Balancing Inexactness in Matrix Computations

Erin C. Carson
Charles University

ILAS 2023
June 15, 2023

The Exascale Era

We have now entered the "Exascale Era"

- 10^{18} floating point operations per second

The Exascale Era

We have now entered the "Exascale Era"

- 10^{18} floating point operations per second

https://eurohpc-ju.europa.eu/pictures

The Exascale Era

We have now entered the "Exascale Era"

- 10^{18} floating point operations per second

https://eurohpc-ju.europa.eu/pictures

Significant opportunity ... Significant challenges

Exascale Hardware

Exascale Hardware

Exascale Hardware

Mixed precision in NLA

- BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]
- Iterative refinement:
- Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...
- More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., Higham, Pranesh, 2020], [Amestoy et al., 2021]
- Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], [Abdelfattah et al., 2020]
- Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 2001], [Petschow et al., 2014], [Alvermann et al., 2019]
- Sparse direct solvers: [Buttari et al., 2008]
- Orthogonalization: [Yamazaki et al., 2015]
- Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, Kronbichler, 2017, 2019]
- (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

When Can I Use Low Precision?

1. When low accuracy is needed

When Can I Use Low Precision?

1. When low accuracy is needed
```
A = diag(linspace(.001,1,100));
b = ones(n,1);
```


When Can I Use Low Precision?

1. When low accuracy is needed
```
\(n=100, \lambda_{1}=10^{-3}, \lambda_{n}=1\)
\(\lambda_{i}=\lambda_{1}+\left(\frac{i-1}{n-1}\right)\left(\lambda_{n}-\lambda_{1}\right)(0.65)^{n-i}, \quad i=2, \ldots, n-1\)
b \(=\) ones ( \(\mathrm{n}, 1\) );
```


When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available

Example: Iterative refinement
Solve $A x_{0}=b$ by LU factorization
for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

(in precision u_{r})
Solve $A d_{i}=r_{i}$
(in precision u_{s})
$x_{i+1}=x_{i}+d_{i}$
(in precision u)
e.g., [Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016], [C. and Higham, 2018], [Amestoy et al., 2021]

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available
3. When there are other significant sources of inexactness

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available
3. When there are other significant sources of inexactness

- E.g., reduced models, sparsification, low-rank approximations, randomization

[Schilders, van der Vorst, Rommes, 2008]

Low-rank approximation

Sparsification, randomization

[Sinha, 2018]

When Can I Use Low Precision?

1. When low accuracy is needed
2. When a self-correction mechanism is available
3. When there are other significant sources of inexactness

- E.g., reduced models, sparsification, low-rank approximations, randomization

[Schilders, van der Vorst, Rommes, 2008]

Low-rank approximation

Sparsification, randomization

[Sinha, 2018]

Mixed Precision Sparse Approximate Inverse Preconditioners

SPAI Preconditioners

Goal: Construct sparse matrix $M \approx A^{-1}$ (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m_{k} of M dynamically

Given matrix A, initial sparsity structure J, and tolerance ε For each column k :

Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve $\min _{m_{k}}\left\|e_{k}-A m_{k}\right\|_{2}$
If $\left\|r_{k}\right\|_{2}=\left\|e_{k}-A m_{k}\right\|_{2} \leq \varepsilon$ break;
Else
add select nonzeros to J, repeat.

SPAI Preconditioners

Goal: Construct sparse matrix $M \approx A^{-1}$ (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m_{k} of M dynamically

Given matrix A, initial sparsity structure J, and tolerance ε For each column k :

Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve $\min _{m_{k}}\left\|e_{k}-A m_{k}\right\|_{2}$
If $\left\|r_{k}\right\|_{2}=\left\|e_{k}-A m_{k}\right\|_{2} \leq \varepsilon$ break;
Else
add select nonzeros to J, repeat.

Benefits: Highly parallelizable
But construction can still be costly, esp. for large-scale problems
[Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tůma, 1999], [He, Yin, Gao, 2020]

SPAI Preconditioners in Low Precision

What is the effect of using low precision in SPAI construction?

Notes and assumptions:

- We will assume that the SPAI construction is performed in some precision u_{f}
- We will denote quantities computed in finite precision with hats
- In our application, we want a left preconditioner, so we will run the algorithm on A^{T} and get M^{T}.
- We will assume that the QR factorization of the submatrix of A^{T} is computed fully using HouseholderQR/TSQR

SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on \widehat{M}, under what constraint on \boldsymbol{u}_{f} can we guarantee that $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, with $\hat{r}_{k}=f l_{u_{f}}\left(e_{k}-\right.$ $A^{T} \widehat{m}_{k}^{T}$) for the computed \widehat{m}_{k}^{T} ?

