
Erin Carson
Charles University

ICL Lunch Talk

May 13, 2022

Challenges and Opportunities in
Mixed Precision Numerical Linear

Algebra

We acknowledge funding from Charles Univ. PRIMUS project No. PRIMUS/19/SCI/11, Charles Univ. Research Program No. UNCE/SCI/023, and the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Admin.

Floating Point Formats

2

exponent (11 bits) fraction (52 bits)

IEEE double (FP64)

IEEE single (FP32)

IEEE half (FP16)

exponent (8 bits) fraction (23 bits)

exponent (5 bits) fraction (10 bits)

−1 sign × 2(exponent−offset) × 1. fraction

size range 𝑢

fp64 64 bits 10±308 1 × 10−16

fp32 32 bits 10±38 6 × 10−8

fp16 16 bits 10±5 5 × 10−4

bfloat16 16 bits 10±38 4 × 10−3

exponent (8 bits) fraction (7 bits)

bfloat16

Hardware Support for Multiprecision Computation

3

• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017:

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision;

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU)

• NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16,
FP64, Binary, INT4, INT8, bfloat16

• NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores

• Future exascale supercomputers: (~2021) Expected extensive support for
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

Mixed precision in NLA

• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C.,
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020],
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al.,
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015]

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist,
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi,
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

4For survey and references, see [Abdelfattah et al., IJHPC, 2021]

HPL-AI Benchmark

• Like HPL, solves dense Ax=b, results still to double precision accuracy

• Achieves this via mixed-precision iterative refinement

5

HPL-AI Benchmark

6

HPL-AI Benchmark

6

HPL-AI Benchmark

6

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

7

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

• Smaller range of representable numbers

• Limited range of lower precision might cause overflow when rounding

• Quantities rounded to lower precision may lose important numerical properties
(e.g., positive definiteness)

• One solution: scaling and shifting approach [Higham, Pranesh, 2019]

7

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

• Smaller range of representable numbers

• Limited range of lower precision might cause overflow when rounding

• Quantities rounded to lower precision may lose important numerical properties
(e.g., positive definiteness)

• One solution: scaling and shifting approach [Higham, Pranesh, 2019]

• Larger unit roundoff

• Lose something small when storing: 𝑓𝑙 𝑥 = 𝑥 1 + 𝛿 , 𝛿 ≤ 𝑢

• Lose something small when computing: 𝑓𝑙 𝑥 op 𝑦 = 𝑥 op 𝑦 1 + 𝛿 , 𝛿 ≤ 𝑢

7

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

• Smaller range of representable numbers

• Limited range of lower precision might cause overflow when rounding

• Quantities rounded to lower precision may lose important numerical properties
(e.g., positive definiteness)

• One solution: scaling and shifting approach [Higham, Pranesh, 2019]

• Larger unit roundoff

• Lose something small when storing: 𝑓𝑙 𝑥 = 𝑥 1 + 𝛿 , 𝛿 ≤ 𝑢

• Lose something small when computing: 𝑓𝑙 𝑥 op 𝑦 = 𝑥 op 𝑦 1 + 𝛿 , 𝛿 ≤ 𝑢

Does it matter?
7

Inexact computations

• In real computations we have many sources of
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve
performance

• Reduced models, Low-rank
representations, sparsification,
randomization

8

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈

Inexact computations

• In real computations we have many sources of
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve
performance

• Reduced models, Low-rank
representations, sparsification,
randomization

• Given that we are already working with so much
inexactness, does it matter if we use lower
precision?

8

• Analysis of accuracy in techniques that use intentional approximation almost
always assume that roundoff error is small enough to be ignored

• Is this true? Is it true even if we use low precision?

