Challenges and Opportunities in Mixed Precision Numerical Linear Algebra

Erin Carson Charles University

> ICL Lunch Talk May 13, 2022

We acknowledge funding from Charles Univ. PRIMUS project No. PRIMUS/19/SCI/11, Charles Univ. Research Program No. UNCE/SCI/023, and the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Admin.

Floating Point Formats

$$(-1)^{\text{sign}} \times 2^{(\text{exponent-offset})} \times 1$$
. fraction

Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of lowprecision capabilities in hardware:

- Half precision (FP16) defined as storage format in 2008 IEEE standard
- ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit
- AMD Radeon Instinct MI25 GPU, 2017:
 - single: 12.3 TFLOPS, half: 24.6 TFLOPS
- NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
- NVIDIA Tesla V100, 2017: tensor cores for half precision;

4x4 matrix multiply in one clock cycle

- double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)
- Google's Tensor processing unit (TPU)
- NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16, FP64, Binary, INT4, INT8, bfloat16
- NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores
- Future exascale supercomputers: (~2021) Expected extensive support for reduced-precision arithmetic (32/16/8-bit)

Mixed precision in NLA

- BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]
- Iterative refinement:
 - Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...
 - More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., Higham, Pranesh, 2020], [Amestoy et al., 2021]
- Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], [Abdelfattah et al., 2020]
- Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 2001], [Petschow et al., 2014], [Alvermann et al., 2019]
- Sparse direct solvers: [Buttari et al., 2008]
- Orthogonalization: [Yamazaki et al., 2015]
- Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, Kronbichler, 2017, 2019]
- (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., IJHPC, 2021]

- Like HPL, solves dense Ax=b, results still to double precision accuracy
- Achieves this via mixed-precision iterative refinement

Rank	Site	Computer	Cores	HPL-AI (Eflop/s)	TOP500 Rank	HPL Rmax (Eflop/s)	Speedup
1	RIKEN	Fugaku	7,630,848	2.000	1	0.4420	4.5
2	DOE/SC/ORNL	Summit	2,414,592	1.411	2	0.1486	9.5
3	NVIDIA	Selene	555,520	0.630	6	0.0630	9.9
4	DOE/SC/LBNL	Perlmutter	761,856	0.590	5	0.0709	8.3
5	FZJ	JUWELS BM	449,280	0.470	8	0.0440	10.0
6	University of Florida	HiPerGator	138,880	0.170	31	0.0170	9.9
7	SberCloud	Christofari Neo	98,208	0.123	44	0.0120	10.3
8	DOE/SC/ANL	Polaris	259,840	0.114	13	0.0238	4.8
9	ITC	Wisteria	368,640	0.100	18	0.0220	4.5
10	NSC	Berzelius	59,520	0.050	95	0.0053	9.5
11	Nagoya	Flow Type I	110,592	0.030	74	0.0066	4.5
12	NVIDIA	Tethys	19,840	0.024	297	0.0023	10.8
13	NVIDIA	DGX Saturn V	87,040	0.022	118	0.0040	5.5
14	CloudMTS	MTS GROM	19,840	0.015	296	0.0023	6.6
15	Calcul Quebec/Compute Canada	Narval	76,320	0.014	84	0.0059	2.4
16	DOE/SC/ANL	ThetaGPU	280,320	0.012	71	0.0069	1.7
17	Indiana University	Big Red 200 GPU	31,744	0.006	216	0.0026	2.4
18	Texas A&M University	Grace GPU	26,400	0.004	335	0.0021	1.7

