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Floating Point Formats
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IEEE single (FP32)
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IEEE half (FP16) size perf. (NVIDIA
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exponent (8 bits) fraction (7 bits) FP64 64 101308 | 1 x 1071 | 60 Tflops/s
— + -8
bfloat16 FP32 32 1038 | 6 x 10 1 Pflop/s
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2 Pflops/s
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esm2 FP8-e5m2 8 105 | 3x 107!
FP8 4 Pflops/s
FP8-e4m3 38 10%2 1x 1071
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Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

* Half precision (FP16) defined as storage format in 2008 |IEEE standard
« ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit
 AMD Radeon Instinct MI25 GPU, 2017:

* single: 12.3 TFLOPS, half: 24.6 TFLOPS
* NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
 NVIDIA Tesla V100, 2017: tensor cores for half precision;

4x4 matrix multiply in one clock cycle

* double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

 Google's Tensor processing unit (TPU)

 NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16,
FP64, Binary, INT4, INT8, bfloatl6

« NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores

» Exascale supercomputers: Expected extensive support for reduced-precision
arithmetic (Frontier: FP64, FP32, FP16, bfloat16, INT8, INT4) 2



Mixed precision in NLA

BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

* lterative refinement:
* Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...

* More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C.,
Higham, Pranesh, 2020], [Amestoy et al., 2021]

* Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020],
[Abdelfattah et al., 2020]

* Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al.,
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

 Sparse direct solvers: [Buttari et al., 2008]
* Orthogonalization: [Yamazaki et al., 2015]

* Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist,
Kronbichler, 2017, 2019]

* (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi,
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., [JHPC, 2021] 3



HPL-Al Benchmark

» Supercomputers traditionally ranked by performance on high-performance
LINPACK (HPL) benchmark

* Solves dense Ax = b via Gaussian elimination with partial pivoting

 HPL-AI: Like HPL, solves dense Ax = b, results still to double precision
accuracy

* But achieves this via mixed-precision GMRES-based iterative
refinement



HPL-Al Benchmark

June 2022

Rank Site Computer Cores HPL-AI (Eflop/s) TOP500 Rank HPL Rmax (Eflop/s) Speedup
1 DOE/SC/ORNL, USA Frontier 8,730,112 6.861 1 1.102 6.2
2 RIKEN, Japan Fugaku 7,630,848 2.000 2 0.4420 4.5
3 DOE/SC/ORNL, USA Summit 2,414,592 1.411 4 0.1486 9.5
4 NVIDIA, USA Selene 555,520 0.630 8 0.0630 9.9
5 DOE/SC/LBNL, USA Perlmutter 761,856 0.590 7 0.0709 83
5} FZJ), Germany JUWELS BM 449,280 0.470 11 0.0440 10.0
7 University of Florida, USA HiPerGator 138,880 0.170 34 0.0170 9.9
8 SberCloud, Russia Christofari Neo 98,208 0.123 47 0.0120 103
9 DOE/SC/ANL, USA Polaris 259,840 0.114 14 0.0238 48
10 ITC, Japan Wisteria 368,640 0.100 20 0.0220 4.5
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lterative Refinement for Ax = b

lterative refinement: well-established method for improving an
approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy = b by LU factorization
for i = 0: maxit
1, = b — Ax;
Solve Ad; =1; viad; = UYL 'r)

Xi+1 = X; + d;



lterative Refinement for Ax = b

lterative refinement: well-established method for improving an
approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
1, = b — Ax; (in precision u?)
Solve Ad; =1; viad; =U"Y(L™'r;)  (in precision u)

Xiy1 = X; + d; (in precision u)

"Traditional" (high-precision
residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)



lterative Refinement for Ax = b

4 B Koo (A) = 14 ol Al A
As long as ko, (A) < u™",

* relative forward error is O(u)
* relative normwise and componentwise backward errors are O(u)

- )
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lterative Refinement for Ax = b

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r. = b — Ax; (in precision w.)
Solve Ad; =1, viad; =UY(L7'r;)  (in precision u)

Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]



lterative Refinement for Ax = b
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Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r. = b — Ax; (in precision w.)
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Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]



lterative Refinement for Ax = b

Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision )
Solve Ad; =1, viad; =UY(L7'r;)  (in precision u)
Xiy1 = X; + d; (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
6



lterative Refinement for Ax = b

4 N
As long as k., (4) < u~1/2,
* relative forward error is O(u)cond(4, x)
* relative normwise and componentwise backward errors are O(u)

- )

Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision )
Solve Ad; =1, viad; =UY(L7'r;)  (in precision u)
Xiy1 = X; + d; (in precision u)
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[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
6



lterative Refinement for Ax = b

3-precision iterative refinement [C. and Higham, 2018]

us = factorization precision, u = working precision,

Ur 2 U = Uy

Solve Axy = b by LU factorization
for i = 0: maxit

1, = b — Ax;

Solve Ad; = 1;

Xi+1 = X; + d;

is the effective precision of the solve, with u <

u, = residual precision

(in precision uy)

(in precision u,.)
(in precision 11,)

(in precision u)



Key Aspects of Analysis: Tighter Upper Bounds

Obtain tighter upper bounds:

Typical bounds used in analysis: [|JA(x — X))l < l|Allollx — X1l
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Key Aspects of Analysis: Tighter Upper Bounds

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

For a stable refinement scheme, in early stages we expect

|7 ]| lx — ;|
L ruK '
|A[]]%;|] || x|

> ,ul-<<1

But close to convergence,
Inll = llAllllx — %] ——— u; = 1
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Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,
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Key Aspects of Analysis: Effective Solve Precision

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

example: LU solve:

Assume computed solution d; to Ad; = 7; satisfies: @
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Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

10



Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision 1, if
¢; = 2u; min(cond(A), koo (A1) + 1| Eill oo

is less than 1, then the forward error is reduced on the ith iteration by a
factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,

where N is the maximum number of nonzeros per row in A.