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on \widehat{M}, under what constraint on u_{f} can we guarantee that $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, with $\hat{r}_{k}=f l_{u_{f}}\left(e_{k}-\right.$ $A^{T} \widehat{m}_{k}^{T}$) for the computed \widehat{m}_{k}^{T} ?
2. Assume that when M is computed in exact arithmetic, we quit as soon as $\left\|r_{k}\right\| \leq \varepsilon$. For \widehat{M} computed in precision u_{f} with the same sparsity pattern as M, what is $\left\|e_{k}-A^{T} \widehat{m}_{k}^{T}\right\|_{2}$?

SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS problems, we have

$$
\left\|\hat{r}_{k}\right\|_{2} \leq n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} .
$$

So in order to guarantee we eventually reach a solution with $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, we need

$$
n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} \leq \varepsilon .
$$

SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS problems, we have

$$
\left\|\hat{r}_{k}\right\|_{2} \leq n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} .
$$

So in order to guarantee we eventually reach a solution with $\left\|\hat{r}_{k}\right\|_{2} \leq \varepsilon$, we need

$$
n^{3} u_{f}\left\|\left|e_{k}\right|+\left|A^{T}\right|\left|\widehat{m}_{k}^{T}\right|\right\|_{2} \leq \varepsilon .
$$

\rightarrow problem must not be so ill-conditioned WRT u_{f} that we incur an error greater than ε just computing the residual

SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

$$
\operatorname{cond}_{2}\left(A^{T}\right) \lesssim \varepsilon u_{f}^{-1},
$$

where $\operatorname{cond}_{2}\left(A^{T}\right)=\left\|\left|A^{-T}\right|\left|A^{T}\right|\right\|_{2}$.

SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

$$
\operatorname{cond}_{2}\left(A^{T}\right) \lesssim \varepsilon \boldsymbol{u}_{f}^{-1},
$$

where $\operatorname{cond}_{2}\left(A^{T}\right)=\left\|\left|A^{-T}\right|\left|A^{T}\right|\right\|_{2}$.

Another view: with a given matrix A and a given precision \boldsymbol{u}_{f}, one must set ε such that

$$
\varepsilon \geq u_{f} \operatorname{cond}_{2}\left(A^{T}\right)
$$

Confirms intuition: The more approximate the inverse, the lower the precision we can use without noticing it.

SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

$$
\operatorname{cond}_{2}\left(A^{T}\right) \lesssim \varepsilon \boldsymbol{u}_{f}^{-1},
$$

where $\operatorname{cond}_{2}\left(A^{T}\right)=\left\|\left|A^{-T}\right|\left|A^{T}\right|\right\|_{2}$.

Another view: with a given matrix A and a given precision \boldsymbol{u}_{f}, one must set ε such that

$$
\varepsilon \geq u_{f} \operatorname{cond}_{2}\left(A^{T}\right)
$$

Confirms intuition: The more approximate the inverse, the lower the precision we can use without noticing it.

Resulting bounds for \widehat{M} :

$$
\left\|I-A^{T} \widehat{M}^{T}\right\|_{F} \leq 2 \sqrt{n} \varepsilon, \quad\|I-\widehat{M} A\|_{\infty} \leq 2 n \varepsilon
$$

Second Question

Assume that when M is computed in exact arithmetic, we quit as soon as $\left\|r_{k}\right\| \leq \varepsilon$. For \widehat{M} computed in precision $\boldsymbol{u}_{\boldsymbol{f}}$ with the same sparsity pattern as M, what is $\left\|e_{k}-A^{T} \widehat{m}_{k}^{T}\right\|_{2}$?

Second Question

Assume that when M is computed in exact arithmetic, we quit as soon as $\left\|r_{k}\right\| \leq \varepsilon$. For \widehat{M} computed in precision $\boldsymbol{u}_{\boldsymbol{f}}$ with the same sparsity pattern as M, what is $\left\|e_{k}-A^{T} \widehat{m}_{k}^{T}\right\|_{2}$?