Rank	Site	Computer	Cores	HPL-AI (Eflop/s)	TOP500 Rank	HPL Rmax (Eflop/s)	Speedup
1	RIKEN	Fugaku	7,630,848	2.000	1	0.4420	4.5
2	DOE/SC/ORNL	Summit	2,414,592	1.411	2	0.1486	9.5
3	NVIDIA	Selene	555,520	0.630	6	0.0630	9.9
4	DOE/SC/LBNL	Perlmutter	761,856	0.590	5	0.0709	8.3
5	FZJ	JUWELS BM	449,280	0.470	8	0.0440	10.0
6	University of Florida	HiPerGator	138,880	0.170	31	0.0170	9.9
7	SberCloud	Christofari Neo	98,208	0.123	44	0.0120	10.3
8	DOE/SC/ANL	Polaris	259,840	0.114	13	0.0238	4.8
9	ITC	Wisteria	368,640	0.100	18	0.0220	4.5
10	NSC	Berzelius	59,520	0.050	95	0.0053	9.5
11	Nagoya	Flow Type I	110,592	0.030	74	0.0066	4.5
12	NVIDIA	Tethys	19,840	0.024	297	0.0023	10.8
13	NVIDIA	DGX Saturn V	87,040	0.022	118	0.0040	5.5
14	CloudMTS	MTS GROM	19,840	0.015	296	0.0023	6.6
15	Calcul Quebec/Compute Canada	Narval	76,320	0.014	84	0.0059	2.4
16	DOE/SC/ANL	ThetaGPU	280,320	0.012	71	0.0069	1.7
17	Indiana University	Big Red 200 GPU	31,744	0.006	216	0.0026	2.4
18	Texas A&M University	Grace GPU	26,400	0.004	335	0.0021	1.7

Rank	Site	Computer	Cores	HPL-AI (Eflop/s)	TOP500 Rank	HPL Rmax (Eflop/s)	Speedup
1	RIKEN	Fugaku	7,630,848	2.000	1	0.4420	4.5
2	DOE/SC/ORNL	Summit	2,414,592	1.411	2	0.1486	9.5
3	NVIDIA	Selene	555,520	0.630	6	0.0630	9.9
4	DOE/SC/LBNL	Perlmutter	761,856	0.590	5	0.0709	8.3
5	FZJ	JUWELS BM	449,280	0.470	8	0.0440	10.0
6	University of Florida	HiPerGator	138,880	0.170	31	0.0170	9.9
7	SberCloud	Christofari Neo	98,208	0.123	44	0.0120	10.3
8	DOE/SC/ANL	Polaris	259,840	0.114	13	0.0238	4.8
9	ITC	Wisteria	368,640	0.100	18	0.0220	4.5
10	NSC	Berzelius	59,520	0.050	95	0.0053	9.5
11	Nagoya	Flow Type I	110,592	0.030	74	0.0066	4.5
12	NVIDIA	Tethys	19,840	0.024	297	0.0023	10.8
13	NVIDIA	DGX Saturn V	87,040	0.022	118	0.0040	5.5
14	CloudMTS	MTS GROM	19,840	0.015	296	0.0023	6.6
15	Calcul Quebec/Compute Canada	Narval	76,320	0.014	84	0.0059	2.4
16	DOE/SC/ANL	ThetaGPU	280,320	0.012	71	0.0069	1.7
17	Indiana University	Big Red 200 GPU	31,744	0.006	216	0.0026	2.4
18	Texas A&M University	Grace GPU	26,400	0.004	335	0.0021	1.7

- Do error bounds still apply?
 - Error bound with constant nu provides no information if nu > 1
 - One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

- Do error bounds still apply?
 - Error bound with constant nu provides no information if nu > 1
 - One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]
- Smaller range of representable numbers
 - Limited range of lower precision might cause overflow when rounding
 - Quantities rounded to lower precision may lose important numerical properties (e.g., positive definiteness)
 - One solution: scaling and shifting approach [Higham, Pranesh, 2019]

- Do error bounds still apply?
 - Error bound with constant nu provides no information if nu > 1
 - One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]
- Smaller range of representable numbers
 - Limited range of lower precision might cause overflow when rounding
 - Quantities rounded to lower precision may lose important numerical properties (e.g., positive definiteness)
 - One solution: scaling and shifting approach [Higham, Pranesh, 2019]
- Larger unit roundoff
 - Lose something small when storing: $fl(x) = x(1 + \delta)$, $|\delta| \le u$
 - Lose something small when computing: $fl(x \text{ op } y) = (x \text{ op } y)(1 + \delta), |\delta| \le u$

- Do error bounds still apply?
 - Error bound with constant nu provides no information if nu > 1
 - One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]
- Smaller range of representable numbers
 - Limited range of lower precision might cause overflow when rounding
 - Quantities rounded to lower precision may lose important numerical properties (e.g., positive definiteness)
 - One solution: scaling and shifting approach [Higham, Pranesh, 2019]
- Larger unit roundoff
 - Lose something small when storing: $fl(x) = x(1 + \delta)$, $|\delta| \le u$
 - Lose something small when computing: $fl(x \text{ op } y) = (x \text{ op } y)(1 + \delta), |\delta| \le u$

Does it matter?

