖 and 𝛽𝑖 to reduce/decouple synchronization points

• Long history of related work:

• Modified recurrence coefficient computation: Johnson [1983, 1984], van
Rosendale [1983, 1984], Saad [1985]

• CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by
Gutknecht and Strakoš [2000]

• Approach of Chronopoulos and Gear [1989]

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and different computation of 𝛼𝑖 to reduce
number of synchronizations per iteration from 2 to 1

14

Pipelined CG (GVCG)

• Overall idea: use auxiliary recurrences and modified formulas for recurrence
coefficients 𝛼𝑖 and 𝛽𝑖 to reduce/decouple synchronization points

• Long history of related work:

• Modified recurrence coefficient computation: Johnson [1983, 1984], van
Rosendale [1983, 1984], Saad [1985]

• CG with two 3-term recurrences (STCG) [Stiefel, 1952/53]; analyzed by
Gutknecht and Strakoš [2000]

• Approach of Chronopoulos and Gear [1989]

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and different computation of 𝛼𝑖 to reduce
number of synchronizations per iteration from 2 to 1

• Pipelined CG of Ghysels and Vanroose [2014]

• Uses 3 auxiliary vectors: 𝐴𝑝𝑖, 𝐴𝑟𝑖 and 𝐴2𝑟𝑖
• Removes sequential dependency between matrix-vector products and inner

products

• Computations can then be overlapped using nonblocking (asynchronous)
communication ⇒ hides the latency of global communications

14

GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
15

GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
15

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
15

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
15

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
15

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
15

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Precond

15

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

16

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

• To isolate the effects, we consider a simplified version of a pipelined
method

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end
16

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

• To isolate the effects, we consider a simplified version of a pipelined
method

• Uses same update formulas for 𝛼 and 𝛽 as HSCG, but uses
additional recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end
16

see [C., Rozložník, Strakoš,
Tíchy, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

17

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

17

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

17

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

17

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

Classical CG: 𝑓𝑖 = 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

17

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

Classical CG: 𝑓𝑖 = 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

17

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

18

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

18

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

18

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Resembles results for attainable accuracy in STCG (3-term)

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

18

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Resembles results for attainable accuracy in STCG (3-term)

• Seemingly innocuous change can cause drastic loss of accuracy
• For analysis of attainable accuracy in GVCG, see [Cools et al., 2018]

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

18

Simple pipelined CG

19

Simple pipelined CG

effect of using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

19

Simple pipelined CG

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

19

Simple pipelined CG

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖

19

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

20

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

20

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed 𝜔 𝑖 (𝜆) be associated with
some distribution function 𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e.,

 𝜆−1𝑑𝜔 𝜆 ≈ 𝜆−1𝑑 𝜔 𝜆 =

ℓ=1

𝑖

 𝜔ℓ
𝑖 𝜃ℓ

𝑖
−1

+
𝑥 − 𝑥𝑖 𝐴

2

𝑟0
2

+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

20

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed 𝜔 𝑖 (𝜆) be associated with
some distribution function 𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e.,

 𝜆−1𝑑𝜔 𝜆 ≈ 𝜆−1𝑑 𝜔 𝜆 =

ℓ=1

𝑖

 𝜔ℓ
𝑖 𝜃ℓ

𝑖
−1

+
𝑥 − 𝑥𝑖 𝐴

2

𝑟0
2

+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

20

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed 𝜔 𝑖 (𝜆) be associated with
some distribution function 𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e.,

 𝜆−1𝑑𝜔 𝜆 ≈ 𝜆−1𝑑 𝜔 𝜆 =

ℓ=1

𝑖

 𝜔ℓ
𝑖 𝜃ℓ

𝑖
−1

+
𝑥 − 𝑥𝑖 𝐴

2

𝑟0
2

+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

• For pipelined CG, THOROUGH ANALYSIS NEEDED!

20

(matrix bcsstk03)

Differences in entries 𝛾𝑖 , 𝛿𝑖 in Jacobi matrices 𝑇𝑖 in HSCG vs. GVCG

*

o
x

eigenvalues of 𝐴

eigenvalues of 𝑇400, HSCG

eigenvalues of 𝑇400, GVCG

value

fr
eq

u
en

cy

s-step Krylov Subspace Methods

21

• Idea: Compute blocks of 𝑠 iterations at once

• Generate an 𝑂(𝑠) dimensional Krylov subspace basis; block orthogonalization

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

s-step Krylov Subspace Methods

• First related work: s-dimensional steepest descent, least squares

• [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968]

• Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,

• [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991],
[de Sturler and van der Vorst, 1995],...