10



Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision 1, if

¢; = 2u; min(cond(A), koo (A) ) + 1l Eill oo

ml, then the forward error is reduced on the ith iteration by a

factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,

where N is the maximum number of nonzeros per row in A.

> Analogous traditional bounds: ¢; = 3nusk.(A4)
10



Normwise Backward Error for IR3

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision u,, if

®i = (1K (A) + cx)uy

is less than 1, then the residual is reduced on the ith iteration by a factor
~ ¢; until an iterate X; is produced for which

b — A%l = Nu(l[blleo + [[Alleo [l %10,

where N is the maximum number of nonzeros per row in A.

11



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error

H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 104 1078 | 1078 1078

H D D 10 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 1071 10716

S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8

S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 1071 1016

12



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error
LP fact. H S S 104 1078 | 1078 | cond(4,x) 1078
H S D 10* 1078 | 1078 1078
LP fact. H D D 10 1071 | 1071® | cond(4,x) 1071
H D Q 10* 1076 | 1071¢ 10716
S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8
LPfacc. S D D 108 107t | 1071 | cond(4,x) 10716
S D Q 108 10~ | 1071¢ 10-16

12



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Fixed

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 104 1078 | 1078 1078
H D D 10* 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 1071 10716
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 1071 1016

12



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Trad.

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

ur U U, | MaXKep(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 10* 1078 | 1078 1078
H D D 10* 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 10716 10716
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 1078 | 1078 1078
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 10716 10-1¢6

12



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

New

New

New

Half ~ 107%, Single ~ 108, Double ~ 1076, Quad ~ 1073

Backward error

Uy U U, | MaAXKp(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 10* 1078 1078 1078
H D D 10 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 10716 10-16
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 1078 1078 1078
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 10716 10716

12



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071%, Quad ~ 1073*

Backward error
Uy U U, | MaAXKp(A) | norm | comp Forward error
LP fact. | H S S 104 10~8 10~8 cond(4,x) - 1078
New H S D 10* 1078 1078 1078
LP fact.| H D D 104 1071 | 107 | cond(4,x) 1071
New H D Q 10* 10716 | 10716 10-16
LP fact. = S D 108 1071 | 1071 | cond(4,x) 10716
New S D Q 108 1076 | 1071° 10716

= Benefit of IR3 vs. "LP fact.": no cond(4, x) term in forward error
12



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071%, Quad ~ 1073*

Backward error
Uy U U, | MaxKex(A) | norm comp Forward error
New H S D 104 108 108 1078
Trad. | S S D 108 1078 | 1078 1078

= Benefit of IR3 vs. traditional IR: As long as ks (4) < 10%*, can use lower
precision factorization w/no loss of accuracy! 12



A = gallery('randsvd', 100, 1le3)
b = randn (100, 1)

Ko(4) = led

Standard (LU-based) IR with  u: single, u: double, u,: quad

10° -
—<—ferr 0 2Ugkoo (A) i
X -O-nbe 100 F==mm == 2ugscond(A) [
i\ che B
1 0_1 0 _\\\( | 1 O-Eﬁf?—@‘—‘i\_ Z _V_ qb’b
"‘\\_ﬂ
\ X
LN
B—X
100 wor-—
0O 1 2 3 4 5 6 7 8 9 10 11 0O 1 2 3 4 5 6 7 8 9 10 11

refinement step refinement step
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A = gallery('randsvd', 100, 1le7)
b = randn (100, 1)

Ko(4) = Te7

Standard (LU-based) IR with  u: single, u: double, u,: quad

10° ) S —

><\ —x<—ferr . Qus Koo ( A) i
><>< —S-nbe 10 K_— T T T T T _ 1 2ugcond(A) |
% N ./ cbe A Can v VA O us|| B oo
10 5 7 o X 107 | o
10791 Qg X |
BB 5B
1 0-20

L 1 1 1 1 1 L L : : _15 | | | L L L 1 1 1 1
10
0123;561;:891011 01 2 3 4 5 6 7 8 9 10 11
rennement step refinement step

13



A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

k., (A) ~ 2el0

Standard (LU-based) IR with  u: single, u: double, u,: quad

ferr Qs Koo (A) 11
“O-nbe 10°V/ ¥ 2ugcond(A) ||
s che| | S| Bl
B— e @ 1072 - 7 Pi
o™
1071°]