In this case, we obtain the bound

$$
\|I-\widehat{M} A\|_{\infty} \leq n\left(\varepsilon+n^{7 / 2} u_{f} \kappa_{\infty}(A)\right)
$$

\rightarrow If $\kappa_{\infty}(A) \gg \varepsilon u_{f}^{-1}$, then computed \widehat{M} with same sparsity structure as M can be of much lower quality.

Krylov-Based Iterative Refinement

Solve $A x_{0}=b$ by LU factorization
for $i=0$: maxit

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i}$

$$
x_{i+1}=x_{i}+d_{i}
$$

(in precision \boldsymbol{u}_{f})
(in precision u_{r})
(in precision u_{s})
(in precision u)

Krylov-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

$$
\overbrace{\widehat{U}^{-1} \hat{L}^{-1} A}^{\tilde{A}} d_{i}=\overbrace{\widehat{U}^{-1} \hat{L}^{-1} r_{i}}^{\tilde{r}_{i}}
$$

Solve $A x_{0}=b$ by LU factorization
(in precision \boldsymbol{u}_{f})
for $i=0$: maxit

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \text { (in precision } u_{r} \text {) } \\
\text { Solve } A d_{i}=r_{i} \text { via GMRES on } \tilde{A} d_{i}=\tilde{r}_{i} & \text { (in precision } u_{s} \text {) } \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u \text {) }
\end{array}
$$

For related work, see references in [Higham, Mary, 2022], [Vieuble, 2022]

GMRES-IR with Inexact Preconditioners

- Most existing analyses of GMRES-IR assume we use full LU factors
- In practice, often want to use approximate preconditioners
(ILU, SPAI, etc.)
- [Amestoy et al., 2022]
- Analysis of block low-rank (BLR) LU within GMRES-IR
- Analysis of use of static pivoting in LU within GMRES-IR
- [C., Khan, 2023]
- Analysis of sparse approximate inverse (SPAI) preconditioners within GMRES-IR

SPAI-GMRES-IR

SPAI-GMRES-IR [C. and Khan, SISC 45(3), 2023]
$\tilde{A} \quad \tilde{r}_{i}$
To compute the updates d_{i}, apply GMRES to $\overparen{\widetilde{M A} d_{i}}=\stackrel{\widetilde{M} r_{i}}{ }$

Compute SPAI \widehat{M}; solve $\widehat{M} A x_{0}=\widehat{M} b$
(in precision \boldsymbol{u}_{f}) for $i=0$: maxit

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \text { (in precision } u_{r} \text {) } \\
\text { Solve } A d_{i}=r_{i} \text { via GMRES on } \widehat{M} A d_{i}=\widehat{M} r_{i} & \text { (in precision } u_{s} \text {) } \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u \text {) }
\end{array}
$$

Using \widehat{M} computed in precision $\boldsymbol{u}_{\boldsymbol{f}}$, for the preconditioned system $\tilde{A}=\widehat{M} A$,

$$
\kappa_{\infty}(\tilde{A}) \leqq(1+2 n \varepsilon)^{2} .
$$

steam3

saylr1

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

$$
n u_{f} \operatorname{cond}_{2}\left(A^{T}\right) \lesssim n \varepsilon \lesssim u^{-1 / 2}
$$

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

If $\boldsymbol{\varepsilon}$ satisfies these constraints, then the constraints on condition number for forward and backward errors to converge are the same as for GMRES-IR with full LU factorization.

Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRESbased iterative refinement scheme will converge, we must have roughly

$$
\underbrace{n u_{f} \operatorname{cond}_{2}\left(A^{T}\right) \lesssim n \varepsilon \lesssim u^{-1 / 2} \text { is a good enough }}_{\begin{array}{c}
\hat{M} \text { can be } \\
\text { constructed }
\end{array}} \text { preconditioner }
$$

If $\boldsymbol{\varepsilon}$ satisfies these constraints, then the constraints on condition number for forward and backward errors to converge are the same as for GMRES-IR with full LU factorization.

Compared to GMRES-IR with full LU factorization, in general expect slower convergence, but much sparser preconditioner.

