
Erin C. Carson
Department of Numerical Mathematics, Faculty of Mathematics and Physics,

Charles University

Irish Numerical Analysis Forum

Dublin, Ireland

July 1, 2021

The cost of iterative
computations at scale

• Goal: determine the optimal computational approach for a given machine
and a given instance of data 𝐴 and 𝑏

What is the cost of an iterative computation?

1

• Iterative linear algebra computations

• Eigenvalue problems, linear systems, etc.

• Matrix 𝐴 typically large and sparse

• Ubiquitous in applications, but typically
incapable of fully exploiting underlying hardware

• Has motivated the development of new
methods, algorithms, and implementations (and
hardware!) to improve performance

2

problem

algorithm

implementation

instance
(data, machine, etc.)

method

What is a computation?

1.The Problem

Ultimately, the computation is performed in order to solve some problem

3

Running example: Solve 𝑁 × 𝑁 linear system 𝐴𝑥 = 𝑏

Consider the infinite dimensional problem
𝒢𝑢 = 𝑓

where 𝒢: 𝑆 → 𝑆 is a bounded invertible operator on Hilbert space 𝑆

The problem is approximated on a finite dimensional subspace 𝑆ℎ ⊂ 𝑆 by the finite
dimensional operator 𝒢ℎ, giving

𝒢ℎ𝑢ℎ = 𝑓ℎ

Choosing a basis for 𝑆ℎ gives rise to the matrix problem

𝐴𝑥 = 𝑏

Must also consider greater context

• The origin of the problem dictates mathematical structure

• Mathematical approach for transforming the data

• Many possible choices depending on the properties and structure of 𝐴

• Dense 𝐴 → LU (or Cholesky if SPD)

• Large, sparse, and SPD 𝐴 → Conjugate Gradient method

2.The Method

4

Krylov subspace method

Krylov subspace method constructs at step 𝑖 an approximation 𝐴𝑖 of 𝐴 with desired
approximate solution

𝑥𝑖 = 𝜌𝑖−1 𝐴𝑖 𝑏 ≈ 𝐴−1𝑏 = 𝑥

where 𝜌𝑖−1(𝜆) is associated polynomial of degree at most 𝑖 − 1.

𝐴𝑖 is obtained by restricting and projecting 𝐴 onto the 𝑖th Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, … , 𝐴𝑖−1𝑟0 where 𝑟0 = 𝑏 − 𝐴𝑥0

*for connection to infinite dimensional setting see [Málek & Strakoš, 2015]

The conjugate gradient method

5

Let 𝑉𝑖 = [𝑣1, … , 𝑣𝑖] be a basis for the Krylov subspace 𝒦𝑖 𝐴, 𝑟0

In step 𝑖, we have the operator (on a subspace of small dimension):

𝐴𝑖 = 𝑉𝑖𝑉𝑖
∗𝐴𝑉𝑖𝑉𝑖

∗

In the conjugate gradient method, projected matrix is a tridiagonal Jacobi matrix 𝑇𝑖

In each step 𝑖, solve the projected system

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1

and update the approximate solution 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

can be seen as a
model reduction of
the original system

𝐴𝑥 = 𝑏

𝑇𝑖

The conjugate gradient method

6

The residuals in CG are of the form
𝑟𝑖 = 𝜌𝑖

𝐶𝐺 𝐴 𝑟0

where 𝜌𝑖
𝐶𝐺(𝜆) is the CG polynomial which satisfies 𝜌0

𝐶𝐺 𝜆 = 1 and

𝜌𝑖
𝐶𝐺 𝜆 =

𝜆 − 𝜃1
𝑖

⋯ 𝜆 − 𝜃𝑖
𝑖

−1 𝑖𝜃1
(𝑖)
⋯𝜃𝑖

(𝑖)

where 𝜃1
(𝑖)
, … , 𝜃𝑖

(𝑖)
are the eigenvalues of the Jacobi matrix 𝑇𝑖

CG polynomial is uniquely defined by the minimization problem

𝑥 − 𝑥𝑖 𝐴 = min
𝜌 0 =1

deg 𝜌 ≤𝑖

𝜌 𝐴 𝑥 − 𝑥0 𝐴 = 𝜌𝑖
𝐶𝐺 𝐴 𝑥 − 𝑥0 𝐴

which is equivalent to

𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 .