Inexact computations

- In real computations we have many sources of inexactness
 - Imperfect data, measurement error
 - Modeling error, discretization error
 - Intentional approximation to improve performance
 - Reduced models, Low-rank representations, sparsification, randomization

Model Reduction

[Schilders, van der Vorst, Rommes, 2008]

Low-rank (hierarchical) approximation

Sparsification, Randomized algorithms

[Sinha, 2018]

Inexact computations

- In real computations we have many sources of inexactness
 - Imperfect data, measurement error
 - Modeling error, discretization error
 - Intentional approximation to improve performance
 - Reduced models, Low-rank representations, sparsification, randomization

- Given that we are already working with so much inexactness, does it matter if we use lower precision?
 - Analysis of accuracy in techniques that use intentional approximation *almost always* assume that roundoff error is small enough to be ignored
 - Is this true? Is it true even if we use low precision?

Model Reduction

[Schilders, van der Vorst, Rommes, 2008]

Low-rank (hierarchical) approximation

Sparsification, Randomized algorithms

Example: Randomized Algorithms

• Given $m \times n A$, want truncated SVD with parameter k

Example: Randomized Algorithms

• Given $m \times n A$, want truncated SVD with parameter k

• Randomized SVD:

Let's try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd', [100, 40], 1e6, mode); k=15;

[U, S, V] = svd(A) : non-randomized SVD, exact arithmetic

 $[\hat{U}, \hat{S}, \hat{V}]$ = rsvd(A) : randomized SVD, exact arithmetic

 $\left[\widehat{U}_{d}, \widehat{S}_{d}, \widehat{V}_{d}\right] = \operatorname{rsvd}(A)$: randomized SVD, double precision

 $\left[\widehat{U}_{h}, \widehat{S}_{h}, \widehat{V}_{h}\right] = \operatorname{rsvd}(A)$: randomized SVD, half precision

Let's try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd', [100, 40], 1e6, mode); k=15;

 $\begin{bmatrix} U, S, V \end{bmatrix} = \text{svd}(A) : \text{non-randomized SVD, exact arithmetic} \\ \begin{bmatrix} \widehat{U}, \widehat{S}, \widehat{V} \end{bmatrix} = \text{rsvd}(A) : \text{randomized SVD, exact arithmetic} \\ \begin{bmatrix} \widehat{U}_d, \widehat{S}_d, \widehat{V}_d \end{bmatrix} = \text{rsvd}(A) : \text{randomized SVD, double precision} \\ \begin{bmatrix} \widehat{U}_h, \widehat{S}_h, \widehat{V}_h \end{bmatrix} = \text{rsvd}(A) : \text{randomized SVD, half precision} \\ \end{bmatrix}$

Mode 3: Geometrically distributed singular values $\begin{aligned} \|A - USV^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}\widehat{S}\widehat{V}^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}_{d}\widehat{S}_{d}\widehat{V}_{d}^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}_{h}\widehat{S}_{h}\widehat{V}_{h}^{T}\|_{2} &= 4.92\text{e-}03 \end{aligned}$

Let's try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd', [100, 40], 1e6, mode); k=15;

 $\begin{bmatrix} U, S, V \end{bmatrix} = \operatorname{svd}(A) : \operatorname{non-randomized SVD}, \text{ exact arithmetic} \\ \begin{bmatrix} \widehat{U}, \widehat{S}, \widehat{V} \end{bmatrix} = \operatorname{rsvd}(A) : \operatorname{randomized SVD}, \text{ exact arithmetic} \\ \begin{bmatrix} \widehat{U}_d, \widehat{S}_d, \widehat{V}_d \end{bmatrix} = \operatorname{rsvd}(A) : \operatorname{randomized SVD}, \text{ double precision} \\ \begin{bmatrix} \widehat{U}_h, \widehat{S}_h, \widehat{V}_h \end{bmatrix} = \operatorname{rsvd}(A) : \operatorname{randomized SVD}, \text{ half precision} \\ \end{bmatrix}$