SPAI-GMRES-IR Example

Matrix: steam1, $n=240, \mathrm{nnz}=2,248, \kappa_{\infty}(A)=3 \cdot 10^{7}, \operatorname{cond}\left(A^{T}\right)=3 \cdot 10^{3}$

SPAI-GMRES-IR Example

Matrix: steam1, $n=240, \mathrm{nnz}=2,248, \kappa_{\infty}(A)=3 \cdot 10^{7}, \operatorname{cond}\left(A^{T}\right)=3 \cdot 10^{3}$

$\left(u_{f}, u, u_{r}\right)=($ single, double, quad $)$

$$
n n z(L+U)=13,765
$$

SPAI-GMRES-IR Example

Matrix: steam1, $n=240, \mathrm{nnz}=2,248, \kappa_{\infty}(A)=3 \cdot 10^{7}, \operatorname{cond}\left(A^{T}\right)=3 \cdot 10^{3}$

$\left(u_{f}, u, u_{r}\right)=($ single, double, quad $)$

$n n z(L+U)=13,765$

$n n z(M)=2,248$

Ongoing and Future Work

- Incorporate mixed-precision storage of \widehat{M} and adaptive-precision SpMV to apply \widehat{M} using the work of [Graillat et al., 2022]
- Theoretical analysis of incomplete factorization preconditioners in mixed precision (with J. Scott and M. Tůma)
- Experimental work shows that half precision works well in practice [Scott, Tůma, 2023]

Randomized Preconditioners for GMRES-Based Least Squares Iterative Refinement

Least Squares Problems

- Want to solve

$$
\min _{x}\|b-A x\|_{2}
$$

where $A \in \mathbb{R}^{m \times n}(m>n)$ has rank n

- Commonly solved using QR factorization:

$$
A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}
U \\
0
\end{array}\right]
$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular.

$$
x=U^{-1} Q_{1}^{T} b, \quad\|b-A x\|_{2}=\left\|Q_{2}^{T} b\right\|_{2}
$$

- As in linear system case, for ill-conditioned problems, iterative refinement often needed to improve accuracy and stability

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck, 1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck, 1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

GMRES-LSIR

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck, 1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- Refinement proceeds as follows:
[C., Higham, Pranesh, 2020]:

1. Compute "residuals"

Compute QR factorization in u_{f}, use as preconditioner for GMRES

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{c}
f_{i} \\
g_{i}
\end{array}\right] \quad \text { via preconditioned GMRES (in precision } u_{s} \text {) }
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

GMRES-LSIR Analysis

- Using the preconditioner

$$
M=\left[\begin{array}{cc}
\alpha I & \hat{Q}_{1} \hat{R} \\
\hat{R}^{T} \widehat{Q}_{1}^{T} & 0
\end{array}\right]
$$

we can prove that for the left-preconditioned system,

$$
\kappa\left(M^{-1} \tilde{A}\right) \leq\left(1+u_{f} C \kappa(A)\right)^{2}
$$

where $c=O\left(m^{2}\right)$.

GMRES-LSIR Analysis

- Using the preconditioner

$$
M=\left[\begin{array}{cc}
\alpha I & \hat{Q}_{1} \hat{R} \\
\hat{R}^{T} \hat{Q}_{1}^{T} & 0
\end{array}\right]
$$

we can prove that for the left-preconditioned system,

$$
\kappa\left(M^{-1} \tilde{A}\right) \leq\left(1+u_{f} c \kappa(A)\right)^{2}
$$

where $c=O\left(m^{2}\right)$.

- So for GMRES-based LSIR, expect convergence of forward error when $\kappa_{\infty}(A)<u^{-1 / 2} u_{f}^{-1}$.

GMRES-LSIR Analysis

- Using the preconditioner

$$
M=\left[\begin{array}{cc}
\alpha I & \hat{Q}_{1} \hat{R} \\
\hat{R}^{T} \hat{Q}_{1}^{T} & 0
\end{array}\right]
$$

we can prove that for the left-preconditioned system,

$$
\kappa\left(M^{-1} \tilde{A}\right) \leq\left(1+u_{f} c \kappa(A)\right)^{2}
$$

where $c=O\left(m^{2}\right)$.

- So for GMRES-based LSIR, expect convergence of forward error when $\kappa_{\infty}(A)<u^{-1 / 2} u_{f}^{-1}$.