In each step 𝑖, CG picks the approximate solution from the shifted Krylov subspace
𝑥0 +𝒦𝑖(𝐴, 𝑟0) that minimizes the 𝑨-norm (energy norm) of the error.

⇒ CG (and other Krylov subspace methods) are highly nonlinear

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

7

3.The Algorithm

• Many potential algorithms to choose from to implement a given method

• CG: Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

→ Inner products

• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for all
communication to finish before proceeding

→ Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring

processors (P2P communication)

Dependencies between communication-bound kernels
in each iteration limit performance!

SpMV

orthogonalize

×

×

Communication in HSCG

9

TOP500 HPCG Benchmark, June 28, 2021

10

Rank System Rpeak
(Tflops/s)

HPCG
(Tflops/s)

HPCG
%peak

HPL
(Tflops/s)

HPL %
peak

1 Supercomputer Fugaku,
RIKEN, Japan

537,212 16004.50 3.0% 442,010 82.3%

2 Summit, ORNL, USA 200,794.
9

2925.75 1.5% 148,600 74.0%

3 Perlmutter, LBNL, USA 89,794.5 1905.44 2.0% 64,590 72.0%

4 Sierra, LLNL, USA 125,712.
0

1795.67 1.4% 94,640 75.3%

5 Selene, NVIDIA, USA 79,215.0 1622.51 2.1% 63,460 80.1%

6 JUWELS Booster
Module, FZJ, Germany

70,980.0 1275.36 1.8% 44,120 62.2%

Pipelined CG [Ghysels and Vanroose, 2014]

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,

𝛼0 = 𝑟0
𝑇𝑟0/𝑝0

𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− Τ𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
11

Precond

s-step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
12

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

4.The implementation & 5.The instance

• Implementation: translation of the algorithm into instructions to be run on
a computer

• Programming language, parallelization, machine precision, etc.

• Instance: the particular data 𝐴, 𝑏, the particular machine

• Numerical properties of the data 𝐴, 𝑏 and the hardware parameters of the
particular machine ultimately determine the cost of the iterative
computation

• Selection of optimal method, algorithm, and implementation cannot be
done a priori

13

method algorithm implementation instance

How is cost defined?

14

"There is not even a formal definition
of algorithm in the subject ... Thus we
view numerical analysis as an eclectic
subject with weak foundations."

[Blum, Cucker, Shub, Smale, 1998]

"Phrases like 'cost', 'gap', etc., used
within mathematical formalism, are
ambiguous. Rigorous proofs require
rigorous definitions."

[Iserles, 2000]

Work on extending the Turing machine model to numerical algorithms motivated by
apparent lack of formal notion of cost ...

Viewpoint

15

Important! : for iterative computations:

cost = (cost per iteration) x (number of iterations)

1. Cost is well-defined in terms of energy and/or runtime
• Measurable and meaningful even in total absence of a formal

Turing machine model

2. The computational transformation of the data, consisting of a
problem, method, algorithm, implementation, and instance is the
key concept.
• Focus on the algorithm misses the bigger picture

The cost per iteration

• Cost per iteration depends on particular algorithm, implementation, and data/machine

• Single iteration broken down into computational kernels (SpMV, inner products, etc.)

• The cost of these kernels can be modeled in terms of computation (flops) and
communication (data movement)

• Simplified cost model: If a processor performs 𝐹 flops, and sends/receives 𝑆 messages
containing a total of 𝑊 words, we then model its worst-case cost as

cost = 𝛾𝐹 + 𝛽𝑊 + 𝛼𝑆

where γ is cost of a flop on local data, 𝛽 is cost per word of data moved (inverse
bandwidth), 𝛼 is cost per message (latency)

• Machine structure: CPUs, GPUs, half-precision tensor cores, accelerators, etc.