Mode 3: Geometrically distributed singular values $\begin{aligned} \|A - USV^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}\widehat{S}\widehat{V}^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}_{d}\widehat{S}_{d}\widehat{V}_{d}^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}_{h}\widehat{S}_{h}\widehat{V}_{h}^{T}\|_{2} &= 4.92\text{e-}03 \end{aligned}$ Mode 1: one large singular value $\begin{aligned} \|A - USV^{T}\|_{2} &= 1.00e-06 \\ \|A - \widehat{U}\widehat{S}\widehat{V}^{T}\|_{2} &= 1.17e-06 \\ \|A - \widehat{U}_{d}\widehat{S}_{d}\widehat{V}_{d}^{T}\|_{2} &= 1.17e-06 \\ \|A - \widehat{U}_{h}\widehat{S}_{h}\widehat{V}_{h}^{T}\|_{2} &= 1.11e-05 \end{aligned}$

Let's try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd', [100, 40], 1e6, mode); k=15;

 $\begin{bmatrix} U, S, V \end{bmatrix} = \text{svd}(A) : \text{non-randomized SVD, exact arithmetic} \\ \begin{bmatrix} \widehat{U}, \widehat{S}, \widehat{V} \end{bmatrix} = \text{rsvd}(A) : \text{randomized SVD, exact arithmetic} \\ \begin{bmatrix} \widehat{U}_d, \widehat{S}_d, \widehat{V}_d \end{bmatrix} = \text{rsvd}(A) : \text{randomized SVD, double precision} \\ \begin{bmatrix} \widehat{U}_h, \widehat{S}_h, \widehat{V}_h \end{bmatrix} = \text{rsvd}(A) : \text{randomized SVD, half precision} \\ \end{bmatrix}$

Mode 3: Geometrically distributed singular values $\begin{aligned} \|A - USV^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}\widehat{S}\widehat{V}^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}_{d}\widehat{S}_{d}\widehat{V}_{d}^{T}\|_{2} &= 4.92\text{e-}03 \\ \|A - \widehat{U}_{h}\widehat{S}_{h}\widehat{V}_{h}^{T}\|_{2} &= 4.92\text{e-}03 \end{aligned}$ Mode 1: one large singular value $\begin{aligned} \|A - USV^{T}\|_{2} &= 1.00e-06\\ \|A - \widehat{U}\widehat{S}\widehat{V}^{T}\|_{2} &= 1.17e-06\\ \|A - \widehat{U}_{d}\widehat{S}_{d}\widehat{V}_{d}^{T}\|_{2} &= 1.17e-06\\ \|A - \widehat{U}_{h}\widehat{S}_{h}\widehat{V}_{h}^{T}\|_{2} &= 1.11e-05 \end{aligned}$

Use of low precision leads to an order magnitude loss of accuracy! Roundoff error can't be ignored! 10

Let's try different types of randsvd matrices from the MATLAB gallery:

```
A = gallery('randsvd', [100, 40], 1e6, mode); k=15;
```

= svd(A) : non-randomized SVD, exact arithmetic [U, S, V] $[\widehat{U}, \widehat{S}, \widehat{V}]$ = rsvd(A) : randomized SVD, exact arithmetic $[\hat{U}_d, \hat{S}_d, \hat{V}_d] = \operatorname{rsvd}(A)$: randomized SVD, double precision $[\hat{U}_h, \hat{S}_h, \hat{V}_h] = \operatorname{rsvd}(A)$: randomized SVD, half precision Error bound no longer holds! Mode 3: Geometrically distributed singular values Mode 1: one large singular value $||A - USV^T||_2 = 4.92e-03$ $||A - USV^T||_2 = 1.00e-06$ $\left\|A - \widehat{U}\widehat{S}\widehat{V}^T\right\|_2 = 4.92\text{e-}03$ $\|A - \widehat{U}\widehat{S}\widehat{V}^T\|_2 = 1.17e-06$ $\left\|A - \widehat{U}_d \widehat{S}_d \widehat{V}_d^T\right\|_2 = 4.92\text{e-}03$ $\left\| A - \widehat{U}_d \widehat{S}_d \widehat{V}_d^T \right\|_2 = 1.17\text{e-}06$ $\left\|A - \widehat{U}_h \widehat{S}_h \widehat{V}_h^T\right\|_2 = 4.92\text{e-}03$ $\left\| A - \widehat{U}_h \widehat{S}_h \widehat{V}_h^T \right\|_2 = 1.11e-05$