21

• Idea: Compute blocks of 𝑠 iterations at once

• Generate an 𝑂(𝑠) dimensional Krylov subspace basis; block orthogonalization

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

s-step Krylov Subspace Methods

• First related work: s-dimensional steepest descent, least squares

• [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968]

• Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,

• [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991],
[de Sturler and van der Vorst, 1995],...

21

• Idea: Compute blocks of 𝑠 iterations at once

• Generate an 𝑂(𝑠) dimensional Krylov subspace basis; block orthogonalization

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

Recent use in many applications

• combustion, cosmology [Williams, C., et al., IPDPS, 2014]

• geoscience dynamics [Anciaux-Sedrakian et al., 2016]

• far-field scattering [Zhang et al., 2016]

• wafer defect detection [Zhang et al., 2016]

s-step Krylov Subspace Methods

• First related work: s-dimensional steepest descent, least squares

• [Khabaza, 1963], [Forsythe, 1968], [Marchuk and Kuznecov, 1968]

• Flurry of work on s-step Krylov subspace methods in 1980's/1990's; e.g.,

• [Van Rosendale, 1983]; [Chronopoulos and Gear, 1989], [de Sturler, 1991],
[de Sturler and van der Vorst, 1995],...

21

• Idea: Compute blocks of 𝑠 iterations at once

• Generate an 𝑂(𝑠) dimensional Krylov subspace basis; block orthogonalization

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

Recent use in many applications

• combustion, cosmology [Williams, C., et al., IPDPS, 2014]

• geoscience dynamics [Anciaux-Sedrakian et al., 2016]

• far-field scattering [Zhang et al., 2016]

• wafer defect detection [Zhang et al., 2016]

up to 4.2x on 24K
cores on Cray XE6

s-step CG

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

22

s-step CG

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s steps of s-step CG:

22

s-step CG

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that

span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

according to the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products basis vectors in one synchronization

𝒢 = 𝒴𝑇𝒴

𝑂 1
messages

22

s-step CG

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that

span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

according to the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products basis vectors in one synchronization

𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates
Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′

𝑂 1
messages

no data
movement

22

s-step CG

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that

span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

according to the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products basis vectors in one synchronization

𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates
Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′

𝑂 1
messages

no data
movement

Number of synchronizations per step reduced by factor of 𝑂(𝑠)!

22

s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
23

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

23

s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

23

s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

23

24

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , …𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Numerical Behavior of s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , …𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Numerical Behavior of s-step CG

24

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , …𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Numerical Behavior of s-step CG

24

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , …𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Numerical Behavior of s-step CG

24

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , …𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Numerical Behavior of s-step CG

Effects of roundoff error:
1. convergence delay
2. loss of accuracy

24

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , …𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Numerical Behavior of s-step CG

Effects of roundoff error:
1. convergence delay
2. loss of accuracy

24

Sources of Roundoff Error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop, 𝑗 = 1: 𝑠:

 𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝑞𝑗−1
′ + 𝜉𝑗

 𝑟𝑗
′ = 𝑟𝑗−1

′ − ℬ𝑘 𝑞𝑗−1
′ + 𝜂𝑗

with 𝑞𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑠 = 𝒴𝑘 𝑥𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑠

 𝑟𝑠𝑘+𝑠 = 𝒴𝑘 𝑟𝑗
′ + 𝜓𝑠𝑘+𝑠

Error in outer iteration k:

25

Sources of Roundoff Error in s-step CG

Error in computing
𝑠-step basis

Error in outer iteration k:

25

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop, 𝑗 = 1: 𝑠:

 𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝑞𝑗−1
′ + 𝜉𝑗

 𝑟𝑗
′ = 𝑟𝑗−1

′ − ℬ𝑘 𝑞𝑗−1
′ + 𝜂𝑗

with 𝑞𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑠 = 𝒴𝑘 𝑥𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑠

 𝑟𝑠𝑘+𝑠 = 𝒴𝑘 𝑟𝑗
′ + 𝜓𝑠𝑘+𝑠

Sources of Roundoff Error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Error in outer iteration k:

25

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop, 𝑗 = 1: 𝑠:

 𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝑞𝑗−1
′ + 𝜉𝑗

 𝑟𝑗
′ = 𝑟𝑗−1

′ − ℬ𝑘 𝑞𝑗−1
′ + 𝜂𝑗

with 𝑞𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑠 = 𝒴𝑘 𝑥𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑠

 𝑟𝑠𝑘+𝑠 = 𝒴𝑘 𝑟𝑗
′ + 𝜓𝑠𝑘+𝑠

Sources of Roundoff Error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Error in outer iteration k:

25

Error in
basis change

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop, 𝑗 = 1: 𝑠:

 𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝑞𝑗−1
′ + 𝜉𝑗

 𝑟𝑗
′ = 𝑟𝑗−1

′ − ℬ𝑘 𝑞𝑗−1
′ + 𝜂𝑗

with 𝑞𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑠 = 𝒴𝑘 𝑥𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑠

 𝑟𝑠𝑘+𝑠 = 𝒴𝑘 𝑟𝑗
′ + 𝜓𝑠𝑘+𝑠

Attainable Accuracy of s-step CG

For CG:

𝑓𝑖 ≤ 𝑓0 + 𝜀𝛤

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

where 𝑐 is a low-degree polynomial in 𝑠

[C., 2015]

e.g., [van der Vorst and Ye, 2000], [Greenbaum, 1997]

Residual gap: 𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

26

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976]

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

27

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976]

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

s-step Lanczos [C., Demmel, 2015]:

𝜀0 = 𝑂 𝜀𝑁𝚪𝟐

𝜀1 = 𝑂 𝜀𝑛𝜃𝚪

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ 27

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

28

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

• Bounds on accuracy of Ritz values depend on Γ2

28

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)
Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

28

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)

𝑂(𝜀𝑁3 𝐴 𝚪𝟐)

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

28

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)

𝑂(𝜀𝑁3 𝐴)

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos behaves
the same numerically
as classical Lanczos

If 𝚪 ≈ 𝟏:

s-step Lanczos

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

28

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

A different problem...

29

𝐴: nos4 from SuiteSparse
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

A different problem...

𝐴: nos4 from SuiteSparse
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

29

A different problem...

𝐴: nos4 from SuiteSparse
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

29

A different problem...

𝐴: nos4 from SuiteSparse
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

A different problem...

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10,

any of these methods will work!

𝐴: nos4 from SuiteSparse
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

A different problem...

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10,

any of these methods will work!

𝐴: nos4 from SuiteSparse
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

Need adaptive, problem-dependent approach based
on understanding of finite precision behavior!

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

Adaptive s-step CG

30

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

30

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

30

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

• 𝑟𝑖 large → Γ𝑘 must be small; 𝑟𝑖 small → Γ𝑘 can grow

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

30

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

• 𝑟𝑖 large → Γ𝑘 must be small; 𝑟𝑖 small → Γ𝑘 can grow

⇒ adaptive s-step approach [C., 2018]

• 𝑠 starts off small, increases at rate depending on 𝑟𝑖 and 𝜀∗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

30

mesh3e1 (UFSMC)
𝑛 = 289
𝜅 𝐴 ≈ 10

𝑏𝑖 = 1/ 𝑁

s-step CG

adpt. s-step CG

CG

Adaptive s-step CG

31

mesh3e1 (UFSMC)
𝑛 = 289
𝜅 𝐴 ≈ 10

𝑏𝑖 = 1/ 𝑁

Adaptive s-step CG

s-step CG

adpt. s-step CG

CG

31

runtime =
time per
iteration

×
number of iterations

until convergence

Takeaway

32

runtime =
time per
iteration

×
number of iterations

until convergence

Takeaway

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

Reduce time per iteration

32

runtime =
time per
iteration

×
number of iterations

until convergence

Takeaway

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

32

runtime =
time per
iteration

×
number of iterations

until convergence

Takeaway

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

32

runtime =
time per
iteration

×
number of iterations

until convergence

Takeaway

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

32

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

runtime =
time per
iteration

×
number of iterations

until convergence

subspace
recycling

𝐴𝑥 = 𝑏 ⇒ 𝑀𝐿
−1𝐴𝑀𝑅

−1𝑢 = 𝑀𝐿
−1𝑏

𝑥 = 𝑀𝑅
−1𝑢

Takeaway

32

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

runtime =
time per
iteration

×
number of iterations

until convergence

subspace
recycling

𝐴𝑥 = 𝑏 ⇒ 𝑀𝐿
−1𝐴𝑀𝑅

−1𝑢 = 𝑀𝐿
−1𝑏

𝑥 = 𝑀𝑅
−1𝑢

Takeaway

32

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

runtime =
time per
iteration

×
number of iterations

until convergence

doubled precision → twice as many bits moved

Takeaway

32

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

runtime =
time per
iteration

×
number of iterations

until convergence

Takeaway

32

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

runtime =
time per
iteration

×
number of iterations

until convergence

 𝐴𝑥 ≈ 𝐴𝑥

Takeaway

32

runtime =
time per
iteration

×
number of iterations

until convergence

convergence criteria never met: divergence, or convergence to inaccurate solution