• Rates of improvement: 𝛾 ≫ 𝛽 ≫ 𝛼

• Communication more expensive than computation, trend will continue

16

Describing CG Convergence

Infinite precision: CG convergence rate depends strongly on the distribution of eigenvalues

𝑥 − 𝑥𝑖 𝐴

𝑥 − 𝑥0 𝐴
≤ min

𝜌 0 =1

deg 𝜌 ≤𝑖

max
1≤𝑗≤𝑁

𝜌 𝜆𝑗

Let 𝑑 be the number of distinct eigenvalues of 𝐴. For 𝑖 = 1,… , 𝑑 − 1, there exist 𝑖 + 1 distinct
eigenvalues of 𝐴, መ𝜆1, … መ𝜆𝑖+1, such that

min
𝜌 0 =1

deg 𝜌 ≤𝑖

max
1≤𝑗≤𝑁

𝜌 መ𝜆𝑗 =

𝑘=1

𝑖+1

ෑ
𝑗=1
𝑗≠𝑘

𝑖+1 መ𝜆𝑗

| መ𝜆𝑗 − መ𝜆𝑘|

−1

17

Frequent (over)simplification: estimate by replacing set of eigenvalues of 𝐴 by continuous interval
[𝜆1, 𝜆𝑁] and use scaled and shifted Chebyshev polynomials:

𝑥 − 𝑥𝑖 𝐴

𝑥 − 𝑥0 𝐴
≤ 2

𝜅 𝐴 − 1

𝜅 𝐴 + 1

𝑖

Chebyshev polynomial-based bound holds for any distribution of eigenvalues between 𝜆1 and 𝜆𝑁 and
any distribution of the components of the initial residuals in the individual invariant subspaces!

⇒Linearization of highly nonlinear phenomena

𝜅 𝐴 = 𝜆𝑁/𝜆1

[Greenbaum, 1979]

Example

18

Example: diagonal matrix with 𝑁 = 25,

𝜆1= 0.1, 𝜆𝑁= 100

𝜆𝑗 = 𝜆1 +
𝑗 − 1

𝑁 − 1
𝜆𝑁 − 𝜆1 𝛾𝑁−𝑗

RHS: 𝑏𝑖 = 1/5

𝛾 = 0.1 ∶

𝛾 = 0.9 ∶

The Distribution of Ill-Conditioning

Matrix: bcsstk03 from SuiteSparse

𝑁 = 112, 𝜅 𝐴 = 6.8 × 106

𝑏1 = 𝑉
1
⋮
1
; 𝑏1 =

𝑏1
𝑏1 2

𝑏2 = 𝑉 0,… , 0,1,1,0,0,0 𝑇; 𝑏2 =
𝑏2
𝑏2 2

𝐴 = 𝑉𝐷𝑉𝑇, CG in infinite precision

19

Describing CG Convergence

20

[Publication, 2015]:

• The Chebyshev polynomial-based bound does not appear anywhere in the original
1952 paper of Hestenes and Stiefel (1952)

• First appearance in the literature in [Daniel, 1967], although he did not identify it
with the CG "convergence rate":

"Assuming only that the spectrum of the matrix A lies inside the interval [𝜆1, 𝜆𝑁],
we can do no better than [the 𝜅(𝐴)-based bound]"

"Soon after the introduction of 𝜅(𝐴) for error analysis, Hestenes and Stiefel
showed that this quantity also played a role in complexity analysis. More
precisely, they showed that the number of iterations of the conjugate
gradient method (assuming infinite precision) needed to ensure that the
current approximation to the solution of a linear system attained a given

accuracy is proportional to 𝜿(𝑨)."

The effects of rounding errors

Much work on these results for classical CG algorithms; See [Meurant & Strakoš, 2006]
for a thorough summary of early developments

21

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have Krylov subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 ?

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 6.8e6

Algorithms designed for HPC

• Computational complexity is a poor measure of runtime/energy cost

• Cost depends heavily on communication complexity

• Communication-avoiding algorithms

• Prove lower bounds on amount of data moved, number of messages

• Find algorithms that meet lower bounds

• Many successes in direct numerical linear algebra

• Extension to iterative numerical linear algebra is tricky

• Idea: Modify algorithms to reduce synchronization cost over fixed number of
steps

• Long history of work on synchronization-reducing algorithms mathematically
equivalent to HSCG (e.g., pipelined CG, s-step CG)

But how many steps are required to converge to prescribed accuracy?

Can we even still converge to prescribed accuracy?