0 1 2 0 1 2

refinement step refinement step

13



A = gallery('randsvd',

b = randn (100, 1)

k., (A) ~ 2el0

100, 1le9)

Standard (LU-based) IR with u: double, wu,: quad

ferr > 2Uskoo (A) 11
“O-nbe 107 Y oo cond(A) ||
10°° +/ cbe] S us|| Bl
B— -5 @ 10°7 i _
o™
10715 |
0 1 2 0 1 2

refinement step

refinement step
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A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

Ko(4) =~ 2el0

Standard (LU-based) IR with (u: double, wu: double, u,: quad

—<—ferr|; N 2uskoo (A) 14 _
-O-nbe 10 2uscond(A)
</ cbe O us || Ei ||
10° ‘ :
1075~ 7 @i
\V &
10718
0 1 2 0 1

refinement step refinement step



GMRES-Based lterative Refinement

* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(U7IL71A) = 1+ koo (A,

even if ke, (4) > ufl.
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* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(UTIL7A) = 1+ koo (Auy,

even if ke, (4) > ufl.

~

A Ty
AP SN
* To compute the updates d;, apply GMRES to U~!L71Ad; = UL 1r;

GMRES-IR [C. and Higham, SISC 39(6), 2017]
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GMRES-Based lterative Refinement

* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(UTIL7A) = 1+ koo (Auy,

even if ke, (4) > ufl.

~

A Ty
AP SN
* To compute the updates d;, apply GMRES to U~!L71Ad; = UL 1r;

GMRES-IR [C. and Higham, SISC 39(6), 2017]

Solve Axy = b by LU factorization

for i = 0: maxit
1, =b — Ax;
Solve Ad; =r; via GMRES on Ad; = #;
Xi+1 = X; + d;
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GMRES-Based lterative Refinement

* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(UTIL7A) = 1+ koo (Auy,

even if ke, (4) > ufl.

~

A Ty
AP SN
* To compute the updates d;, apply GMRES to U~!L71Ad; = UL 1r;

GMRES-IR [C. and Higham, SISC 39(6), 2017]

Solve Axy = b by LU factorization

for i = 0: maxit —u
T = b — Axi ﬁ

Solve Ad; =r; via GMRES on Ad; = #;
Xiy1 = X; t+ d;

14



A = gallery('randsvd', 100,
b = randn (100, 1)

Ko(A) = 210, cond(4,x) = 5e9

1e9, 2)

Standard (LU-based) IR with  u;: single, u: double, wu,.:

ferr |
-O-nbe
o5 cbe_
O— —9 D
1 0'1 5 -—_ __________________________ -
0 1 2

refinement step

quad
. 2 Koo (A) i
10V v 2ugscond(A) ||
1072 - _V_qﬁz
107°] ,
0 1

refinement step




A = gallery('randsvd', 100, 1e9,

b = randn (100, 1)

2)

Ko(A) & 2e10, cond(4,x) = 59, ko(4)~ 2e4

@ with  u;: single, u: double, u,: quad

—¢—ferr|

-S-nbe

</ cbe|

0 1 2
refinement step

Number of GMRES iterations: (2,3)

10°

2uskoo (A) 14

2uscond(A) |
%us ||Ez ||oo
7 i

0 1

refinement step




GMRES-IR: Summary

GMRES-IR: Solve for d; via GMRES on U™1L7Ad; = UL 1

GMRES-based IR in three precisions (1, = u)

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

=With GMRES-IR, lower precision factorization will work for higher k. (A)
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GMRES-IR: Summary

GMRES-IR: Solve for d; via GMRES on U™1L7Ad; = UL 1

GMRES-based IR in three precisions (

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR @ D Q 1012 10716 | 10716 10716
\

> Koo(A) S uMZug!

= As long as ks (A) < 1012, can use half precision factorization and still obtain

double precision accuracy!
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Comments and Caveats |

» Convergence tolerance T for GMRES?
* Smaller T > more GMRES iterations, potentially fewer refinement steps
» Larger T — fewer GMRES iterations, potentially more refinement steps
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Comments and Caveats |

» Convergence tolerance T for GMRES?
* Smaller T > more GMRES iterations, potentially fewer refinement steps
» Larger T — fewer GMRES iterations, potentially more refinement steps

 What about overflow, underflow, subnormal numbers?
* Sophisticated scaling methods can help avoid this

* “Squeezing a Matrix into Half Precision, with an Application to Solving
Linear Systems” [Higham, Pranesh, Zounon, 2019]
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Comments and Caveats I

» Convergence rate of GMRES?
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Comments and Caveats I

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if (normal) A still has cluster of eigenvalues near origin, GMRES can
stagnate until n'" iteration, regardless of ., (A) [Liesen and Tichy, 2004]

* Potential remedies: deflation, Krylov subspace recycling [C., Oktay, 2022], using
additional preconditioner
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Performance Results (MAGMA)

 [Haidar, Tomov, Dongarra, Higham, 2018|

20 T T T T T T T T 14
¢»FP16-TC->64 dhgesv|
18 | |=&=FP16->64 dhgesv
FP32->64 dsgesv 10°
16 = M=FP6adgesy [ ... .ccummeenenngg
14+ 1101
@ 12+ |
10 10°
- g | "
10°
6 I
=T 330 4 '
2 L
0 10"

ok 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

(b) Matrix of type 4: clustered singular values, o;=(1, ---, 1, ——).