 $\|A - Q_h Q_h^T A\|_2 = 3.59e-06$

Use of low precision leads to an order magnitude loss of accuracy! Roundoff error can't be ignored! 10

 Block low-rank approximation and hierarchical matrix representations arise in a variety of applications

- Work on mixed and low precision in block low-rank computations
- [Higham, Mary, 2019]: block low-rank LU factorization preconditioner that exploits numerically low-rank structure of the error for LU computed in low precision
- [Higham, Mary, 2019]: Interplay of roundoff error and approximation error in solving block low-rank linear systems using LU
- [Buttari, et al., 2020]: block low-rank single precision coarse grid solves in multigrid
- [Amestoy et al., 2021]: Mixed precision low rank approximation and application to block low-rank LU factorization

Inverse multiquadratic kernel:

$$A(i,j) = \frac{1}{\sqrt{1+0.1} \|x-y\|^2}, \quad x,y \in \mathbb{R}^2 \qquad \text{A is of } A$$

A is SPD. Low-rank approximation of A should also be SPD!

Inverse multiquadratic kernel:

$$A(i,j) = \frac{1}{\sqrt{1+0.1\|x-y\|^2}}, \qquad x, y \in \mathbb{R}^2$$

 $\begin{array}{c} A \\ 16 \\ 16 \end{array} \xrightarrow{\tilde{A}} \\ 16 \end{array}$

Exact arithmetic SVD:

A is SPD. Low-rank approximation of A should also be SPD!

Inverse multiquadratic kernel:

Inverse multiquadratic kernel:

Inverse multiquadratic kernel:

11

Example: Iterative Methods

```
A = diag(linspace(.001,1,100));
[V,~] = eig(A);
b = V'*ones(n,1);
```


Example: Iterative Methods

$$\begin{split} n &= 100, \lambda_1 = 10^{-3}, \lambda_n = 1\\ \lambda_i &= \lambda_1 + \left(\frac{i-1}{n-1}\right) (\lambda_n - \lambda_1) (0.65)^{n-i}, \quad i = 2, \dots, n-1\\ [\text{V}, \sim] &= \text{eig}(\text{A});\\ \text{b} &= \text{V'*ones}(n, 1); \end{split}$$

- Low precision can have massive performance benefits but must be used with caution!
- Many opportunities for using mixed and low precision computation in scientific applications

 Need to develop a theoretical understanding of how mixed precision algorithms behave; need to revisit analyses of algorithms and techniques that ignore finite precision

Iterative Refinement for Ax = b

Iterative refinement: well-established method for improving an approximate solution to Ax = b

A is $n \times n$ and nonsingular; u is unit roundoff

Solve $Ax_0 = b$ by LU factorization(in precision u_f)for i = 0: maxit(in precision u_r) $r_i = b - Ax_i$ (in precision u_r)Solve $Ad_i = r_i$ (in precision u_s) $x_{i+1} = x_i + d_i$ (in precision u)

Iterative Refinement in 3 Precisions

• 3-precision iterative refinement [C. and Higham, 2018]

 u_f = factorization precision, u = working precision, u_r = residual precision

$$u_f \ge u \ge u_r$$

 u_s is the *effective precision* of the solve, with $u \leq u_s \leq u_f$

- For triangular solves with LU factors: $u_s = u_f$
- For GMRES preconditioned by LU factors, $u_s = u$ [C. and Higham, 2017]
- New analysis **generalizes** existing types of IR:

Traditional	$u_f = u$, $u_r = u^2$
Fixed precision	$u_f = u = u_r$
Lower precision factorization	$u_f^2 = u = u_r$

 Enables new types of IR: (half, single, double), (half, single, quad), (half, double, quad), etc.