• Makes little sense to claim these algorithms to be "high-performance algorithms" or
"exascale algorithms" without answering these questions

• Must understand behavior in finite precision and potential amplification of
rounding errors

22

• Accuracy 𝑥 − ො𝑥𝑖 generally not computable, but 𝑥 − ො𝑥𝑖 = 𝐴−1 𝑏 − 𝐴ො𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴ො𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨ෝ𝒙𝒊, and the updated residual,
ො𝒓𝒊, to deviate

• Writing 𝑏 − 𝐴ො𝑥𝑖 = Ƹ𝑟𝑖 + 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖,

𝑏 − 𝐴ො𝑥𝑖 ≤ Ƹ𝑟𝑖 + 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖

• As Ƹ𝑟𝑖 → 0, 𝑏 − 𝐴ො𝑥𝑖 depends on 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht
and Strakoš (2000).

Maximum attainable accuracy

23

• In finite precision HSCG, iterates are updated by

ො𝑥𝑖 = ො𝑥𝑖−1 + ො𝛼𝑖−1 Ƹ𝑝𝑖−1 − 𝜹𝒙𝒊 and Ƹ𝑟𝑖 = Ƹ𝑟𝑖−1 − ො𝛼𝑖−1𝐴 Ƹ𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴ො𝑥𝑖 − Ƹ𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 ො𝑥𝑖−1 + ො𝛼𝑖−1 Ƹ𝑝𝑖−1 − 𝛿𝑥𝑖 − Ƹ𝑟𝑖−1 − ො𝛼𝑖−1𝐴 Ƹ𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + σ𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(휀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

ො𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 휀 σ𝑚=0
𝑖 𝑁𝐴 𝐴 ො𝑥𝑚 + Ƹ𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 휀 𝑁𝐴 𝐴 𝐴−1 σ𝑚=0
𝑖 Ƹ𝑟𝑚 Sleijpen and van der Vorst, 1995

24

Attainable Accuracy of Pipelined CG

Computed explicitly: 𝑞𝑖 ≡ 𝐴𝑤𝑖

Pipelined CG uses 3 auxiliary recurrences:

𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑤𝑖 = 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑤𝑖

25

ො𝑥𝑖 = ො𝑥𝑖−1 + ො𝛼𝑖−1 Ƹ𝑝𝑖−1 + 𝛿𝑖
𝑥

Ƹ𝑟𝑖 = Ƹ𝑟𝑖−1 − ො𝛼𝑖−1 Ƹ𝑠𝑖−1 + 𝛿𝑖
𝑟

ෝ𝑤𝑖 = ෝ𝑤𝑖−1 − ො𝛼𝑖−1 Ƹ𝑧𝑖−1 + 𝛿𝑖
𝑤

Ƹ𝑝𝑖 = Ƹ𝑟𝑖 + መ𝛽𝑖 Ƹ𝑝𝑖−1 + 𝛿𝑖
𝑝

Ƹ𝑠𝑖 = ෝ𝑤𝑖 + መ𝛽𝑖 Ƹ𝑠𝑖−1 + 𝛿𝑖
𝑠

Ƹ𝑧𝑖 = ො𝑞𝑖 + መ𝛽𝑖 Ƹ𝑧𝑖−1 + 𝛿𝑖
𝑧

[Cools, et al., 2018]

Attainable Accuracy of Pipelined CG

𝑓𝑖 = 𝑓0 −

𝑗=0

𝑖

ො𝛼𝑗𝑔𝑗 −

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)

26

𝑔𝑗 = ෑ

𝑘=1

𝑗

መ𝛽𝑘 𝑔0 +

𝑘=1

𝑗

ෑ

ℓ=𝑘+1

𝑗

መ𝛽ℓ (𝐴𝛿𝑘
𝑝
− 𝛿𝑘

𝑠) + ℎ𝑘

ℎ𝑘 = ℎ0 +

ℓ=0

𝑘−1

((𝐴𝛿ℓ
𝑟 − 𝛿ℓ

𝑤) − ො𝛼ℓ𝑐ℓ)

𝑐ℓ = ෑ

𝑚=1

ℓ

መ𝛽𝑚 𝑐0 +

𝑚=1

ℓ

ෑ

𝑛=𝑚+1

ℓ

መ𝛽𝑛 𝐴𝛿𝑚
𝑞
− 𝛿𝑚

𝑧

𝑓𝑖 ≡ 𝑏−𝐴ො𝑥𝑖− Ƹ𝑟𝑖

Attainable Accuracy of Pipelined CG

𝑓𝑖 = 𝑓0 −

𝑗=0

𝑖

ො𝛼𝑗𝑔𝑗 −

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)