cond /
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» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if (normal) A still has cluster of eigenvalues near origin, GMRES can
stagnate until n'" iteration, regardless of ., (A) [Liesen and Tichy, 2004]

* Potential remedies: deflation, Krylov subspace recycling [C., Oktay, 2022], using
additional preconditioner
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Comments and Caveats I

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if (normal) A still has cluster of eigenvalues near origin, GMRES can
stagnate until n'" iteration, regardless of ., (A) [Liesen and Tichy, 2004]

* Potential remedies: deflation, Krylov subspace recycling [C., Oktay, 2022], using
additional preconditioner

« Depending on conditioning of A, applying A to a vector must be done accurately
(precision u#) in each GMRES iteration

* Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]
* For GMRES entirely in precision u,

Koo (A) < u~1/2 Ut > Ke(A) < u~1/3 u;z/g
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Comments and Caveats I

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if (normal) A still has cluster of eigenvalues near origin, GMRES can
stagnate until n'" iteration, regardless of ., (A) [Liesen and Tichy, 2004]

* Potential remedies: deflation, Krylov subspace recycling [C., Oktay, 2022], using
additional preconditioner

« Depending on conditioning of A, applying 4 to a vector must be done accurately
(precision u#) in each GMRES iteration

* Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]
* For GMRES entirely in precision u,

Koo (A) < u~1/2 Ut > Ke(A) < u~1/3 u;z/g

» Why GMRES?

 Theoretical purposes: existing analysis and proof of backward stability [Paige,
Rozloznik, Strakos, 2006]

* In practice, use any solver you want!
18



GMRES-IR in Libraries and Applications

* MAGMA: Dense linear algebra routines for heterogeneous/hybrid
architectures

D magma / src / dxgesv_gmres_gpu.cpp r|:|

—_— ——————

128 -------

129 DSGESV or DHGESV expert interface.

138 It computes the solution to a real system of Linear equations

131 A*X =B, A**T * X =B, or A*¥H * X =B,

132 where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

133 the accomodate the Single Precision DSGESV and the Half precision dhgesv API.

134 precision and iterative refinement solver are specified by facto_type, solver_type.
135 For other API parameter please refer to the corresponding dsgesv or dhgesv.

* NVIDIA's cuSOLVER Library

2.2.1.6. cusolverIRSRefinement_t

The cusolverIRSRefinement_t type indicates which solver type would be used for the specific
cusolver function. Most of our experimentation shows that CUSOLVER_IRS_REFINE_GMRES is the best
option.

CUSOLVER_IRS_REFINE_GMRES GMRES (Generalized Minimal Residual) based
iterative refinement solver. In recent study, the
GMRES method has drawn the scientific
community attention for its ability to be used as
refinement solver that outperforms the classical
iterative refinement method. based on our
experimentation, we recommend this setting.

* In production codes: FK6D/ASGarD code (Oak Ridge National Lab, USA)

for tokomak containment problem
19



Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n);

i olld=1o
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Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

i olld=1o

* Refinement proceeds as follows:

1. Compute "residuals"

A=1-L allal= Zn™

2. Solve for corrections

i o)l =13

3. Update "solution":
] = L)+ [
Xi+1
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Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

oolld=ll A

* Refinement proceeds as follows:

1. Compute "residuals"

0 I A T ] i B

2. Solve for corrections

o ollael =[5 i

AT Axl Adl —_ 77'1'

3. Update "solution":
Tit1 Ti ATL . -
[xi+1] [ ] [ ] Xivn =X + d;
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Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

oolld=ll A

* Refinement proceeds as follows:

1. Compute "residuals"

0 I A T ] i B

2. Solve for corrections

Al [Ar; fi 3
[ ] [Axl] ] Adl - 77'1'
3. Update "solution": /
Ti41 T Ar; Results for 3-precision _ _
[ ] [ ] [ ] IR for linear systems Xiy1 = X; + d;
also applies to least
squares problems!

See [C., Higham, Pranesh, 2020] 20

Xi+1



GMRES-IR with Inexact Preconditioners

* Existing analyses of GMRES-IR assume we use full LU factors

* In practice, often want to use approximate preconditioners (ILU,
SPAI, etc.)
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GMRES-IR with Inexact Preconditioners

* Existing analyses of GMRES-IR assume we use full LU factors

* In practice, often want to use approximate preconditioners (ILU,
SPAI, etc.)

 [Amestoy et al., 2022]
* Analysis of block low-rank (BLR) LU within GMRES-IR
 Analysis of use of static pivoting in LU within GMRES-IR
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GMRES-IR with Inexact Preconditioners

* Existing analyses of GMRES-IR assume we use full LU factors

* In practice, often want to use approximate preconditioners (ILU,
SPAI, etc.)