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈

Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘

9

𝐴 𝑈

Σ 𝑉𝑇

≈

Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘

9

𝐴
Ω

𝑌 𝑄

𝑅 𝐵 ෩𝑈 Σ 𝑉𝑇

𝑈

=
𝑄𝑇

𝐴

=

𝑄

෩𝑈=

=
=

• Randomized SVD:

𝐴 𝑈

Σ 𝑉𝑇

≈

Assuming exact arithmetic:

If 𝑄 satisfies 𝐴 − 𝑄𝑄𝑇𝐴 ≤ 휀, then 𝐴 − 𝑈Σ 𝑉𝑇 ≤ 휀

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

𝑈, መ𝑆, 𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

𝑈𝑑, መ𝑆𝑑 , 𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

𝑈ℎ, መ𝑆ℎ, 𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

10

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

𝑈, መ𝑆, 𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

𝑈𝑑, መ𝑆𝑑 , 𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

𝑈ℎ, መ𝑆ℎ, 𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

10

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − 𝑈 መ𝑆 𝑉𝑇
2

= 4.92e-03

𝐴 − 𝑈𝑑 መ𝑆𝑑 𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − 𝑈ℎ መ𝑆ℎ 𝑉ℎ
𝑇

2
= 4.92e-03

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

𝑈, መ𝑆, 𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

𝑈𝑑, መ𝑆𝑑 , 𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

𝑈ℎ, መ𝑆ℎ, 𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

10

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − 𝑈 መ𝑆 𝑉𝑇
2

= 4.92e-03

𝐴 − 𝑈𝑑 መ𝑆𝑑 𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − 𝑈ℎ መ𝑆ℎ 𝑉ℎ
𝑇

2
= 4.92e-03

Mode 1: one large singular value

𝐴 − 𝑈𝑆𝑉𝑇
2 = 1.00e-06

𝐴 − 𝑈 መ𝑆 𝑉𝑇
2

= 1.17e-06

𝐴 − 𝑈𝑑 መ𝑆𝑑 𝑉𝑑
𝑇

2
= 1.17e-06

𝐴 − 𝑈ℎ መ𝑆ℎ 𝑉ℎ
𝑇

2
= 1.11e-05

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

𝑈, መ𝑆, 𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

𝑈𝑑, መ𝑆𝑑 , 𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

𝑈ℎ, መ𝑆ℎ, 𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

10

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − 𝑈 መ𝑆 𝑉𝑇
2

= 4.92e-03

𝐴 − 𝑈𝑑 መ𝑆𝑑 𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − 𝑈ℎ መ𝑆ℎ 𝑉ℎ
𝑇

2
= 4.92e-03

Mode 1: one large singular value

𝐴 − 𝑈𝑆𝑉𝑇
2 = 1.00e-06

𝐴 − 𝑈 መ𝑆 𝑉𝑇
2

= 1.17e-06

𝐴 − 𝑈𝑑 መ𝑆𝑑 𝑉𝑑
𝑇

2
= 1.17e-06

𝐴 − 𝑈ℎ መ𝑆ℎ 𝑉ℎ
𝑇

2
= 1.11e-05

Use of low precision leads to an order magnitude
loss of accuracy! Roundoff error can’t be ignored!

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

𝑈, መ𝑆, 𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

𝑈𝑑, መ𝑆𝑑 , 𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

𝑈ℎ, መ𝑆ℎ, 𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

10

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − 𝑈 መ𝑆 𝑉𝑇
2

= 4.92e-03

𝐴 − 𝑈𝑑 መ𝑆𝑑 𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − 𝑈ℎ መ𝑆ℎ 𝑉ℎ
𝑇

2
= 4.92e-03

Mode 1: one large singular value

𝐴 − 𝑈𝑆𝑉𝑇
2 = 1.00e-06

𝐴 − 𝑈 መ𝑆 𝑉𝑇
2

= 1.17e-06

𝐴 − 𝑈𝑑 መ𝑆𝑑 𝑉𝑑
𝑇

2
= 1.17e-06

𝐴 − 𝑈ℎ መ𝑆ℎ 𝑉ℎ
𝑇

2
= 1.11e-05

𝐴 − 𝑄ℎ𝑄ℎ
𝑇𝐴

2
= 3.59e-06

Use of low precision leads to an order magnitude
loss of accuracy! Roundoff error can’t be ignored!

Error bound no longer holds!