Randomized Preconditioning for LS

"Sketch-and-precondition" [Rokhlin, Tygert, 2008]:

1. Randomly sketch A

$$
S=\Omega A, \text { where } S \in \mathbb{R}^{s \times m}, s \geq n
$$

2. Compute economic QR

$$
S=Q R
$$

3. Solve via LSQR preconditioned with R

$$
\min _{y}\left\|b-A R^{-1} y\right\|_{2}, \quad \text { where } y=R x
$$

[Avron, Maymounkov, Toledo, 2010]: Efficient implementation (Blendenpik) in one precision

Randomized Preconditioning for LS

"Sketch-and-precondition" [Rokhlin, Tygert, 2008]: $u=u_{Q R} \leq u_{s}$

1. Randomly sketch A

$$
S=\Omega A, \text { where } S \in \mathbb{R}^{s \times m}, s \geq n
$$

(in precision u_{s})
2. Compute economic QR

$$
S=Q R
$$

(in precision $u_{Q R}$)
3. Solve via LSQR preconditioned with R

$$
\min _{y}\left\|b-A R^{-1} y\right\|_{2}, \quad \text { where } y=R x
$$

(in precision u)
[Avron, Maymounkov, Toledo, 2010]: Efficient implementation (Blendenpik) in one precision
[Georgiou, Boutsikas, Drineas, Anzt, 2023]: Experimental results that show R can be computed in mixed precision

Example

$$
u=u_{Q R}=\text { double }
$$

Randomized Preconditioning

"Sketch-and-apply" [Meier, Nakatsukasa, Townsend, Webb, 2023]

1. Compute R as in [Rokhlin, Tygert, 2008]
2. Explicitly form preconditioned matrix

$$
Y=A R^{-1}
$$

3. Solve via (unpreconditioned) LSQR

$$
\min _{Z}\|b-Y z\|_{2}
$$

4. Recover x

$$
R x=z
$$

Example

$$
u=u_{Q R}=\text { double }
$$

Example

$$
u=u_{Q R}=\text { double }
$$

Relative forward error:
R, u_{s} double: 4×10^{-8}
R, u_{s} double: 3×10^{-8}
Formed $A R^{-1}: 2 \times 10^{-8}$

"Sketch-and-Precondition" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).

"Sketch-and-Precondition" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).
Solve $\min \|b-A x\|_{2}$ via LSQR preconditioned with \hat{R} in precision u to get initial solution x_{0} and residual r_{0}.

"Sketch-and-Precondition" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).

Solve min $\|b-A x\|_{2}$ via LSQR preconditioned with \hat{R} in precision u to get initial solution x_{0} and residual r_{0}.
for $i=0, \ldots$, until convergence
Compute residual $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]-\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}r_{i} \\ x_{i}\end{array}\right]$ and $h_{i}=\hat{R}^{-T} g_{i}$ in precision u_{r}.
Solve via FGMRES in (effective) precision u_{s} :

$$
\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-T}
\end{array}\right]\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-1}
\end{array}\right]\left[\begin{array}{c}
\delta r_{i} \\
\delta z_{i}
\end{array}\right]=\left[\begin{array}{c}
f_{i} \\
h_{i}
\end{array}\right],
$$

where $\hat{R} \delta x_{i}=\delta z_{i}$.
Update in precision u :

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\delta r_{i} \\
\delta x_{i}
\end{array}\right]
$$

"Sketch-and-Precondition" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).

Solve $\min _{x}\|b-A x\|_{2}$ via LSQR preconditioned with \hat{R} in precision u to get initial solution x_{0} and residual r_{0}.
for $i=0, \ldots$, until convergence
Compute residual $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]-\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}r_{i} \\ x_{i}\end{array}\right]$ and $h_{i}=\hat{R}^{-T} g_{i}$ in precision \boldsymbol{u}_{r}.
Solve via FGMRES in (effective) precision u_{s} :

$$
\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-T}
\end{array}\right]\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \hat{R}^{-1}
\end{array}\right]\left[\begin{array}{c}
\delta r_{i} \\
\delta z_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
h_{i}
\end{array}\right],
$$

where $\hat{R} \delta x_{i}=\delta z_{i}$.
Update in precision u :

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\delta r_{i} \\
\delta x_{i}
\end{array}\right]
$$

[C., Daužikaitè, 2023]:
Analysis of four-precision split-preconditioned FGMRES

"Sketch-and-Precondition" GMRES-LSIR

Theoretical analysis suggests how to choose precisions:

- For generating preconditioner, $u_{s} \approx u_{Q R}$ (although $u_{Q R}<u_{s}$ is inexpensive and may help avoid overflow)
- For FGMRES, apply left preconditioner and matrix to a vector in precision $\leq u$ (can be less careful with right preconditioner)

"Sketch-and-Apply" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).