 [Amestoy et al., 2022]
* Analysis of block low-rank (BLR) LU within GMRES-IR
 Analysis of use of static pivoting in LU within GMRES-IR

+ [C., Khan, 2022]

* Analysis of sparse approximate inverse (SPAI)
preconditioners within GMRES-IR

21



SPAI Preconditioners

Goal: Construct sparse matrix M ~ A~1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m;, of M dynamically
4 )

Given matrix A, initial sparsity structure J, and tolerance &

For each column k:
Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve min||le, — Amy||,
my

If llrelly = llex — Amyll, < &
break:
Else

add select nonzeros to J, repeat.

-
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SPAI Preconditioners

Goal: Construct sparse matrix M ~ A~1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns m;, of M dynamically
4 )

Given matrix A, initial sparsity structure J, and tolerance &

For each column k:
Compute QR factorization of submatrix of A defined by J
Use QR factorization to solve min||le, — Amy||,
my

If llrelly = llex — Amyll, < &
break:
Else

add select nonzeros to J, repeat.

- J

Benefits: Highly parallelizable
But construction can still be costly, esp. for large-scale problems
[Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tama, 1999], [He, Yin, Gao, 2020]



SPAI Preconditioners in Low Precision

What is the effect of using low precision in SPAI construction?

Notes and assumptions:
* We will assume that the SPAI construction is performed in some precision uy
* We will denote quantities computed in finite precision with hats

* In our application, we want a left preconditioner, so we will run the algorithm
on AT and set M « MT.

« We will assume that the QR factorization of the submatrix of AT is computed
fully using HouseholderQR/TSQR

23



SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on M, under what
constraint on Uy can we guarantee that ||7||; < &, with 7}, = flu,(ex —

ATm]) for the computed M}, ?
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SPAI Preconditioners in Low Precision

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on M, under what
constraint on 1y can we guarantee that ||7||; < &, with 7}, = flu,(ex —

ATm]) for the computed M}, ?

2. Assume that when M is computed in exact arithmetic, we quit as soon as
I7 |l < &. For M computed in precision us with the same sparsity pattern

as M, what is ||ek —ATﬁz£||2?
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SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS
problems, we have

I7ll> < ngufnlekl + |AT||T”\1£|”2-

So in order to guarantee we eventually reach a solution with ||7 ]|, < &, we
need

n3uf|||ek| + IAT||r’ﬁ£|||2 <&
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SPAI Preconditioning in Low Precision

Using standard rounding error analysis and perturbation results for LS
problems, we have

I7ll> < ngufnlekl + |AT||T”\1£|”2-

So in order to guarantee we eventually reach a solution with ||7 ]|, < &, we
need

n3uf|||ek| + IAT||r’ﬁ,£|||2 <e.

— problem must not be so ill-conditioned WRT u; that we incur an error
greater than & just computing the residual

24



SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond,(AT) < euj?,

where cond, (A7) = |||A~T|A7]|l,.
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SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond,(AT) < euj?,
where cond,, (A7) = [[|4~||4]|l,.

Another view: with a given matrix A and a given precision Uyp, one must set £
such that

£ = ugcond, (A").

Confirms intuition: The more approximate the inverse, the lower the
precision we can use.
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SPAI Preconditioning in Low Precision

Can turn this into the looser but more descriptive a priori bound:

cond,(AT) < euj?,
where cond,, (A7) = [[|4~||4]|l,.

Another view: with a given matrix A and a given precision Uyp, one must set £
such that

£ = ugcond, (A").

Confirms intuition: The more approximate the inverse, the lower the
precision we can use.

Resulting bounds for M:

[ —ATMT|| < 24/ns, I — MA|| <2ne
F (o) -



Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in M?

steam3
600 | G\E
B35 5 0o oGO
(5400 N

100 —H—uy = single |

——uy = double

0 0.2 0.4 0.6 0.8 1

m
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Size of SPAI Preconditioner in Low Precision

How does precision used affect the number of nonzeros in M?

steam3

600 E\EI
B35 5 0o oGO
500 _
—400f
{:-3_‘ —a ]
é 300 L —
200 -
100 - —H—uy = single |
——1uy = double
0 1 1 L
0 0.2 0.4 0.6 0.8

saylrl
4
4 x10 | |
o ——uy = single
\ ——uy = double
3 -
(= \
1 | (i
0 . e e NS BN
0 0.2 0.4 0.6 0.8 1

m
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Second Question

Assume that when M is computed in exact arithmetic, we quit as soon as
Tl < €. For M computed in precision ug with the same sparsity pattern as

M, what is ||e; — ATﬁ\l;‘CHZ 7

27



Second Question

Assume that when M is computed in exact arithmetic, we quit as soon as
Tl < €. For M computed in precision ug with the same sparsity pattern as

; AT ST 7
M, what is ||ek A mk||2.
In this case, we obtain the bound

|11 — 1’\/7A||Oo <n (e + n7/2uficoo(A)) .

- If ko (4) > eufl, then computed M with same sparsity structure as M can
be of much lower quality.

