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Floating Point Formats
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exponent (11 bits) fraction (52 bits)

IEEE double (FP64)

IEEE single (FP32)

IEEE half (FP16)

exponent (8 bits) fraction (23 bits)

exponent (5 bits) fraction (10 bits)

−1 sign × 2(exponent−offset) × 1. fraction

size range 𝑢

fp64 64 bits 10±308 1 × 10−16

fp32 32 bits 10±38 6 × 10−8

fp16 16 bits 10±5 5 × 10−4

bfloat16 16 bits 10±38 4 × 10−3

exponent (8 bits) fraction (7 bits)

bfloat16



Hardware Support for Multiprecision Computation

4

• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017: 

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision; 

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16, 
FP64, Binary, INT4, INT8, bfloat16

• Google's Tensor processing unit (TPU)

• Future exascale supercomputers: (~2021) Expected extensive support for 
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:



Performance of LU factorization on an NVIDIA V100 GPU

5[Haidar, Tomov, Dongarra, Higham, 2018]
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An exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the HPL 
(LINPACK) benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial 
pivoting in double precision (FP64)
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An exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the HPL 
(LINPACK) benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial 
pivoting in double precision (FP64)

• HPL benchmark is typically a compute-bound problem ("BLAS-3")

• Not a good indication of performance for a large number of applications!

• Lots of remaining work even after exascale performance is achieved

• Has led to incorporation of other benchmarks into the TOP500 ranking

• e.g., HPCG: Solving sparse 𝐴𝑥 = 𝑏 iteratively using the conjugate 
gradient method
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An exaflop of what?

• HPL doesn’t make use of modern mixed precision hardware

• We can already achieve “exaflop” performance today if we allow for mixed 
precision computations
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An exaflop of what?

• HPL doesn’t make use of modern mixed precision hardware

• We can already achieve “exaflop” performance today if we allow for mixed 
precision computations

=>HPL-AI: A new mixed precision benchmark
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff
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Iterative Refinement for 𝐴𝑥 = 𝑏
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Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1/2, 
• relative forward error is 𝑂(𝑢)cond 𝐴, 𝑥
• relative normwise and componentwise backward errors are 𝑂(𝑢)
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Can we combine the performance benefits of low-precision factorization IR with 
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
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• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM 
SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision,   𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

• Enables new types of IR: (half, single, double), (half, single, quad), 
(half, double, quad), etc. 10



Key Aspects of Analysis I

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:
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Key Aspects of Analysis I

𝜇𝑖 ≪ 1

𝜇𝑖 ≈ 1

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖:   𝐴(𝑥 − ො𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 ො𝑥𝑖

≈ 𝑢 ≪
𝑥 − ො𝑥𝑖
𝑥

But close to convergence, 
𝑟𝑖 ≈ 𝐴 𝑥 − ො𝑥𝑖
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Key Aspects of Analysis II
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Allow for general solver:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇
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→ normwise relative forward error is bounded 
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12𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔
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Key Aspects of Analysis II

Allow for general solver:

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve: 

𝒖𝒔 = 𝒖𝒇

𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔

→ normwise relative forward error is bounded 
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most 
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is 
bounded by a multiple of 𝑢𝑠

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 𝐿 𝑈

∞

𝐴 ∞

3.    Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2.   Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1.    መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐿 𝑈
∞

12



Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a 
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

Analogous traditional bounds: 𝜙𝑖 ≡ 3𝑛𝒖𝒇𝜅∞ 𝐴

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a 
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is less than 1, then the residual is reduced on the 𝑖th iteration by a factor 
≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑏 − 𝐴ො𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞ ො𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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IR3: Summary

15

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16
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Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

LP fact. 

LP fact. 

LP fact. 
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S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8
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S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Fixed

LP fact. 

LP fact. 

LP fact. 
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S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 
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IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)
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Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8
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H D Q 104 10−16 10−16 10−16
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New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 
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IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

15

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 



Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

15

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower  
precision factorization w/no loss of accuracy! 

New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 



A = gallery('randsvd', 100, 1e3)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 1e4

16

100

Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e7)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 7e7

16

100

Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

16

100

Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

16

100

Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad



A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

16

100

Standard (LU-based) IR with    𝒖𝒇: double,  𝒖: double,   𝒖𝒓: quad



GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.
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GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

17

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 

𝜅∞ 𝑈−1𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.
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• To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖
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−1.
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𝒖𝒔 = 𝒖

17

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then 
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Standard (LU-based) IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad

18

100

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞ ሚ𝐴 ≈ 2e4



A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞ ሚ𝐴 ≈ 2e4

18

100

GMRES-IR with    𝒖𝒇: single,  𝒖: double,   𝒖𝒓: quad

Number of GMRES iterations: (2,3)



GMRES-IR: Summary

Benefits of GMRES-IR:

19

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16



GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, low precision factorization will work for higher 𝜅∞(𝐴)
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)
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𝜅∞ 𝐴 ≤ 𝒖− Τ1 2 𝒖𝒇
−1



GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ As long as 𝜅∞ 𝐴 ≤ 1012, can use half precision factorization and still obtain 
double precision accuracy!
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Comments and Caveats I

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps
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Comments and Caveats I

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• What about overflow, underflow, subnormal numbers?