				Backwai	rd error	
u _f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Н	S	D	104	10^{-8}	10 ⁻⁸	10^{-8}
Н	D	D	104	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
Н	D	Q	104	10^{-16}	10^{-16}	10 ⁻¹⁶
S	S	S	10 ⁸	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
S	S	D	10 ⁸	10^{-8}	10 ⁻⁸	10^{-8}
S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
S	D	Q	10 ⁸	10^{-16}	10 ⁻¹⁶	10 ⁻¹⁶

					Backwar	rd error	
	u _f	u	u_r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	10 ⁴	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
	Н	S	D	104	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	10 ⁴	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	Н	D	Q	104	10^{-16}	10^{-16}	10 ⁻¹⁶
	S	S	S	10 ⁸	10^{-8}	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶

					Backwar	rd error	
	u _f	u	<i>u</i> _r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
	Н	S	D	104	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	104	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	Н	D	Q	104	10^{-16}	10^{-16}	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10 ⁻⁸	10^{-8}	$\operatorname{cond}(A, x) \cdot 10^{-8}$
	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10 ⁻¹⁶	10^{-16}	10 ⁻¹⁶

					Backwai	rd error	
	u _f	u	u _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
	Н	S	D	104	10^{-8}	10^{-8}	10^{-8}
LP fact.	Н	D	D	104	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	Н	D	Q	104	10^{-16}	10 ⁻¹⁶	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶

					Backwar	rd error	
	u _f	u	<i>u</i> _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$\operatorname{cond}(A, x) \cdot 10^{-8}$
New	н	S	D	10 ⁴	10 ⁻⁸	10^{-8}	10 ⁻⁸
LP fact.	Н	D	D	104	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	Н	D	Q	10 ⁴	10^{-16}	10^{-16}	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10^{-8}	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10 ⁻¹⁶	10^{-16}	10 ⁻¹⁶

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backwai	rd error	
	u _f	u	u_r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	Н	S	S	104	10 ⁻⁸	10 ⁻⁸	$cond(A, x) \cdot 10^{-8}$
New	Н	S	D	10 ⁴	10^{-8}	10^{-8}	10 ⁻⁸
LP fact.	Н	D	D	10 ⁴	10 ⁻¹⁶	10 ⁻¹⁶	$cond(A, x) \cdot 10^{-16}$
New	Н	D	Q	10 ⁴	10^{-16}	10^{-16}	10 ⁻¹⁶
Fixed	S	S	S	10 ⁸	10^{-8}	10^{-8}	$cond(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	S	D	0	10 ⁸	10^{-16}	10^{-16}	10^{-16}

 \Rightarrow Benefit of IR3 vs. "LP fact.": no cond(A, x) term in forward error

Standard (LU-based) IR in three precisions $(u_s = u_f)$ Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

					Backwar	rd error	
	u _f	u	u_r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LP fact.	Н	S	S	10^{4}	10^{-8}	10^{-8}	$cond(A, x) \cdot 10^{-8}$
New	н	S	D	104	10^{-8}	10 ⁻⁸	10 ⁻⁸
LP fact.	Н	D	D	10^{4}	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	Н	D	Q	10^{4}	10^{-16}	10^{-16}	10^{-16}
Fixed	S	S	S	10 ⁸	10^{-8}	10^{-8}	$cond(A, x) \cdot 10^{-8}$
Trad.	S	S	D	10 ⁸	10^{-8}	10 ⁻⁸	10 ⁻⁸
LP fact.	S	D	D	10 ⁸	10^{-16}	10^{-16}	$cond(A, x) \cdot 10^{-16}$
New	S	D	Q	10 ⁸	10^{-16}	10^{-16}	10^{-16}

⇒ Benefit of IR3 vs. traditional IR: As long as $\kappa_{\infty}(A) \leq 10^4$, can use lower precision factorization w/no loss of accuracy!