Takeaway

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

32

runtime =
time per
iteration

×
number of iterations

until convergence∞

convergence criteria never met: divergence, or convergence to inaccurate solution

Takeaway

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

32

runtime =
time per
iteration

×
number of iterations

until convergence

Takeaway

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

To minimize runtime, must understand how modifications affect:

1) attainable accuracy 2) convergence rate 3) time per iteration

32

Future Work: Finite Precision Krylov Subspace Methods

33

• Convergence delay in high-performance CG variants
• Extending results of Greenbaum [1989] to s-step and pipelined versions

Future Work: Finite Precision Krylov Subspace Methods

33

• Convergence delay in high-performance CG variants
• Extending results of Greenbaum [1989] to s-step and pipelined versions

• Deviation from exact Krylov subspaces in Lanczos

• Can the space spanned by the computed 𝑉𝑖 be related to some
exactly Krylov subspace?

Future Work: Finite Precision Krylov Subspace Methods

33

• Convergence delay in high-performance CG variants
• Extending results of Greenbaum [1989] to s-step and pipelined versions

• Deviation from exact Krylov subspaces in Lanczos

• Can the space spanned by the computed 𝑉𝑖 be related to some
exactly Krylov subspace?

• Loss of orthogonality vs. backward error in finite precision GMRES
 𝑟𝑖

𝑏 + 𝐴 𝑥𝑖
⋅ 𝐼 − 𝑉𝑖

𝑇 𝑉𝑖 ≈ 𝑂(𝜀) ?

Future Work: Finite Precision Krylov Subspace Methods

33

• Convergence delay in high-performance CG variants
• Extending results of Greenbaum [1989] to s-step and pipelined versions

• Deviation from exact Krylov subspaces in Lanczos

• Can the space spanned by the computed 𝑉𝑖 be related to some
exactly Krylov subspace?

• Loss of orthogonality vs. backward error in finite precision GMRES
 𝑟𝑖

𝑏 + 𝐴 𝑥𝑖
⋅ 𝐼 − 𝑉𝑖

𝑇 𝑉𝑖 ≈ 𝑂(𝜀) ?

• Rigorous analysis of accuracy and convergence for various commonly-used
techniques
• Deflation, incomplete preconditioning, matrix equilibration, look-

ahead, etc.

Simulation + Data + Learning

• Data analytics and machine learning increasingly important
in scientific discovery

• Event identification, correlation in high-energy physics

• Climate simulation validation using sensor data

• Determine patterns and trends from astronomical data

• Genetic sequencing

• The convergence of simulation, data, and learning

• current hot topic: workshops, conferences, research initiatives, funding calls

34

Simulation + Data + Learning

• Data analytics and machine learning increasingly important
in scientific discovery

• Event identification, correlation in high-energy physics

• Climate simulation validation using sensor data

• Determine patterns and trends from astronomical data

• Genetic sequencing

• Driving changes in
supercomputer architecture

• Multiprecision hardware

• Specialized accelerators

• Memory at node

• The convergence of simulation, data, and learning

• current hot topic: workshops, conferences, research initiatives, funding calls

34

• Numerical linear algebra routines are the core computational kernels in
many data science and machine learning applications

35

Numerical Linear Algebra for Data Analytics + ML

• Numerical linear algebra routines are the core computational kernels in
many data science and machine learning applications

• Growing problem sizes, growing datasets → need scalable performance

Numerical Linear Algebra for Data Analytics + ML

35

• Numerical linear algebra routines are the core computational kernels in
many data science and machine learning applications

• Growing problem sizes, growing datasets → need scalable performance

Challenges:

• Optimizing performance in different space: different/new architectures,
matrix structures, accuracy requirements, etc.