• Sophisticated scaling methods can help avoid this

• “Squeezing a Matrix into Half Precision, with an Application to Solving 
Linear Systems” [Higham, Pranesh, Zounon, 2019]
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Comments and Caveats II

• Convergence rate of GMRES?
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Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it 
can be a poor preconditioner

• e.g., if ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate 
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional 
preconditioner
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until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional 
preconditioner

• Depending on conditioning of A, applying ሚ𝐴 to a vector must be done accurately 
(precision 𝑢2) in each GMRES iteration 

• Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

• Defines working precision 𝑢𝑔 for GMRES and 𝑢𝑝 for preconditioning within 
GMRES
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Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it 
can be a poor preconditioner

• e.g., if ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate 
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional 
preconditioner

• Depending on conditioning of A, applying ሚ𝐴 to a vector must be done accurately 
(precision 𝑢2) in each GMRES iteration 

• Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

• Defines working precision 𝑢𝑔 for GMRES and 𝑢𝑝 for preconditioning within 
GMRES

• Why GMRES? 

• Theoretical purposes: existing analysis and proof of backward stability [Paige, 
Rozložník, Strakoš, 2006]

• In practice, use any solver you want! 
21



GMRES-IR in Libraries and Applications

• MAGMA: Dense linear algebra routines for heterogeneous/hybrid 
architectures

• NVIDIA’s cuSOLVER Library

• In production codes: FK6D/ASGarD code (Oak Ridge National Lab, USA) 
for tokomak containment problem

22



Performance Results (MAGMA)

23

• [Haidar, Tomov, Dongarra, Higham, 2018]
• 2-precision GMRES-IR approach (𝑢 = 𝑢𝑟) on NVIDIA V100
• IR run to FP64 accuracy, max 400 iterations in GMRES
• Tflops/s measured as (2𝑛3/3)/time



Performance Results (MAGMA)
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• [Haidar, Tomov, Dongarra, Higham, 2018]
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• [Haidar, Tomov, Dongarra, Higham, 2018]



Performance Results
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[Haidar, Tomov, Dongarra, Higham, 2018]

Performance for Matrices from SuiteSparse

2.8×
2.3×
2.6×
2.7×
4.1×



HPL-AI Benchmark

• HPL/LINPACK benchmark has been used in TOP500 since the 90s

• Double precision, dense Ax=b using GEPP

• Not necessarily indicative of application performance, especially for 
ML/AI applications

• Doesn’t take advantage of low-precision hardware!
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• HPL/LINPACK benchmark has been used in TOP500 since the 90s

• Double precision, dense Ax=b using GEPP

• Not necessarily indicative of application performance, especially for 
ML/AI applications

• Doesn’t take advantage of low-precision hardware!

• HPL-AI benchmark (2019)
• Highlights confluence of HPC+AI workloads

• Like HPL, solves dense Ax=b, results still to double precision accuracy

• Achieves this via mixed-precision GMRES-IR

• may be implemented in a way that takes advantage of the current 
and upcoming devices for accelerating AI workloads
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HPL-AI Benchmark Performance

HPL-AI Results (June 2021):

1. Fugaku: 2 EXAFLOP/s    (vs. 442 PETAFLOP/s on HPL; 4.5×)

2. Summit: 1.15 EXAFLOP/s    (vs. 149 PETAFLOP/s on HPL; 7.7×)
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HPL-AI Benchmark

• In the future, HPL-AI will gain same status as benchmarks that 
complement HPL, like HPCG, Graph500, Green500

• Usage is growing:

• 1 machine (2019), 5 machines (2020), 11 machines (2021) 

• More information: https://icl.bitbucket.io/hpl-ai/

• Reference implementation: https://bitbucket.org/icl/hpl-ai/src/
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Extension to Least Squares Problems

• Want to solve
min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2
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𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement 
often needed to improve accuracy and stability

30



• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Least Squares Iterative Refinement
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=
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Least Squares Iterative Refinement

ሚ𝐴𝑥 = ෨𝑏

30



• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

ሚ𝐴𝑥 = ෨𝑏

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

30



Least Squares Iterative Refinement

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

ሚ𝐴𝑥 = ෨𝑏

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖
Results for 3-precision 
IR for linear systems 
also applies to least 
squares problems
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Standard (QR-based) least squares IR with    

𝒖𝒇: half,    𝒖: single,   𝒖𝒓: double

𝑚 𝑛

A = gallery('randsvd', [100, 10], kappa,3)

b = randn(100,1); b = b./norm(b)
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b = randn(100,1); b = b./norm(b)

31



GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even 
more ill-conditioned problems if we improve the effective precision of the solver

• Again, don't want to compute an LU factorization of the augmented system

• How can we use existing QR factors to construct an effective and inexpensive 
preconditioner for the augmented system?