GMRES-IR: Solve for d_i via GMRES on $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$

			- (3				
					Backwa	rd error	
	u _f	u	<i>u</i> _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10 ⁻⁸	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	Н	D	Q	10 ¹²	10 ⁻¹⁶	10^{-16}	10^{-16}

GMRES-based IR in three precisions $(u_s = u)$

 \Rightarrow With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$

GMRES-IR: Solve for d_i via GMRES on $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$

				Backward error			
	u _f	u	u _r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	Н	D	Q	10 ¹²	10^{-16}	10^{-16}	10^{-16}
$ \qquad \qquad$							

GMRES-based IR in three precisions $(u_s = u)$

 \Rightarrow With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$

GMRES-IR: Solve for d_i via GMRES on $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$

				Backward error			
	u _f	u	u _r	$\max \kappa_{\infty}(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10^{-16}	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	H	D	Q	10 ¹²	10^{-16}	10^{-16}	10 ⁻¹⁶
						$\succ \kappa_{\infty}(A)$	$\leq u^{-1/2} u_{f}^{-1}$

GMRES-based IR in three precisions $(u_s = u)$

⇒ As long as $\kappa_{\infty}(A) \leq 10^{12}$, can use half precision factorization and still obtain double precision accuracy!

GMRES-IR: Solve for d_i via GMRES on $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$

				Backward error			
	u _f	u	<i>u</i> _r	$\max \kappa_\infty(A)$	norm	comp	Forward error
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}
LU-IR	Н	D	Q	104	10^{-16}	10 ⁻¹⁶	10 ⁻¹⁶
GMRES-IR	Н	D	Q	1012	10 ⁻¹⁶	10^{-16}	10^{-16}
$ \qquad \qquad$							

GMRES-based IR in three precisions $(u_s = u)$

⇒ As long as $\kappa_{\infty}(A) \leq 10^{12}$, can use half precision factorization and still obtain double precision accuracy!

Recent work: 5-precision GMRES-IR [Amestoy, et al., 2021]

GMRES-IR: Solve for d_i via GMRES on $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$

					Backward error			
	u _f	u	u _r	$\max \kappa_\infty(A)$	norm	comp	Forward error	
LU-IR	Н	S	D	104	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸	
GMRES-IR	Н	S	D	10 ⁸	10^{-8}	10^{-8}	10^{-8}	
LU-IR	S	D	Q	10 ⁸	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶	
GMRES-IR	S	D	Q	10 ¹⁶	10^{-16}	10^{-16}	10^{-16}	
LU-IR	Н	D	Q	104	10 ⁻¹⁶	10 ⁻¹⁶	10 ⁻¹⁶	
GMRES-IR	Н	D	Q	1012	10^{-16}	10 ⁻¹⁶	10 ⁻¹⁶	
					•	•	•	

GMRES-based IR in three precisions $(u_s = u)$

⇒ As long as $\kappa_{\infty}(A) \leq 10^{12}$, can use half precision factorization and still obtain double precision accuracy!

 $\longrightarrow \kappa_{\infty}(A) \leq \boldsymbol{u}^{-1/2} \, \boldsymbol{u}_{\boldsymbol{f}}^{-1}$

Recent work: 5-precision GMRES-IR [Amestoy, et al., 2021]

$$\longrightarrow \kappa_{\infty}(A) \leq \boldsymbol{u}^{-1/3} \, \boldsymbol{u}_{\boldsymbol{f}}^{-2/3}$$

• Want to solve

$$\min_{x} \|b - Ax\|_2$$

where $A \in \mathbb{R}^{m \times n}$ (m > n) has rank n

• Commonly solved using QR factorization:

$$A = QR = [Q_1, Q_2] \begin{bmatrix} U\\0 \end{bmatrix}$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular. $x = U^{-1}Q_1^T b$, $\|b - Ax\|_2 = \|Q_2^T b\|_2$

• Want to solve

$$\min_{x} \|b - Ax\|_2$$

where $A \in \mathbb{R}^{m \times n}$ (m > n) has rank n

• Commonly solved using QR factorization:

$$A = QR = [Q_1, Q_2] \begin{bmatrix} U\\0 \end{bmatrix}$$

where Q is an $m \times m$ orthogonal matrix and U is upper triangular. $x = U^{-1}Q_1^T b$, $\|b - Ax\|_2 = \|Q_2^T b\|_2$

• As in linear system case, for ill-conditioned problems, iterative refinement often needed to improve accuracy and stability