26

𝑔𝑗 = ෑ

𝑘=1

𝑗

መ𝛽𝑘 𝑔0 +

𝑘=1

𝑗

ෑ

ℓ=𝑘+1

𝑗

መ𝛽ℓ (𝐴𝛿𝑘
𝑝
− 𝛿𝑘

𝑠) + ℎ𝑘

ℎ𝑘 = ℎ0 +

ℓ=0

𝑘−1

((𝐴𝛿ℓ
𝑟 − 𝛿ℓ

𝑤) − ො𝛼ℓ𝑐ℓ)

𝑐ℓ = ෑ

𝑚=1

ℓ

መ𝛽𝑚 𝑐0 +

𝑚=1

ℓ

ෑ

𝑛=𝑚+1

ℓ

መ𝛽𝑛 𝐴𝛿𝑚
𝑞
− 𝛿𝑚

𝑧

Local rounding errors
all potentially

amplified!

27

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 6.8e6

For HSCG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 휀ത𝚪𝒌

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 ො𝑥𝑚 + Ƹ𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 휀

𝑚=1

𝑖

1 + 𝑁 𝐴 ො𝑥𝑚 + Ƹ𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

𝑓𝑖 ≡ 𝑏−𝐴ො𝑥𝑖− Ƹ𝑟𝑖

[see C., 2015]
Accuracy of s-step CG in prec. 휀 ↔ Accuracy of HSCG in prec. 휀തΓ𝑘

28

where തΓ𝑘 = max
𝑚≤𝑘

Γ𝑚

Local rounding errors amplified; amplification is "local" within s-steps

where Γ𝑘 = 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 , 𝑐 is a low-degree polynomial in 𝑠

𝑓𝑠𝑘+𝑗 ≤ 𝑓𝑠𝑘 + 휀𝚪𝒌

ℓ=1

𝑗

1 + 𝑁 𝐴 ො𝑥𝑠𝑘+ℓ + Ƹ𝑟𝑠𝑘+ℓ

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

29

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 6.8e6

Even assuming cost per iteration decreases by factor of s, already at 𝑠 = 4 we are worse
than HSCG in terms of number of synchronizations!

30

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 6.8e6

A different problem...

𝐴: nos4 from SuiteSparse,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

31

If application only requires
𝑥− ො𝑥𝑖 𝐴

𝑥−𝑥0 𝐴
≈ 10−6,

any of these algorithms will work!

Towards understanding convergence delay

• CG method = matrix formulation of Gauss-Christoffel quadrature (see [Liesen & Strakoš,
2013])

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions 𝜔 𝑖 𝜆
which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0 in terms of
the 𝑖th Gauss-Christoffel quadrature

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

න𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed ෝ𝜔 𝑖 (𝜆) be associated with some
distribution function ෝ𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e.,

න𝜆−1𝑑𝜔 𝜆 ≈ න𝜆−1𝑑ෝ𝜔 𝜆 =

ℓ=1

𝑖

ෝ𝜔ℓ
𝑖 መ𝜃ℓ

𝑖
−1

+
𝑥 − ො𝑥𝑖 𝐴

2

𝑟0
2 + 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

• For pipelined CG and s-step CG, THOROUGH ANALYSIS NEEDED!

32

=
𝑥 − 𝑥0 𝐴

2

𝑟0
2

Designing preconditioners

• Approach: design preconditioner 𝑀 such that preconditioned linear system 𝑀−1𝐴𝑥 =
𝑀−1𝑏 converges in few iterations

• Frequent assertion:

of clusters of eigenvalues = # iterations for Krylov subspace method to converge

33

[Greenbaum, 1989]: finite precision HSCG on matrix 𝐴 with simple eigenvalues
behaves like exact CG on larger matrix ሚ𝐴 whose eigenvalues are in tight clusters
around the eigenvalues of 𝐴

If clustering argument were true,
Greenbaum's results imply that
behavior of HSCG in finite precision
is similar to infinite precision CG!