• Translation between

(% accuracy on test dataset) ↔ (number of FP digits)

• Designing efficient and effective preconditioners

• More general error analyses: How do approximations (e.g.,
sparsification, low-rank representation) affect convergence and accuracy
of numerical algorithms?

Numerical Linear Algebra for Data Analytics + ML

35

carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson

Thank You!Thank you!

The effects of finite precision

Errors have two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Many existing results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG

Attainable accuracy of pipelined CG

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

• Bound on 𝐺𝑖 will differ depending on the method (other recurrences or
auxiliary vectors used)

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

23

Preconditioning for s-step KSMs

• Much recent/ongoing work in developing communication-avoiding
preconditioned methods

• Many approaches shown to be compatible

• Diagonal

• Sparse Approx. Inverse (SAI) – for s-step BICGSTAB by Mehri
(2014)

• HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight,
C., Demmel, 2014); same general technique for any system that can
be written as sparse + low-rank

• CA-ILU(0) – Moufawad and Grigori (2013)

• Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step
GMRES (Yamazaki et al., 2014)

• Domain decomposition – avoid introducing additional communication
by “underlapping” subdomains (Yamazaki et al., 2014)

Example: Tridiagonal matrix

SpMV Dependency Graph

𝐺 = (𝑉, 𝐸) where 𝑉 = 𝑦0, … , 𝑦𝑛−1 ∪ {𝑥0, … , 𝑥𝑛−1} and 𝑦𝑖 , 𝑥𝑗 ∈ 𝐸 if 𝐴𝑖𝑗 ≠ 0

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Matrix powers
optimization:

1 message per neighbor

Parallel Matrix Powers

Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Sequential

Parallel

A3v
A2v
Av
v

A3v
A2v
Av
v

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Also works for
general graphs!

Complexity comparison

Example of parallel (per processor) complexity for 𝑠 iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠 𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

s-step CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠 𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

Choosing the Block Size s

• Parameter 𝑠 is limited by machine
parameters, matrix sparsity structure,
and machine properties

• As we increase s, at some point
the lower-order terms in flops and
words moved will dominate
runtime

• This point depends on relative
costs of, e.g., a flop versus
sending a message on the machine

ti
m

e
p

er
 it

er
at

io
n

s

• But 𝑠 is also limited by numerical properties ...

• We can auto-tune to find the best 𝑠 based on these properties
• That is, find 𝑠 that gives the least time per iteration

Choosing a Polynomial Basis

• Recall: in each outer loop of CA-CG, we compute bases for some
Krylov subspaces, 𝒦𝑚 𝐴, 𝑣 = span{𝑣, 𝐴𝑣, … , 𝐴𝑚−1𝑣}

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials

• Chebyshev polynomials

• Simple loop unrolling gives monomial basis 𝑌 = 𝑝, 𝐴𝑝, 𝐴2𝑝, 𝐴3𝑝, …

• Condition number can grow exponentially with 𝑠

• Condition number = ratio of largest to smallest eigenvalues,
𝜆max/𝜆min

• Recognized early on that this negatively affects convergence
(Leland, 1989)

• Improve basis condition number to improve convergence: Use different
polynomials to compute a basis for the same subspace.

History of 𝑠-step Krylov Methods

1983

Van
Rosendale:

CG

1988

Walker:
GMRES

Chronopoulos
and Gear: CG

1990 1991 1992

First termed
“s-step

methods”

de Sturler:
GMRES

1989

Bai, Hu, and Reichel:
GMRES

Chronopoulos
and Kim:

Nonsymm.
Lanczos

Joubert and
Carey: GMRES

Erhel:
GMRES

Toledo: CG

de Sturler and
van der Vorst:

GMRES

1995 2001

Chronopoulos
and Kinkaid:

Orthodir

Chronopoulos and
Kim: Orthomin,

GMRES Chronopoulos:
MINRES, GCR,

Orthomin

Kim and
Chronopoulos:
Arndoli, Symm.