27



SPAI-GMRES-IR

SPAI-GMRES-IR
To compute the updates d;, apply GMRES to MAd; = Mr;

Solve MAx, = Mb
for i = 0: maxit
1 = b — Ax;
Solve Ad; =1; via GMRES on MAd; = Mr;

Xi+1 = X; + d;

28



Low Precision SPAI within GMRES-IR

Using M computed in precision uy, for the preconditioned system A= MA,

Keo(A) S (1 + 2ne)?.
steam3 saylrl
10° - - ' ' 10° ' ' ' I
——uy = single ]
‘—us = double St =
[—-—= (1 + 2ne)? e —5 &
rg /,/
2 J
L' x!
_;‘I —-uy = single |’
’ 55656 ——uy = double| 1
a ______* S = ———— (14 2n=)? |}
oo - S
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
£ £
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Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

nuscond,(A") S ne < u-1/2,

30



Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

nuscond,(A") S ne < u-1/2,

M can be
constructed
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Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

—1/2.

J

nuscond,(A") Snesu

~

M can be M is a good enough
constructed preconditioner
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Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

—1/2.

J

nuscond,(A") Snesu

~

M can be M is a good enough
constructed preconditioner

If ¢ satisfies these constraints, then the constraints on condition number for
forward and backward errors to converge are the same as for GMRES-IR with

full LU factorization.

30



Low Precision SPAI within GMRES-IR

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

—1/2.

J

nuscond,(A") Snesu

~

M can be M is a good enough
constructed preconditioner

If ¢ satisfies these constraints, then the constraints on condition number for
forward and backward errors to converge are the same as for GMRES-IR with

full LU factorization.

Compared to GMRES-IR with full LU factorization, in general expect slower
convergence, but much sparser preconditioner.
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SPAI-GMRES-IR Example

Matrix: steaml, n = 240, nnz = 2,248, k. (4) = 3 -107, cond(4T) = 3-103
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SPAI-GMRES-IR Example

Matrix: steaml, n = 240, nnz = 2,248, k. (4) = 3 -107, cond(4T) = 3-103

(uf, u, ur) = (single, double, quad)

LU-GMRES-IR, #io(A) =4.6e+00

——ferr

1DD L ———nhe

=—che

0 1 2 3 4 ]
refinement step

nnZ(L + U) — 13,765 31



SPAI-GMRES-IR Example

Matrix: steaml, n = 240, nnz = 2,248, k. (4) = 3 -107, cond(4T) = 3-103

NI ’ ) R

(uf, u, ur) = (single, double, quad)

LU-GMRES-IR, #(A) =4.6e+00 SPAI-GMRES-IR, fi.(A) = 1.1e 4 00, £ =0.5

——ferr I | | I—)-q— ferr

107 | E—nbe ——nhe
—che 77— che

1']-30 L L L . |
0 1 2 3 4 3 0 1 2 3 4 S
refinement step refinement step

nnz(L + U) = 13,765 nnz(M) = 2,248 31



Is there a point in using precision higher than that dictated by ufcondz(AT) < é&?

Matrix: bfwa782, n = 782, nnz = 7514, ko (4) = 7 - 103, cond(47) = 1- 103

(uf, u, ur) = (half, single, double)

SPAI (¢ = 0.2) 2.1e + 02 28053 67 (31, 36)
SPAI (¢ = 0.5) 9.7¢ + 02 7528 153 (71, 82)
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Is there a point in using precision higher than that dictated by ufcondz(AT) < &?

Matrix: bfwa782, n = 782, nnz = 7514, ko (4) = 7 - 103, cond(47) = 1- 103

(up,u,u,) = (half, single, double)

SPAI (¢ = 0.2) 2.1e + 02 28053 67 (31, 36)
SPAI (¢ = 0.5) 9.7¢ + 02 7528 153 (71, 82)

(us,u,u,) = (single, single, double)

SPAI (£ = 0.2) 2.2¢ + 02 26801 69 (32, 37)
SPAI (£ = 0.5) 9.7¢ + 02 7529 153 (71, 82)
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Related and Current Work

* Multistage mixed precision iterative refinement
[Oktay, C., 2021]

If IR not converging, first try changing the solver before increasing precision

* Low-precision randomized preconditioners
[C., Dauzickaité, 2022]
Ak+1

Single-pass Nystrom can be run in precision u, = Tids without affecting the
quality of limited memory preconditioner. !

* Low-precision in ILU-type preconditioners
What can we prove?

33



Summary and Takeaway

* We now have a multi-precision ecosystem

* Huge opportunities for using mixed precision in matrix
computations

* But also big challenges!

34



Thank Youl

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/~carson/
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On+1-k = On



Key Analysis Innovations |

2 A
171l = 1P NAlll1x — £l

= (uTr-)v-
x—% = Vi lyTy, = z# (A=UzvT)
; 0j
j=1
n T 2 n
o (wr) 1 .2 1711
lx — %113 = — = = (Wn) = =
O: 0. 0.
j=n+1-k J n+l-k i_n31-k n+l-k

where Py = U Uy, U = [Uns1-g, ) Un]

@) - I7ill2 ons1-k
' |Perill; oy

. Hl§2) & 1 if r; contains significant component in span(Uj) for any k s.t.