"Sketch-and-Apply" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).
Form $Y=A \hat{R}^{-1}$ in precision u_{Y}.

"Sketch-and-Apply" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).
Form $Y=A \hat{R}^{-1}$ in precision u_{Y}.
Solve $\min \|b-Y z\|_{2}$ via LSQR in precision u and solve $R x=z$ in precision u_{x} to get initial solution x_{0} and residual r_{0}.

"Sketch-and-Apply" GMRES-LSIR

Compute \hat{R} factor of $Q R$ decomposition of randomly sketched A using precision u_{s} (sketching step) and $u_{Q R}$ (QR step).
Form $Y=A \hat{R}^{-1}$ in precision u_{Y}.
Solve $\min \|b-Y z\|_{2}$ via LSQR in precision u and solve $R x=z$ in precision u_{x} to get initial solution x_{0} and residual r_{0}.
for $i=0, \ldots$, until convergence
Compute residual $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]-\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}r_{i} \\ x_{i}\end{array}\right]$ and $h_{i}=\hat{R}^{-T} g_{i}$ in precision u_{r}.
Solve via unpreconditioned GMRES in precision u :

$$
\left[\begin{array}{cc}
I & Y \\
Y^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\delta r_{i} \\
\delta z_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
h_{i}
\end{array}\right]
$$

Solve $\hat{R} \delta x_{i}=\delta z_{i}$ in precision \boldsymbol{u}_{x}.
Update in precision u :

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\delta r_{i} \\
\delta x_{i}
\end{array}\right]
$$

"Sketch-and-Apply" GMRES-LSIR

Theoretical analysis suggests how to choose precisions:

- For generating preconditioner, $u_{s} \approx u_{Q R}$ (although $u_{Q R}<u_{s}$ is inexpensive and may help avoid overflow)
- Triangular solves: Want $\boldsymbol{u}_{\boldsymbol{x}} \kappa(A)<1$
- GMRES: Want $u \kappa(A) \kappa(Y)<1$
- Forming Y : Want $u_{Y} \kappa(A)^{2} \kappa(Y)<1$

Ongoing work: Collaboration on high-performance implementation with V . Georgiou and H. Anzt

Mixed Precision Randomized Nyström Approximation

Randomized Nyström Approximation

Want to compute a rank- k approximation $A \approx U \Theta U^{T}$ via the randomized Nyström method.

Nyström approximation:

$$
A_{N}=(A \Omega)\left(\Omega^{T} A \Omega\right)^{\dagger}(A \Omega)^{T}
$$

where Ω is an $n \times k$ sampling matrix

Many applications: approximation of kernel matrices, spectral limited memory preconditioners, etc.

Randomized Nyström Approximation

Want to compute a rank- k approximation $A \approx U \Theta U^{T}$ via the randomized Nyström method.

Nyström approximation:

$$
A_{N}=(A \Omega)\left(\Omega^{T} A \Omega\right)^{\dagger}(A \Omega)^{T}
$$

where Ω is an $n \times k$ sampling matrix

Many applications: approximation of kernel matrices, spectral limited memory preconditioners, etc.

In the case that A is very large, matrix-matrix products with A are the bottleneck.
\rightarrow Can use single-pass version of the Nyström method [Tropp et al., 2017].

Single-Pass Nyström Approximation

Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$

$[Q, \sim]=\operatorname{qr}(G, 0)$

Single-Pass Nyström Approximation

Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$

Single-Pass Nyström Approximation

Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$

Single-Pass Nyström Approximation

Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$
$C=\operatorname{chol}\left(\left(B+B^{T}\right) / 2\right)$
Solve $F=Y_{v} / C$

$$
H
$$

Single-Pass Nyström Approximation

Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$
$C=\operatorname{chol}\left(\left(B+B^{T}\right) / 2\right)$
Solve $F=Y_{v} / C$

$$
[U, \Sigma, \sim]=\operatorname{svd}(F, 0)
$$

$$
\Theta=\max \left(0, \Sigma^{2}-v I\right)
$$

Single-Pass Nyström Approximation

Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$
$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$
Compute shift $v ; Y_{v}=Y+v Q$
$B=Q^{T} Y_{v}$
$C=\operatorname{chol}\left(\left(B+B^{T}\right) / 2\right)$
Solve $F=Y_{v} / C$

$$
[U, \Sigma, \sim]=\operatorname{svd}(F, 0)
$$

Can we further reduce the cost of the matrix-matrix product with A by using low precision?