Example: diagonal matrix with
𝑁 = 25, 𝜆1= 0.1, 𝜆𝑁= 100, 𝛾 = 0.65

𝜆𝑗 = 𝜆1 +
𝑗 − 1

𝑁 − 1
𝜆𝑁 − 𝜆1 𝛾𝑁−𝑗

RHS: 𝑏𝑖 = 1/5

Designing preconditioners

• Approach: design preconditioner 𝑀 such that preconditioned linear system 𝑀−1𝐴𝑥 =
𝑀−1𝑏 converges in few iterations

• Frequent assertion:

of clusters of eigenvalues = # iterations for Krylov subspace method to converge

Argument also fails for GMRES (see [Greenbaum & Strakoš, 1994], [Greenbaum, Pták, Strakoš,

1996], [Arioli, Pták, Strakoš, 1998])

Example [Liesen & Tichý, 2004]:
exact GMRES on

𝐴 = gallery('prolate', 40)

RHS: 𝑏: equal components in the

eigenbasis of 𝐴, 𝑏 = 1

Note: the matrix 𝐴 is normal!

33

Designing preconditioners

Other considerations:

• If 𝐴 is ill conditioned, 𝑀 is likely to be ill conditioned

34

Ƹ𝑧𝑖 = 𝑀−1𝐴 + Δ Ƹ𝑟𝑖

• Even if preconditioned system is well conditioned, application can still
introduce significant roundoff error
• Potentially diminished attainable accuracy

• Must consider tradeoff between cost per iteration and convergence rate
• Fewer iterations, but potentially much more expensive

cost = (cost per iteration) x (number of iterations)

Δ 2 ≤ 𝑂 휀 𝑁3/2 𝜅 𝐴 + 𝜅 𝑀 𝑀−1𝐴 𝐹

The place of numerical analysis

"Numerical analysis lies at the meeting point of pure
mathematics, computer science, and application areas.
It often attracts some degree of hostility from all three."

35

[Baxter and Iserles, On the foundations of computational mathematics,
Handbook of numerical analysis, 11 (2003), pp.3-34]

• Various approaches to describe and predict the cost of iterative computations
• All perspectives are valuable and can lead to interesting insights; none alone

gives complete description
• For bigger picture, must considered all aspects of a computation together

→ holistic approach needed

• Confluence of data science/informatics and computational science
• Motivating changes in hardware, new algorithms, new approaches

References

M. Arioli, V. Pták, and Z. Strakoš. Krylov sequences of maximal length and convergence of GMRES. BIT Numer. Math., 38(4):636–643,
1998.

E. Carson. Communication-avoiding Krylov subspace methods in theory and practice. PhD thesis, U.C. Berkeley, 2015.

E. Carson, M. Rozložník, Z. Strakoš, P. Tichý, and M. Tůma. The numerical stability analysis of pipelined conjugate gradient methods:
Historical context and methodology. SIAM J. Sci. Comput., 40(5):A3549–A3580, 2018.

E. Carson and Z. Strakoš. On the Cost of Iterative Computations, Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 378(2166), 2020

T. Gergelits, K.-A. Mardal, B. Nielsen, and Z. Strakoš. Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the
discretized operator. SIAM J. Numer. Anal. (to appear), 2019.

G. H. Golub and G. Meurant. Matrices, Moments, and Quadrature with Applications. Princeton Univ. Press, USA 2010.

A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Lin. Alg. Appl., 113:7–63, 1989.

A. Greenbaum, V. Pták, and Z. Strakoš. Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl.,
17(3):465–469, 1996.

A. Greenbaum and Z. Strakoš. Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal.
Appl., 13(1):121–137, 1992.

A. Greenbaum and Z. Strakoš. Matrices that generate the same Krylov residual spaces. Recent advances in iterative methods. Springer, New
York, NY, 1994.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.Research Nat. Bur. Standards, 49:409–436, 1952.

J. Liesen and Z. Strakoš. Krylov subspace methods: Principles and analysis. Numerical Mathematics and Scientific Computation. Oxford Univ.
Press, 2013.

J. Málek and Z. Strakoš. Preconditioning and the conjugate gradient method in the context of solving PDEs. SIAM, 2015.

G. Meurant and Z. Strakoš. The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numerica, 15:471–542, 2006.

Thank you!
carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