On+1-k =~ Op

* In that case, x — X; is not "typical", i.e., it contains large components in right
singular vectors corresponding to small singular values of A

* Wilkinson (1977), comment in unpublished manuscript: ,ugz) increases with i



Performance Results (MAGMA)

 [Haidar, Tomov, Dongarra, Higham, 2018|

20 T T T T T T T T 14
¢»FP16-TC->64 dhgesv|
18 | |=&=FP16->64 dhgesv
FP32->64 dsgesv 10°
16 = M=FP6adgesy [ ... .ccummeenenngg
14+ 1101
@ 12+ |
10 10°
- g | "
10°
6 I
=T 330 4 '
2 L
0 10"

ok 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

(b) Matrix of type 4: clustered singular values, o;=(1, ---, 1, ——).

cond /
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Randomized Limited Memory Preconditioners

Let A € R™™ be a symmetric positive semidefinite matrix. Want to solve

A+ uDx=>b

where u > 0 is set so that A + ul is positive definite. Assume A has rapidly decreasing
eigenvalues or cluster of large eigenvalues.
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Randomized Limited Memory Preconditioners

Let A € R™™ be a symmetric positive semidefinite matrix. Want to solve

A+ uDx=>b

where u > 0 is set so that A + ul is positive definite. Assume A has rapidly decreasing
eigenvalues or cluster of large eigenvalues.

Want to solve using PCG using spectral limited memory preconditioner [Gratton,
Sartenaer, Tshimanga, 2011], [Tshimanga et al., 2008]:
—g_qnT oY T
P=1-UU"+_-U@+uDU
Pl=1-0U"+(a+nU® +u)~tUuT

where columns of U € R™* are k approximate eigenvectors of A and UTU =1, O is
diagonal with approximations to eigenvalues of A, and a = 0.

Used in data assimilation [Laloyaux et al., 2018], [Mogensen, Alonso Balmaseda,
Weaver, 2012], [Moore et al., 2011], [Dauzickaité, Lawless, Scott, van Leeuwen, 2021]
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Randomized Nystrom Approximation

Want to compute a rank-k approximation A = UBUT via the randomized
Nystrom method.

Nystrom approximation:

Ay = (AQ)(QTAQ)T(AQ)"

where Q is an n X k sampling matrix (random projection).

26



Randomized Nystrom Approximation

In the case that A is very large, matrix-matrix products with A are the bottleneck.

This motivates the single-pass version of the Nystrom method.

Stabilized Single-Pass Nystrém method [Tropp et al., 2017]

(" Given sym. PSD matrix A, target rank k)
G = randn(n, k)

[Q,~] = ar(G,0)

Y = AQ

Compute shift v; ¥, =Y +vQ

B =QTY,

C = chol((B + B")/2)

Solve F =Y, /C

[U,Z,~] = svd(F,0)

® = max(0,%?% — vI)

N /
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Randomized Nystrom Approximation

In the case that A is very large, matrix-matrix products with A are the bottleneck.

This motivates the single-pass version of the Nystrom method.

Stabilized Single-Pass Nystrém method [Tropp et al., 2017]

(" Given sym. PSD matrix A, target rank k)
G = randn(n, k)

[Q,~] = ar(G,0)

Y = AQ

Compute shift v; ¥, =Y +vQ

B =QTY,

C = chol((B + B")/2)

Solve F =Y, /C

[U,Z,~] = svd(F,0)

® = max(0,%?% — vI)

N /

Can we further reduce the cost of the matrix-matrix product with A by using
low precision?
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|4 — AN||2 =||A— Ay + Ay — A,\,||2 < ||A—Aplly + |4y — AN||2
H_J H_/

exact finite precision
approximation error
error
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|4 — AN||2 =||A— Ay + Ay — A,\,||2 < ||A—Aplly + |4y — AN||2
H_J H_/

exact finite precision

approximation error

Deterministic bound [Gittens, Mahoney, 2016]:

b=l < b + 23000100,

with 4 = [U; U,] [Zl 22] (U, U,]T.
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|4 — AN||2 =||A— Ay + Ay — A,\,||2 < ||A—Aplly + |4y — AN||2

H_JH_J

exact finite precision

approximation error

Deterministic bound [Gittens, Mahoney, 2016]:

b=l < ds+ |23 v 000"

with 4 = [U; U,] [El 22] (U, U,]T.

Expected value bound [Frangella, Tropp, Udell, 2021]:

_ 2(k — p) 2e%k
EllA—Ayll, < 0 1+ — Ak—p+1 +ﬁ | z A

where A; > A;,, are the eigenvalues of A. -



Finite Precision Error Bound

Finite precision error: Ay — Ay

Assumptions:

* A is stored in precision u, and matrix-matrix product AQ is computed in
precision u,

* All other quantities stored and computed in precision u < u,
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Finite Precision Error Bound

Finite precision error: Ay — Ay

Assumptions:

* A is stored in precision u, and matrix-matrix product AQ is computed in
precision u,

* All other quantities stored and computed in precision u < u,
[C., Dauzickaité, 2022]:

|4y — Ay]|, < 0(u,)n>/2|1All
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Finite Precision Error Bound

Finite precision error: Ay — Ay

Assumptions:

* A is stored in precision u, and matrix-matrix product AQ is computed in
precision u,

* All other quantities stored and computed in precision u < u,
[C., Dauzickaité, 2022]:
14y = 4nll, < 0(up)n®/2114ll;

Interpretation: ||AN — ANHZ = ||[A — Ayll, when

Ak+1
S Vnu,,
A4
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Finite Precision Error Bound

Finite precision error: Ay — Ay

Assumptions:

* A is stored in precision u, and matrix-matrix product AQ is computed in
precision u,

* All other quantities stored and computed in precision u < u,

[C., Dauzickaité, 2022];

|4y — Ay]|, < 0(u,)n>/2|1All

The more approximate the

Interpretation: ||AN — AN” = ||A — Ayll, when low-rank representation, the
2 lower the precision we can use!