$$
\Theta=\max \left(0, \Sigma^{2}-v I\right)
$$

Single-Pass Nyström Approximation

Given sym. PSD matrix A, target rank k
$G=\operatorname{randn}(n, k)$

$$
u \ll u_{p}
$$

$[Q, \sim]=\operatorname{qr}(G, 0)$
$\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Q}$ (precision u_{p})

Compute shift $v ; Y_{v}=Y+v Q$
(precision u)
$B=Q^{T} Y_{v}$
(precision u)
$C=\operatorname{chol}\left(\left(B+B^{T}\right) / 2\right)$
(precision u)
Solve $F=Y_{v} / C$
(precision u)
$[U, \Sigma, \sim]=\operatorname{svd}(F, 0)$
$\Theta=\max \left(0, \Sigma^{2}-v I\right)$

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq\left\|A-A_{N}\right\|_{2}+\left\|A_{N}-\hat{A}_{N}\right\|_{2}
$$

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{\left\|A-A_{N}\right\|_{2}}_{\begin{array}{c}
\text { exact } \\
\text { approximation } \\
\text { error }
\end{array}}+\underbrace{\left\|A_{N}-\hat{A}_{N}\right\|_{2}}_{\begin{array}{c}
\text { finite precision } \\
\text { error }
\end{array}}
$$

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{\|\underbrace{}_{\substack{ \\
A_{N}-\hat{A}_{N}}}\|_{2}}_{\begin{array}{c}
\text { exact } \\
\left\|A-A_{N}\right\|_{2} \\
\begin{array}{c}
\text { approximation } \\
\text { error }
\end{array} \\
\text { finite precision } \\
\text { error }
\end{array}}
$$

Deterministic bound [Gittens, Mahoney, 2016]
Expected value bound [Frangella, Tropp, Udell, 2021]

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{\left\|A-A_{N}\right\|_{2}}_{\begin{array}{c}
\text { exact } \\
\text { approximation }
\end{array}}+\underbrace{\left\|A_{N}-\hat{A}_{N}\right\|_{2}}_{\begin{array}{c}
\text { finite precision } \\
\text { error }
\end{array}}
$$

[C., Daužickaitè, 2022]: With failure probability at most $e^{-t^{2} / 2}+c_{1} \alpha$,

$$
\left\|A_{N}-\hat{A}_{N}\right\|_{2} \lesssim \alpha^{-1} n^{1 / 2} k\left(n^{1 / 2}+k^{1 / 2}+t\right)^{2} u_{p}\|A\|_{2} \kappa\left(A_{k}\right)
$$

where A_{k} is the best rank- k approximation of A.

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{\left\|A-A_{N}\right\|_{2}}_{\begin{array}{c}
\text { exact } \\
\text { approximation }
\end{array}}+\underbrace{\left\|A_{N}-\hat{A}_{N}\right\|_{2}}_{\begin{array}{c}
\text { finite precision } \\
\text { error }
\end{array}}
$$

[C., Daužickaitè, 2022]: With failure probability at most $e^{-t^{2} / 2}+c_{1} \alpha$,

$$
\left\|A_{N}-\hat{A}_{N}\right\|_{2} \lesssim \alpha^{-1} n^{1 / 2} k\left(n^{1 / 2}+k^{1 / 2}+t\right)^{2} u_{p}\|A\|_{2} \kappa\left(A_{k}\right)
$$

where A_{k} is the best rank- k approximation of A.

Interpretation: Likely that $\left\|A_{N}-\hat{A}_{N}\right\|_{2} \gtrsim\left\|A-A_{N}\right\|_{2}$ when

$$
\frac{\lambda_{k+1}}{\lambda_{1}} \lesssim \sqrt{n} u_{p}
$$

Error Bounds

$$
\left\|A-\hat{A}_{N}\right\|_{2}=\left\|A-A_{N}+A_{N}-\hat{A}_{N}\right\|_{2} \leq \underbrace{\left\|A-A_{N}\right\|_{2}}_{\begin{array}{c}
\text { exact } \\
\text { approximation }
\end{array}}+\underbrace{\left\|A_{N}-\hat{A}_{N}\right\|_{2}}_{\begin{array}{c}
\text { finite precision } \\
\text { error }
\end{array}}
$$

[C., Daužickaitè, 2022]: With failure probability at most $e^{-t^{2} / 2}+c_{1} \alpha$,

$$
\left\|A_{N}-\hat{A}_{N}\right\|_{2} \lesssim \alpha^{-1} n^{1 / 2} k\left(n^{1 / 2}+k^{1 / 2}+t\right)^{2} u_{p}\|A\|_{2} \kappa\left(A_{k}\right)
$$

where A_{k} is the best rank- k approximation of A.