Example: Low-Rank Approximation

• Block low-rank approximation and
hierarchical matrix representations arise in a
variety of applications

11

𝐴 ሚ𝐴

• Work on mixed and low precision in block low-rank computations

• [Higham, Mary, 2019]: block low-rank LU factorization preconditioner that
exploits numerically low-rank structure of the error for LU computed in low
precision

• [Higham, Mary, 2019]: Interplay of roundoff error and approximation error in
solving block low-rank linear systems using LU

• [Buttari, et al., 2020]: block low-rank single precision coarse grid solves in
multigrid

• [Amestoy et al., 2021]: Mixed precision low rank approximation and application
to block low-rank LU factorization

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Example: Low-Rank Approximation

11

16

16

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD:

Example: Low-Rank Approximation

11

16

16

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD: Half precision SVD:

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Example: Low-Rank Approximation

11

16

16

29

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD: Half precision SVD:

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Example: Low-Rank Approximation

11

16

16

30

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD: Half precision SVD:

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Positive definiteness lost!

Example: Low-Rank Approximation

11

16

16

Example: Iterative Methods

12

A = diag(linspace(.001,1,100));

[V,~] = eig(A);

b = V'*ones(n,1);

Example: Iterative Methods

12

[V,~] = eig(A);

b = V'*ones(n,1);

𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 1

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 (0.65)𝑛−𝑖 , 𝑖 = 2,… , 𝑛 − 1

Takeaway

• Low precision can have massive performance benefits but must be used
with caution!

• Many opportunities for using mixed and low precision computation in
scientific applications

• Need to develop a theoretical understanding of how mixed precision
algorithms behave; need to revisit analyses of algorithms and techniques
that ignore finite precision

13

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

14

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

• Enables new types of IR: (half, single, double), (half, single, quad),
(half, double, quad), etc. 14

𝒖𝒔 is the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

• For triangular solves with LU factors: 𝒖𝒔 = 𝒖𝒇
• For GMRES preconditioned by LU factors, 𝒖𝒔 = 𝒖 [C. and Higham, 2017]

• 3-precision iterative refinement [C. and Higham, 2018]

IR3: Summary

15

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

LP fact.

LP fact.

LP fact.

15

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Fixed

LP fact.

LP fact.

LP fact.

15

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Trad.

Fixed

LP fact.

LP fact.

LP fact.

15

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

15

IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

16

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

16

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower
precision factorization w/no loss of accuracy!

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

GMRES-IR: Summary

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

17

GMRES-based IR in three precisions (𝒖𝒔 = 𝒖)

GMRES-IR: Solve for 𝑑𝑖 via GMRES on 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1 𝑟𝑖

GMRES-IR: Summary

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

17

𝜅∞ 𝐴 ≤ 𝒖− Τ1 2 𝒖𝒇
−1

GMRES-based IR in three precisions (𝒖𝒔 = 𝒖)

GMRES-IR: Solve for 𝑑𝑖 via GMRES on 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1 𝑟𝑖

GMRES-IR: Summary

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ As long as 𝜅∞ 𝐴 ≤ 1012, can use half precision factorization and still obtain
double precision accuracy!

17

𝜅∞ 𝐴 ≤ 𝒖− Τ1 2 𝒖𝒇
−1

GMRES-based IR in three precisions (𝒖𝒔 = 𝒖)

GMRES-IR: Solve for 𝑑𝑖 via GMRES on 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1 𝑟𝑖

GMRES-IR: Summary

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ As long as 𝜅∞ 𝐴 ≤ 1012, can use half precision factorization and still obtain
double precision accuracy!

17

Recent work: 5-precision GMRES-IR [Amestoy, et al., 2021]

𝜅∞ 𝐴 ≤ 𝒖− Τ1 2 𝒖𝒇
−1

GMRES-based IR in three precisions (𝒖𝒔 = 𝒖)

GMRES-IR: Solve for 𝑑𝑖 via GMRES on 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1 𝑟𝑖

GMRES-IR: Summary

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ As long as 𝜅∞ 𝐴 ≤ 1012, can use half precision factorization and still obtain
double precision accuracy!