Lanczos

Leland:
CG

Recent Years…

2010 2011 2014

Hoemmen:
Arnoldi,
GMRES,

Lanczos, CG

First termed
“CA” methods; first TSQR,

general matrix powers
kernel

Carson,
Knight, and
Demmel:

BICG, CGS,
BICGSTAB

Ballard, Carson,
Demmel, Hoemmen,

Knight, Schwartz:
Arnoldi, GMRES,

Nonsymm. Lanczos

Carson and
Demmel: 2-term

Lanczos

Carson and
Demmel:
CG-RR,

BICG-RR

First theoretical
results on finite

precision behavior

2012 2013

Feuerriegel
and Bücker:
Lanczos,
BICG, QMR

Grigori,
Moufawad, Nataf:

CG

First
CA-BICGSTAB

method

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 512^2 grid

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 1024^2 grid

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 2048^2 grid

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 16^2 grid per process

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 32^2 grid per process

Hopper, 4 MPI Processes per node
CG is PETSc solver
2D Poisson on 64^2 grid per process

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 512 1024 1536 2048 2560 3072 3584 4096

Ti
m

e
 (

se
co

n
d

s)

Processes (6 threads each)

Bottom Solver Time (total)

MPI_AllReduce Time (total)

Solver Time

Communication Time

Coarse-grid Krylov Solver on NERSC’s Hopper (Cray XE6)

Weak Scaling: 43 points per process (0 slope ideal)

Solver performance and scalability limited by communication!

Communication-Avoiding Krylov Method Speedups

• Recent results: CA-BICGSTAB used as geometric multigrid (GMG) bottom-solve
(Williams, Carson, et al., IPDPS ‘14)

• Plot: Net time spent on different operations over one GMG bottom solve using
24,576 cores, 643 points/core on fine grid, 43 points/core on coarse grid

• Hopper at NERSC (Cray XE6), 4 6-core Opteron chips per node, Gemini network,
3D torus

• CA-BICGSTAB with 𝒔 = 𝟒

• 3D Helmholtz equation

𝑎𝛼𝑢 − 𝑏𝛻 ⋅ 𝛽𝛻𝑢 = 𝑓

𝛼 = 𝛽 = 1.0, 𝑎 = 𝑏 = 0.9

4.2x speedup in Krylov solve;
2.5x in overall GMG solve

• Implemented in BoxLib: applied to
low-Mach number combustion and 3D
N-body dark matter simulation apps

Benchmark timing breakdown

• Plot: Net time spent across all bottom solves at 24,576 cores, for
BICGSTAB and CA-BICGSTAB with 𝑠 = 4

• 11.2x reduction in MPI_AllReduce time (red)

– BICGSTAB requires 6𝑠 more MPI_AllReduce’s than CA-BICGSTAB

– Less than theoretical 24x
since messages in CA-
BICGSTAB are larger, not
always latency-limited

• P2P (blue) communication
doubles for CA-BICGSTAB

– Basis computation
requires twice as many
SpMVs (P2P) per iteration
as BICGSTAB

0.000

0.250

0.500

0.750

1.000

1.250

1.500

BICGSTAB CA-BICGSTAB

Ti
m

e
 (

se
co

n
d

s)

Breakdown of Bottom Solver

MPI (collectives)

MPI (P2P)

BLAS3

BLAS1

applyOp

residual

Representation of Matrix Structures

R
ep

re
se

n
ta

ti
o

n
 o

f
M

at
ri

x
V

al
u

es

Example: stencil with
variable coefficients

explicit structure
explicit values

explicit structure
implicit values

implicit structure
explicit values

implicit structure
implicit values

Example: stencil with
constant coefficients

Example: Laplacian
matrix of a graph

Example: general
sparse matrix

Hoemmen (2010), Fig 2.5

→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

s-step (communication-avoiding) CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

if 𝑑𝑠𝑘+𝑗 ≤ 𝜀 𝑟𝑠𝑘+𝑗 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗+1 > 𝜀 𝑟𝑠𝑘+𝑗+1 𝐚𝐧𝐝 𝑑𝑠𝑘+𝑗+1 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗+1
′ + 𝑥𝑠𝑘+1

𝑥𝑠𝑘+𝑗+1 = 0

𝑟𝑠𝑘+𝑗+1 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑠𝑘+𝑗+1= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑠𝑘+𝑗+1

𝑝𝑠𝑘+𝑗+1 = 𝒴𝑘𝑝𝑘,𝑗+1
′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴𝑥𝑠𝑘+𝑗+1 − 𝑟𝑠𝑘+𝑗+1 to update 𝑑𝑠𝑘+𝑗+1, an
estimate of error in computing 𝑟𝑠𝑘+𝑗+1, in each iteration

• Set threshold 𝜀 ≈ 𝜀, replace whenever 𝑑𝑠𝑘+𝑗+1/ 𝑟𝑠𝑘+𝑗+1 reaches threshold

176

Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

set residual to true residual