Interpretation: Likely that $\left\|A_{N}-\hat{A}_{N}\right\|_{2} \gtrsim\left\|A-A_{N}\right\|_{2}$ when

$$
\frac{\lambda_{k+1}}{\lambda_{1}} \lesssim \sqrt{n} u_{p}
$$

The worse the low-rank representation, the lower the precision we can use!

Numerical Experiment
Matrix: bcsstm07, $n=420$

$$
\begin{aligned}
& \lambda_{k+1} / \lambda_{1} \\
& \sqrt{n} u_{p}, u_{p}=\text { half } \\
& \sqrt{n} u_{p}, u_{p}=\text { single }
\end{aligned}
$$

Numerical Experiment
Matrix: bcsstm07, $n=420$

$$
\begin{aligned}
& \lambda_{k+1} / \lambda_{1} \\
& \sqrt{n} u_{p}, u_{p}=\text { half } \\
& \sqrt{n} u_{p}, u_{p}=\text { single }
\end{aligned}
$$

mean total error, $\left\|A-\hat{A}_{N}\right\|_{2}$

Summary and Takeaway

Summary and Takeaway

Summary and Takeaway

3

Where can you use mixed or low precision?

Thank You!

carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson/

Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in \widehat{M} ?
steam3

Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in \widehat{M} ?
steam3

saylr1

A Question

Is there a point in using precision higher than that dictated by $u_{f} \operatorname{cond}_{2}\left(A^{T}\right) \leq \varepsilon$? Matrix: bfwa782, $n=782, \mathrm{nnz}=7514, \kappa_{\infty}(A)=7 \cdot 10^{3}, \operatorname{cond}\left(A^{T}\right)=1 \cdot 10^{3}$

$$
\left(u_{f}, u, u_{r}\right)=\text { (half, single, double) }
$$

Preconditioner	$\kappa_{\infty}(\tilde{A})$	Precond. nnz	GMRES-IR steps/iteration
SPAI $(\varepsilon=0.2)$	$2.1 e+02$	28053	$67(31,36)$
SPAI $(\varepsilon=0.5)$	$9.7 e+02$	7528	$153(71,82)$

A Question

Is there a point in using precision higher than that dictated by $\boldsymbol{u}_{f} \operatorname{cond}\left(A^{T}\right) \leq \varepsilon$? Matrix: bfwa782, $n=782, \mathrm{nnz}=7514, \kappa_{\infty}(A)=7 \cdot 10^{3}, \operatorname{cond}\left(A^{T}\right)=1 \cdot 10^{3}$

$$
\left(u_{f}, u_{1}, u_{r}\right)=(\text { half, single, double })
$$

Preconditioner	$\kappa_{\infty}(\tilde{A})$	Precond. nnz	GMRES-IR steps/iteration
SPAI $(\varepsilon=0.2)$	$2.1 e+02$	28053	$67(31,36)$
SPAI $(\varepsilon=0.5)$	$9.7 e+02$	7528	$153(71,82)$

($\left.u_{f}, u, u_{r}\right)=$ (single, single, double)

Preconditioner	$\kappa_{\infty}(\tilde{A})$	Precond. nnz	GMRES-IR steps/iteration
SPAI $(\varepsilon=0.2)$	$2.2 e+02$	26801	$69(32,37)$
SPAI $(\varepsilon=0.5)$	$9.7 e+02$	7529	$153(71,82)$

Summary and Takeaway

- To efficiently use modern exascale machines, we need to use mixed precision hardware
- Understanding the interaction and balance of errors from finite precision and sources of algorithmic approximation is thus crucial
- Careful analysis can reveal not only limitations, but opportunities!

Summary and Takeaway

- To efficiently use modern exascale machines, we need to use mixed precision hardware
- Understanding the interaction and balance of errors from finite precision and sources of algorithmic approximation is thus crucial
- Careful analysis can reveal not only limitations, but opportunities!

Where can you use mixed or low precision?