• Note that augmented system is a saddle-point system; lots of existing work (block 
diagonal, triangular, constraint-based, ... )

32



GMRES-IR for Least Squares

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

𝛼𝐼 0

0
1

𝛼
𝑅𝑇 𝑅

=

𝛼𝐼 0

0
1

𝛼
𝑅𝑇

𝛼𝐼 0

0
1

𝛼
𝑅

≡ 𝑀1𝑀2
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GMRES-IR for Least Squares

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

𝛼𝐼 0

0
1

𝛼
𝑅𝑇 𝑅

=

𝛼𝐼 0

0
1

𝛼
𝑅𝑇

𝛼𝐼 0

0
1

𝛼
𝑅

≡ 𝑀1𝑀2

• Assuming QR factorization is exact, 

𝑀2
−1𝑀1

−1 ሚ𝐴 =
𝐼

1

𝛼
𝐴

𝛼 𝑅−1 𝑅−𝑇𝐴𝑇 0

is nonsymmetric, diagonalizable, with eigenvalues 1,
1

2
1 ± 5 . 

• However, condition number can still be quite large; unsuitable for proving 
backward stability of GMRES
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GMRES-IR for Least Squares

• Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

𝛼𝐼 0

0
1

𝛼
𝑅𝑇 𝑅

=

𝛼𝐼 0

0
1

𝛼
𝑅𝑇

𝛼𝐼 0

0
1

𝛼
𝑅

≡ 𝑀1𝑀2

• Assuming QR factorization is exact, 

𝑀2
−1𝑀1

−1 ሚ𝐴 =
𝐼

1

𝛼
𝐴

𝛼 𝑅−1 𝑅−𝑇𝐴𝑇 0

is nonsymmetric, diagonalizable, with eigenvalues 1,
1

2
1 ± 5 . 

• However, condition number can still be quite large; unsuitable for proving 
backward stability of GMRES

• If we take split preconditioner

𝑀1
−1 ሚ𝐴𝑀2

−1 = 𝐼 𝐴 𝑅
𝑅−𝑇𝐴𝑇 0

we will have a well-conditioned system

• However, split-preconditioned GMRES is not backward stable

• Potentially useful in practice, not but in theory
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GMRES-IR for Least Squares

• One option:

𝑀 =
𝛼𝐼 𝑄1 𝑅
𝑅𝑇 𝑄1

𝑇 0

• Then we can prove that for the left-preconditioned system,

𝜅 𝑀−1 ሚ𝐴 ≤ 1 + 𝒖𝒇𝑐 𝜅 𝐴
2

where 𝑐 = 𝑂(𝑚2), where we note this bound is pessimistic.

• Thus even if 𝜅 𝐴 ≫ 𝒖𝒇
−1, the preconditioned system can still be reasonably 

well conditioned 
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• Thus even if 𝜅 𝐴 ≫ 𝒖𝒇
−1, the preconditioned system can still be reasonably 

well conditioned 

• GMRES run on ሚ𝐴 with left-preconditioner 𝑀 gives

𝒖𝒔 𝐸𝑖 ∞ ≡ 𝒖 𝑓 𝑚 + 𝑛 𝜅∞(𝑀
−1 ሚ𝐴)

where 𝑓 is a quadratic polynomial
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where 𝑐 = 𝑂(𝑚2), where we note this bound is pessimistic.

• Thus even if 𝜅 𝐴 ≫ 𝒖𝒇
−1, the preconditioned system can still be reasonably 

well conditioned 

• GMRES run on ሚ𝐴 with left-preconditioner 𝑀 gives

𝒖𝒔 𝐸𝑖 ∞ ≡ 𝒖 𝑓 𝑚 + 𝑛 𝜅∞(𝑀
−1 ሚ𝐴)

where 𝑓 is a quadratic polynomial

• So for GMRES-based LSIR, 𝒖𝒔 ≡ 𝒖; expect convergence of forward error 
when 𝜅∞ 𝐴 < 𝒖−1/2𝒖𝒇

−1

33[C., Higham, Pranesh, SISC 2020]



Further Extensions

• Multistage mixed precision iterative refinement 
[Oktay, C., 2021]

• Other variants of least squares: underdetermined LS, 
total LS, data LS

• Use of inexact preconditioners: ILU, SPAI, etc. 
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The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single, 
double, quad

• New, non-IEEE compliant floating point formats will appear in 
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

• Lower-precision arithmetic is faster and more energy efficient, but the 
potential for its use depends heavily on the particular problem and 
algorithm

• As numerical analysts, we must determine when and where we can exploit 
lower-precision hardware to improve performance
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Mixed precision in NLA

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., 
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], 
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015] 

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, 
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, 
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et 
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

35For survey and references, see [Abdelfattah et al., IJHPC, 2021]
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