17

Recent work: 5-precision GMRES-IR [Amestoy, et al., 2021]

𝜅∞ 𝐴 ≤ 𝒖− Τ1 2 𝒖𝒇
−1

𝜅∞ 𝐴 ≤ 𝒖− Τ1 3 𝒖𝒇
−𝟐/𝟑

GMRES-based IR in three precisions (𝒖𝒔 = 𝒖)

GMRES-IR: Solve for 𝑑𝑖 via GMRES on 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1 𝑟𝑖

Extension: Least Squares Problems

• Want to solve
min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

18

Extension: Least Squares Problems

• Want to solve
min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement
often needed to improve accuracy and stability

18

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Extension: Least Squares Problems

19

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Extension: Least Squares Problems

19

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Extension: Least Squares Problems

ሚ𝐴 𝑥 = ෨𝑏

19

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Extension: Least Squares Problems

ሚ𝐴 𝑥 = ෨𝑏

19

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

Extension: Least Squares Problems

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

ሚ𝐴 𝑥 = ෨𝑏

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖Results for 3-precision IR for
linear systems also applies
to least squares problems
[C., Higham, Pranesh, 2020] 19

Extension: Multistage Mixed Precision IR

• Many different variants of mixed precision IR

• “standard IR” (SIR): LU solves

• SGMRES-IR: preconditioned GMRES entirely in working precision

• GMRES-IR: preconditioned GMRES with extra precision

20

cost,
reliab

ility

Extension: Multistage Mixed Precision IR

• Many different variants of mixed precision IR

• “standard IR” (SIR): LU solves

• SGMRES-IR: preconditioned GMRES entirely in working precision

• GMRES-IR: preconditioned GMRES with extra precision

• Problem: constraints for convergence often overly strict in practice

• Hard to pick the best variant

20

cost,
reliab

ility

Extension: Multistage Mixed Precision IR

• Many different variants of mixed precision IR

• “standard IR” (SIR): LU solves

• SGMRES-IR: preconditioned GMRES entirely in working precision

• GMRES-IR: preconditioned GMRES with extra precision

• Problem: constraints for convergence often overly strict in practice

• Hard to pick the best variant

• Opportunity: typically implementations increase precisions if lack of
convergence detected

• Requires recomputing the expensive LU factorization in higher precision

• Before resorting to increasing precisions, we can first try using a better
inner solver with the existing LU factors!

20

cost,
reliab

ility

Extension: Multistage Mixed Precision IR

• Many different variants of mixed precision IR

• “standard IR” (SIR): LU solves

• SGMRES-IR: preconditioned GMRES entirely in working precision

• GMRES-IR: preconditioned GMRES with extra precision

• Problem: constraints for convergence often overly strict in practice

• Hard to pick the best variant

• Opportunity: typically implementations increase precisions if lack of
convergence detected

• Requires recomputing the expensive LU factorization in higher precision

• Before resorting to increasing precisions, we can first try using a better
inner solver with the existing LU factors!

→ Multistage Iterative Refinement (MSIR) [Oktay, C., NLAA, 2022]

20

cost,
reliab

ility

21

well-conditioned:
same as SIR

medium-conditioned:
switch to SGMRES-IR

21

ill-conditioned: switch
twice to GMRES-IR

21

Extension: SPAI-GMRES-IR

• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use sparse preconditioners (ILU, SPAI, etc.)

• [C., Khan, arXiv:2202.10204, 2022]: analysis of GMRES-IR with SPAI
preconditioning)

• Convergence to limiting accuracy as long as 𝑛𝑢𝑓𝑐𝑜𝑛𝑑(𝐴
𝑇) ≲ 𝑛휀 ≲ 𝑢−1/2

22

Extension: SPAI-GMRES-IR

• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use sparse preconditioners (ILU, SPAI, etc.)

• [C., Khan, arXiv:2202.10204, 2022]: analysis of GMRES-IR with SPAI
preconditioning)

• Convergence to limiting accuracy as long as 𝑛𝑢𝑓𝑐𝑜𝑛𝑑(𝐴
𝑇) ≲ 𝑛휀 ≲ 𝑢−1/2

22nnz(𝐿 + 𝑈) = 21,657

matrix: steam1, 𝑢𝑓 , 𝑢, 𝑢𝑟 = (single, double, quad)

nnz(𝑀) = 2,248

The rise of multiprecision hardware

23

• Future machines will support a range of precisions: quarter, half, single,
double, quad

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

23

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

23

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

• As numerical analysts, we must determine when and where we can exploit
lower-precision hardware to improve performance

23

Thank you!
carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