29



Condition Number Bounds

Let E=A— Ay, €= Ay — Ay, and assume (A + ul) is SPD.

Let

Pl=1—007 + (A + )@+ ) 07

be the LMP preconditioner constructed using the mixed precision Nystrom

AN AN AN

approximation Ay = UOUT.
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Condition Number Bounds

Let E=A— Ay, €= Ay — Ay, and assume (A + ul) is SPD.
Let
Pl=1—007 + (A + )@+ ) 07

be the LMP preconditioner constructed using the mixed precision Nystrom

AN AN AN

approximation Ay = UOUT.

Then

A+ 1 — ||5||2} - -
max1 1, <k(P~Y2(A+uDP2) <1+
{ U+ Apin(4) ( )

where the upper bound holds if u > [|&]|,.

A + ENl; + 211€l,
u— €l

Regardless of this constraint, if A is positive definite, then

I€]l2 +1 )

K(P~V2(A +uDP~V2) < (A + i+ IE N + lIE] < + .
( )= (et ‘ ) A+ 1 Amin(A) +u
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Condition Number Bounds

Let E=A— Ay, €= Ay — Ay, and assume (A + ul) is SPD.
Let
Pl=1—007 + (A + )@+ ) 07

be the LMP preconditioner constructed using the mixed precision Nystrom

AN AN AN

approximation Ay = UOUT.
If £ =0, reduces to bounds of [Frangella,

Tropp, Udell, 2021] for exact case.
Then

Ao +u—|E . . A + [EI, + 2]|E

" U+ Ay (A) u— €l
where the upper bound holds if u > [|&]|,.
Regardless of this constraint, if A is positive definite, then
5 - A €Nl + 1
k(P~Y2(A 4+ uDP~12) < (A + u+ |Ell, + €] < -+ .
( )= ( ’ 2) A+ 1 Amin(4) +p
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Numerical Experiment

Matrix: bcsstmQ07, n = 420

100 T
10'2 — —— _— - _—— — -
10°°
0 200 400

k

B Ak /M
B Vhu,, u, = half

Vnu,, u, = single
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Numerical Experiment

Matrix: bcsstmQ07, n = 420

o

total error, ||A — AN||2

° o

0
1050

100 150 200 220 221 350 390

k

- exact
B mixed, u, = half
mixed, u, = single

I mixed, u, = double

A

mean finite prec. error, ||AN — Ay

2
104(5 (: Q Q Q Q
¥ & &
10-10 k * % x % X X 3
50 100 150 200 220 221 350 390

k



Numerical Experiment

I unpreconditioned

- exact
- mixed, Uy = half
mixed, u, = single

I mixed, u, = double

k(P~Y2(A + uhP~1/2)

ol . | | . .
1050 100 150 200 220 221 350 390
k . .
PCG iteration count
200%
r= 8
3 150
O 8
5100
© 8
Y 50 x x
2 o ¢
® ®

0 L L L L 1
50 100 150 200 220 221 350 390;
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GMRES-IR for Least Squares

* Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

» Again, don't want to compute an LU factorization of the augmented system

* How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

* Note that augmented system is a saddle-point system; lots of existing work (block
diagonal, triangular, constraint-based, ... )

32



GMRES-IR for Least Squares

* Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al \/ al 0 val 0
1A . ~

IO —RT R RT
a

33



GMRES-IR for Least Squares

* Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])
al Jal 0 Jal 0
l 0 —RTR

RT 0 —R
* Assuming QR factorization is exact,

I
a R-IRTAT 0

M, *M{1A =

is nonsymmetric, diagonalizable, with eigenvalues 1,l 1++/5)¢.
2

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES
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GMRES-IR for Least Squares

» Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al 0 Val 0 Val 0
1 P~ o~ = 1 ~ 1 ~| =
lo —R"R 0 — || o —=g|FMM
a Va Va
* Assuming QR factorization is exact,
1
M, M4 = ! EA

a RIR7TAT 0
is nonsymmetric, diagonalizable, with eigenvalues {1,%(1 + \/g)}

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

* |f we take split preconditioner
M-1AM. 1 = [A I AR]
o RTAT 0
we will have a well-conditioned system
* However, split-preconditioned GMRES is not backward stable

* Potentially useful in practice, not but in theory
33



GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned
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GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

« GMRES run on A with left-preconditioner M gives
IEillco = v f(m + n)ko (M~ A)

where f is a quadratic polynomial
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GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

« GMRES run on A with left-preconditioner M gives
IEillco = v f(m + n)ko (M~ A)

where f is a quadratic polynomial

* So for GMRES-based LSIR, 1. = u; expect convergence of forward error

when k. (4) < u‘l/zujj1
[C., Higham, Pranesh, SISC 2020] 33