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix} \qquad \tilde{r}_i = \tilde{b} - \tilde{A}\tilde{x}_i$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

 $\tilde{A}d_i = \tilde{r}_i$

 $\widetilde{x}_{i+1} = \widetilde{x}_i + d_i$

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size (m + n):

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \tilde{A}\tilde{x} = \tilde{b}$$

- Refinement proceeds as follows:
- 1. Compute "residuals"

$$\begin{bmatrix} f_i \\ g_i \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r_i \\ x_i \end{bmatrix} = \begin{bmatrix} b - r_i - Ax_i \\ -A^T r_i \end{bmatrix}$$

2. Solve for corrections

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix} = \begin{bmatrix} f_i \\ g_i \end{bmatrix}$$

3. Update "solution":

$$\begin{bmatrix} r_{i+1} \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} r_i \\ x_i \end{bmatrix} + \begin{bmatrix} \Delta r_i \\ \Delta x_i \end{bmatrix}$$

Results for 3-precision IR for linear systems also applies to least squares problems [C., Higham, Pranesh, 2020]

$$\tilde{r}_i = \tilde{b} - \tilde{A}\tilde{x}_i$$

$$\tilde{A}d_i = \tilde{r}_i$$

$$\tilde{x}_{i+1} = \tilde{x}_i + d_i$$

- Many different variants of mixed precision IR
 - "standard IR" (SIR): LU solves
 - SGMRES-IR: preconditioned GMRES entirely in working precision
 - GMRES-IR: preconditioned GMRES with extra precision

cost, reliability

- Many different variants of mixed precision IR
 - "standard IR" (SIR): LU solves
 - SGMRES-IR: preconditioned GMRES entirely in working precision
 - GMRES-IR: preconditioned GMRES with extra precision
- Problem: constraints for convergence often overly strict in practice
 - Hard to pick the best variant

- Many different variants of mixed precision IR
 - "standard IR" (SIR): LU solves
 - SGMRES-IR: preconditioned GMRES entirely in working precision
 - GMRES-IR: preconditioned GMRES with extra precision
- Problem: constraints for convergence often overly strict in practice
 - Hard to pick the best variant
- Opportunity: typically implementations increase precisions if lack of convergence detected
 - Requires recomputing the expensive LU factorization in higher precision
 - Before resorting to increasing precisions, we can first try using a better inner solver with the existing LU factors!

cost, reliability

- Many different variants of mixed precision IR
 - "standard IR" (SIR): LU solves
 - SGMRES-IR: preconditioned GMRES entirely in working precision
 - GMRES-IR: preconditioned GMRES with extra precision
- Problem: constraints for convergence often overly strict in practice
 - Hard to pick the best variant
- Opportunity: typically implementations increase precisions if lack of convergence detected
 - Requires recomputing the expensive LU factorization in higher precision
 - Before resorting to increasing precisions, we can first try using a better inner solver with the existing LU factors!

→ Multistage Iterative Refinement (MSIR) [Oktay, C., NLAA, 2022]

cost, reliability

Extension: SPAI-GMRES-IR

- Existing analyses of GMRES-IR assume we use full LU factors
- In practice, often want to use sparse preconditioners (ILU, SPAI, etc.)
- [C., Khan, arXiv:2202.10204, 2022]: analysis of GMRES-IR with SPAI preconditioning)
 - Convergence to limiting accuracy as long as $nu_f cond(A^T) \leq n\varepsilon \leq u^{-1/2}$

Extension: SPAI-GMRES-IR

- Existing analyses of GMRES-IR assume we use full LU factors
- In practice, often want to use sparse preconditioners (ILU, SPAI, etc.)
- [C., Khan, arXiv:2202.10204, 2022]: analysis of GMRES-IR with SPAI preconditioning)
 - Convergence to limiting accuracy as long as $nu_f cond(A^T) \leq n\varepsilon \leq u^{-1/2}$

• Future machines will support a range of precisions: quarter, half, single, double, quad

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision), posits

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision), posits
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
 - e.g., bfloat16 (truncated 16-bit version of single precision), posits
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm
- As numerical analysts, we must determine when and where we can exploit lower-precision hardware to improve performance

Thank you!

carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson/