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Happy Birthday, CG!
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Krylov subspace methods

• Krylov Subspace Method is a projection process onto the Krylov subspace

𝒦𝑘 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴

𝑘−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

• Linear systems 𝐴𝑥 = 𝑏, eigenvalue problems, singular value problems, least squares, etc. 
• Best for: 𝐴 large & very sparse, stored implicitly, or only approximation needed 
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Krylov subspace methods

• In each iteration, 

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑘(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑘)

• Select approximate solution 𝑥𝑘 ∈ 𝑥0 +𝒦𝑘(𝐴, 𝑟0)

using 𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘 ⊥ 𝒞𝑘

• Krylov Subspace Method is a projection process onto the Krylov subspace
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𝒞

𝑟new

𝐴𝛿

𝑟0

0
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• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual 
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The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑘 = 𝒦𝑘(𝐴, 𝑟0)
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The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑘 = 𝒦𝑘(𝐴, 𝑟0)

𝑟𝑘 ⊥ 𝒦𝑘 𝐴, 𝑟0 ⟺ 𝑥𝑘 = argmin
𝑥𝑘∈𝑥0+𝒦𝑘(𝐴,𝑟0)

𝑥 − 𝑥𝑘 𝐴
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The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑘 = 𝒦𝑘(𝐴, 𝑟0)

𝑟𝑘 ⊥ 𝒦𝑘 𝐴, 𝑟0 ⟺ 𝑥𝑘 = argmin
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⟹ 𝑟𝑁+1 = 0
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The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑘 = 𝒦𝑘(𝐴, 𝑟0)
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𝑥𝑘∈𝑥0+𝒦𝑘(𝐴,𝑟0)

𝑥 − 𝑥𝑘 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑘 iterations of Lanczos produces 𝑁 × 𝑘 matrix 𝑉𝑘 =
𝑣1, … , 𝑣𝑘 , and 𝑘 × 𝑘 tridiagonal matrix 𝑇𝑘 such that 

𝐴𝑉𝑘 = 𝑉𝑘𝑇𝑘 + 𝛿𝑘+1𝑣𝑘+1𝑒𝑘
𝑇 , 𝑇𝑘 = 𝑉𝑘

∗𝐴𝑉𝑘

• CG approximation 𝑥𝑘 is obtained by solving the reduced model 

𝑇𝑘𝑦𝑘 = 𝑟0 𝑒1, 𝑥𝑘 = 𝑥0 + 𝑉𝑘𝑦𝑘
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𝑇𝑘𝑦𝑘 = 𝑟0 𝑒1, 𝑥𝑘 = 𝑥0 + 𝑉𝑘𝑦𝑘

• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)
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• CG approximation 𝑥𝑘 is obtained by solving the reduced model 

𝑇𝑘𝑦𝑘 = 𝑟0 𝑒1, 𝑥𝑘 = 𝑥0 + 𝑉𝑘𝑦𝑘

• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

⇒ CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis 4



Hestenes and Stiefel CG Algorithm 

• Uses three 2-term recurrences for updating 𝑥𝑘+1, 𝑟𝑘+1, 𝑝𝑘+1

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑘 = 0:nmax

𝛼𝑘 =
𝑟𝑘
𝑇𝑟𝑘

𝑝𝑘
𝑇𝐴𝑝𝑘

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘

𝑟𝑘+1 = 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘

𝛽𝑘+1 =
𝑟𝑘+1
𝑇 𝑟𝑘+1

𝑟𝑘
𝑇𝑟𝑘

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘+1𝑝𝑘
end
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Hestenes and Stiefel CG Algorithm 

minimizes 𝑥 − 𝑥𝑘 𝐴 along line
𝑧 𝛼 = 𝑥𝑘 + 𝛼𝑝𝑘

5
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Hestenes and Stiefel CG Algorithm 

𝑥0 +𝒦𝑘 𝐴, 𝑟0 = 𝑥0 + span{𝑝0, … 𝑝𝑘−1}

If 

𝑝𝑘 ⊥𝐴 𝑝𝑗 for 𝑘 ≠ 𝑗, 

1-dimensional minimizations in each 
iteration give 𝑘-dimensional 
minimization over the whole subspace

5
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CG History

• Institute of Numerical Analysis (INA), 
founded by the US National Bureau of 
Standards on the campus of UCLA

• Lanczos employed as a member of the 
research staff
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• Hestenes was a professor at UCLA

• Developed an iterative method for 
solving SPD linear systems in June-July 
1951
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CG History

• Institute of Numerical Analysis (INA), 
founded by the US National Bureau of 
Standards on the campus of UCLA

• Lanczos employed as a member of the 
research staff

• Hestenes was a professor at UCLA

• Developed an iterative method for 
solving SPD linear systems in June-July 
1951

• Stiefel was a professor at ETH Zurich

• Came to INA for a symposium in 
August 1951, planning to give a talk 
about an iterative method for solving 
SPD linear systems
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Mathematical Properties of CG 

Let 𝐴 = 𝑄Λ𝑄𝑇, and let 𝑟0 = 𝑄 𝜂1, … , 𝜂𝑁
𝑇

𝑥 − 𝑥𝑘 𝐴 = min
𝑝∈𝑃𝑘(0)

𝑝(𝐴)(𝑥 − 𝑥0) 𝐴 = min
𝑝∈𝑃𝑘(0)



𝑖=1

𝑁

𝜂𝑖
2 𝑝 𝜆𝑖

2

𝜆𝑖

1/2
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Let 𝜃1
(𝑘)
, … , 𝜃𝑘

(𝑘)
be the 𝑘 roots of the polynomial providing the minimum 

above. Then 

𝑥 − 𝑥𝑘 𝐴
2 =

𝑖=1

𝑁

ෑ

ℓ=1

𝑘

1 −
𝜆𝑖

𝜃ℓ
𝑘

2
𝜂𝑖
2

𝜆𝑖
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CG Convergence Bounds



𝑖=1

𝑁
𝜂𝑖
2

𝜆𝑖
= 𝑟0

𝑇𝐴−1𝑟0 = 𝑥 − 𝑥0 𝐴
2
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CG Convergence Bounds
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1/2

⇒
𝑥−𝑥𝑘 𝐴

𝑥−𝑥0 𝐴
≤ min

𝑝∈𝑃𝑘(0)
max
1≤𝑖≤𝑁

𝑝(𝜆𝑖)
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8

“polynomial min-max approximation bound”
Note: does not depend on 𝒓𝟎!
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Further simplification: Replace 𝜆1, … , 𝜆𝑁 by continuous interval 𝜆1, 𝜆𝑁 and 
use Chebyshev polynomials on this interval:
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⇒
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8

“polynomial min-max approximation bound”
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CG Convergence Bounds
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“polynomial min-max approximation bound”
Note: does not depend on 𝒓𝟎!

“𝜿 𝑨 -bound”
Note: does not depend on 𝒓𝟎 OR eigenvalue distribution!



Diagonal test problems

For given 𝑁 ≥ 3, 0 < 𝜆1 < 𝜆𝑁, and 𝜌 > 0, define

𝐴 = diag(𝜆1, 𝜆2, … , 𝜆𝑁−1, 𝜆𝑁) where     𝜆𝑖 = 𝜆1 +
𝑖−1

𝑁−1
𝜆𝑁 − 𝜆1 𝜌𝑁−𝑖

for 𝑖 = 2,… ,𝑁 − 1.
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Example 1: The mathematical behavior of CG for different 
eigenvalue distributions

Setup:

1. Modified diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• reversed so eigenvalues accumulate on the right side of the spectrum

2. Diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• eigenvalues accumulated to the left side of the spectrum

3. Diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 1.0

• Equally-spaced eigenvalues
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Example 1: The mathematical behavior of CG for different 
eigenvalue distributions

Run exact CG on these 

three matrices with:

𝑏 = 1,… , 1 𝑇/ 𝑁

𝑥0 = 0
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Example 1: The mathematical behavior of CG for different 
eigenvalue distributions
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Example 1: The mathematical behavior of CG for different 
eigenvalue distributions

Explanation:

𝑥 − 𝑥𝑘 𝐴 = min
𝑝∈𝑃𝑘 0

𝑝(𝐴)(𝑥 − 𝑥0) 𝐴 = min
𝑝∈𝑃𝑘 0



𝑖=1

𝑁

𝜂𝑖
2 𝑝 𝜆𝑖

2

𝜆𝑖

1/2

For eigenvalues accumulated to the right:

• Roots of CG polynomial approximate small outlying eigenvalues within a 
few iterations

• The rest of eigenvalues are large and close, so values of the polynomial do 
not need to be small, since their squares are divided by large eigenvalues

• This means fast convergence will occur

12



Example 1: The mathematical behavior of CG for different 
eigenvalue distributions

Explanation:

𝑥 − 𝑥𝑘 𝐴 = min
𝑝∈𝑃𝑘 0

𝑝(𝐴)(𝑥 − 𝑥0) 𝐴 = min
𝑝∈𝑃𝑘 0



𝑖=1

𝑁

𝜂𝑖
2 𝑝 𝜆𝑖

2

𝜆𝑖

1/2

For eigenvalues accumulated to the left:

• Roots of CG polynomial approximate large outlying eigenvalues within a 
few iterations

• BUT for the bulk of the small eigenvalues, the CG polynomial must place 
many roots close to the left end of the spectrum to make up for the 
division of its squares values by the small eigenvalues

• This means acceleration occurs much later

12



Example 1: The mathematical behavior of CG for different 
eigenvalue distributions

Explanation:

𝑥 − 𝑥𝑘 𝐴 = min
𝑝∈𝑃𝑘 0

𝑝(𝐴)(𝑥 − 𝑥0) 𝐴 = min
𝑝∈𝑃𝑘 0



𝑖=1

𝑁

𝜂𝑖
2 𝑝 𝜆𝑖

2

𝜆𝑖

1/2

For equally-spaced eigenvalues:

• Roots of CG polynomial slowly approximate individual eigenvalues, which 
proceeds from both edges of the spectrum

12



Example 1: The mathematical behavior of CG for different 
eigenvalue distributions

13

Main point: The convergence of CG depends on the eigenvalue 
distribution. 



Example 2: Worst case CG and the quality of convergence bounds

Setup:

4 linear systems:

1. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 5, 𝜌 = 1.0; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

equally spaced eigenvalues, small condition number, RHS w/equal comps in eigenbasis
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Example 2: Worst case CG and the quality of convergence bounds

Setup:

4 linear systems:

1. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 5, 𝜌 = 1.0; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

equally spaced eigenvalues, small condition number, RHS w/equal comps in eigenbasis

2. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 100, 𝜌 = 1.0; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

equally spaced eigenvalues, larger condition number, RHS w/equal comps in eigenbasis
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Example 2: Worst case CG and the quality of convergence bounds

Setup:

4 linear systems:

1. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 5, 𝜌 = 1.0; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

equally spaced eigenvalues, small condition number, RHS w/equal comps in eigenbasis

2. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 100, 𝜌 = 1.0; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

equally spaced eigenvalues, larger condition number, RHS w/equal comps in eigenbasis

3. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 5, 𝜌 = 0.1; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

eigenvalues accumulated to the left, small condition number, RHS w/equal comps in eigenbasis
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Example 2: Worst case CG and the quality of convergence bounds

Setup:

4 linear systems:

1. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 5, 𝜌 = 1.0; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

equally spaced eigenvalues, small condition number, RHS w/equal comps in eigenbasis

2. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 100, 𝜌 = 1.0; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

equally spaced eigenvalues, larger condition number, RHS w/equal comps in eigenbasis

3. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 5, 𝜌 = 0.1; RHS 𝑏 = 1,… , 1 𝑇/ 𝑁

eigenvalues accumulated to the left, small condition number, RHS w/equal comps in eigenbasis

4. Diagonal matrix with 𝑁 = 48, 𝜆1 = 1, 𝜆𝑁 = 5, 𝜌 = 1.0; RHS 𝑏 = 𝜂1, … , 𝜂𝑁
𝑇 is a 

unit-norm vector with 𝜂1 , 𝜂𝑁 ≈ 1, 𝜂𝑖 ≈ 10−13, 𝑖 = 2, … , 𝑁 − 1

equally spaced eigenvalues, small condition number, RHS w/unequal comps in eigenbasis

Run exact CG with 𝑥0 = 0

Plot 𝜅 𝐴 -bound and polynomial min-max approximation bound

14



Example 2: Worst case CG and the quality of convergence bounds

15

case 1: equally spaced eigenvalues, small condition 
number, RHS w/equal comps in eigenbasis



Example 2: Worst case CG and the quality of convergence bounds

15

case 1: equally spaced eigenvalues, small condition 
number, RHS w/equal comps in eigenbasis

case 2: equally spaced eigenvalues, larger condition 
number, RHS w/equal comps in eigenbasis



Example 2: Worst case CG and the quality of convergence bounds

15

case 1: equally spaced eigenvalues, small condition 
number, RHS w/equal comps in eigenbasis

case 2: equally spaced eigenvalues, larger condition 
number, RHS w/equal comps in eigenbasis

case 3: evals accum. to left, small condition number, 
RHS w/equal comps in eigenbasis



Example 2: Worst case CG and the quality of convergence bounds

15

case 1: equally spaced eigenvalues, small condition 
number, RHS w/equal comps in eigenbasis

case 2: equally spaced eigenvalues, larger condition 
number, RHS w/equal comps in eigenbasis

case 3: evals accum. to left, small condition number, 
RHS w/equal comps in eigenbasis

case 4: equally spaced eigenvalues, small condition 
number, RHS w/unequal comps in eigenbasis



Example 2: Worst case CG and the quality of convergence bounds

The 𝜅 𝐴 -bound does not take into account the eigenvalue distribution or the 
right-hand side, so it is only qualitatively/qualitatively descriptive when:

1. 𝐴 is well-conditioned

2. The eigenvalues of 𝐴 are uniformly distributed

3. The right-hand side contains sizeable components in all eigenvectors of 𝐴

The polynomial min-max approximation bound takes into account the 
eigenvalue distribution, but not the right-hand side, so it is only descriptive 
when:

1. The right-hand side contains sizeable components in all eigenvectors of 𝐴

16



Example 2: Worst case CG and the quality of convergence bounds

17

Main point: The 𝜅(𝐴)-bound does not account for the 
eigenvalue distribution or the initial residual (right-hand side) 

and thus can be tight only in a very particular case.



Example 3: Numerical behavior of CG on standard model problems

Setup:

2 commonly-used model problems:

1. Wishart matrices: 𝐴 = 𝑅𝑇𝑅 where 𝑅 ∈ ℝ𝑀×𝑁, 𝑀 ≥ 𝑁 is a full-rank 
random matrix drawn from standard normal distribution

• 𝑀 = 500, 𝑁 = 100

2. 2D Poisson problem discretized on 50 × 50 grid (𝑁 = 2500)

Run CG in double precision, with 𝑏 = Τ1, … , 1 𝑇 𝑁 , 𝑥0 = 0

18



Example 3: Numerical behavior of CG on standard model problems
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Example 3: Numerical behavior of CG on standard model problems

20



Example 3: Numerical behavior of CG on standard model problems

• Wishart matrices have a provably low condition number and rather evenly-
spaced eigenvalues

• Thus we expect CG will converge quickly

• For Poisson problem, eigenvalues are also rather evenly-spaced

• Loss of orthogonality is very gradual

• Finite precision error does not cause delay of convergence

21



Example 3: Numerical behavior of CG on standard model problems

22

Main point: Some model problems typically used for studying 
the behavior of CG are canonically easy cases for CG and are 

not indicative of the behavior of CG in general.



Example 4: Preconditioned CG and the condition number

Setup:

𝐴: Diagonal matrix with 𝑁 = 40, 𝜆1 = 10−3, 𝜆𝑁 = 100, 𝜌 = 0.1;  

𝑏 = 1,… , 1 𝑇/ 𝑁

Let preconditioner 𝑃 be a diagonal matrix such that 𝑃−1𝐴 is diagonal with 
eigenvalues equally spaced between 𝜆1 = 10 and 𝜆𝑁 = 100.

Run exact CG with 𝑥0 = 0.

23



Example 4: Preconditioned CG and the condition number

24



Example 4: Preconditioned CG and the condition number

• As we have seen, the distribution of eigenvalues is what matters for CG!

• The goal of preconditioning is NOT to lower the condition number!

[Gergelits, Mardal, Nielsen, Strakoš, SINUM 57, 2019]

25



Example 4: Preconditioned CG and the condition number

26

Main point: Smaller condition number ≠ faster convergence.



Example 5: Mathematical behavior of CG for problems with 
clustered eigenvalues

Setup:

1. Modified diagonal matrix with 𝑁 = 10, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• reversed so eigenvalues accumulate on the right side of the spectrum

2. Diagonal matrix with 𝑁 = 10, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• eigenvalues accumulated to the left side of the spectrum

3. Diagonal matrix with 𝑁 = 10, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 1.0

• equally-spaced eigenvalues

27



Example 5: Mathematical behavior of CG for problems with 
clustered eigenvalues

Setup:

1. Modified diagonal matrix with 𝑁 = 10, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• reversed so eigenvalues accumulate on the right side of the spectrum

2. Diagonal matrix with 𝑁 = 10, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• eigenvalues accumulated to the left side of the spectrum

3. Diagonal matrix with 𝑁 = 10, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 1.0

• equally-spaced eigenvalues

For each case, construct a matrix of size 𝑁 = 100 by replacing each 
eigenvalue by a tight cluster of 10 eigenvalues, where clusters have diameter 
𝑂(10−12).

Run exact CG with 𝑏 = 1,… , 1 𝑇/ 𝑁, 𝑥0 = 0.
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Example 5: Mathematical behavior of CG for problems with 
clustered eigenvalues
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Example 5: Mathematical behavior of CG for problems with 
clustered eigenvalues

• In 10 iterations the CG polynomials (in all cases) place a single Ritz value 
in each cluster

• For the clusters accumulated to the right and equally spaced, sufficient 
for approximating the minimal polynomial

• For the clusters accumulated to the left, one Ritz value per cluster is not 
enough to decrease CG error 

• To achieve the desired decrease of the error, CG must place additional 
Ritz values in the rightmost clusters, which delays convergence

[Greenbaum and Strakoš, SIMAX 13, 1992]

Section 5.6 of [Liesen and Strakoš, 2013]

29



Example 5: Mathematical behavior of CG for problems with 
clustered eigenvalues

30

Main point: A spectrum localized in ℓ tight clusters does not 
mean reaching a good CG approximation to the solution in ℓ

steps. 



Example 6: Sensitivity of CG to rounding errors

31

Setup:

1. Modified diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• reversed so eigenvalues accumulate on the right side of the spectrum

2. Diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• eigenvalues accumulated to the left side of the spectrum

3. Diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 1.0

• Equally-spaced eigenvalues

Run double precision CG on these three 

matrices with 𝑏 = 1,… , 1 𝑇/ 𝑁, 𝑥0 = 0



Example 6: Sensitivity of CG to rounding errors

31

Setup:

1. Modified diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• reversed so eigenvalues accumulate on the right side of the spectrum

2. Diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.6

• eigenvalues accumulated to the left side of the spectrum

3. Diagonal matrix with 𝑁 = 30, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 1.0

• Equally-spaced eigenvalues

Run double precision CG on these three 

matrices with 𝑏 = 1,… , 1 𝑇/ 𝑁, 𝑥0 = 0

For each matrix, create a larger matrix by 
replacing each eigenvalue with a cluster of 4 
eigenvalues, with cluster diameter 𝑂(10−13).

Run exact CG on these three matrices with 𝑏 = 1,… , 1 𝑇/ 𝑁, 𝑥0 = 0



Example 6: Sensitivity of CG to rounding errors

32

double precision CG on matrices 
without clusters

exact CG on matrices without clusters



Example 6: Sensitivity of CG to rounding errors

32

double precision CG on matrices 
without clusters exact CG on matrices with clusters



Example 6: Sensitivity of CG to rounding errors

2 phenomena working against each other!

• Large outlying eigenvalues desirable in exact arithmetic

• But cause problem to be more sensitive to rounding errors

[Strakoš, LAA 154, 1991], [Jennings, IMA JAM 20, 1977]

For connection of double precision CG to exact CG on larger matrix with 
tight clusters, see [Greenbaum, LAA 113, 1989]

33



Example 6: Sensitivity of CG to rounding errors

34

Main point: Large outlying eigenvalues cause CG convergence to 
be more susceptible to delay caused by finite precision errors. 

Convergence behavior of finite precision CG can be equated with 
exact CG on a larger problem whose eigenvalues are replaced by 

tight clusters. 



Example 7: Computational behavior of different CG algorithms

Setup:

𝐴: Diagonal matrix with 𝑁 = 48, 𝜆1 = 0.1, 𝜆𝑁 = 103, 𝜌 = 0.25

𝑏 = Τ1,… , 1 𝑇 𝑁 , 𝑥0 = 0

2 algorithmic variants of CG:

1. 2-term recurrence variant of Hestenes and Stiefel

2. 3-term recurrence variant

𝑥𝑘+1 = 𝑥𝑘 +
1

𝜙𝑘
𝑟𝑘 + 𝜓𝑘−1 𝑥𝑘 − 𝑥𝑘−1

𝑟𝑘+1 = 𝑟𝑘 +
1

𝜙𝑘
−𝐴𝑟𝑘 + 𝜓𝑘−1 𝑟𝑘 − 𝑟𝑘−1

35
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Example 7: Computational behavior of different CG algorithms

• In 2-term recurrence variant, loss of accuracy is caused by a simple 
accumulation of local rounding errors

[Greenbaum, SIMAX 18, 1997]
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Example 7: Computational behavior of different CG algorithms

• In 2-term recurrence variant, loss of accuracy is caused by a simple 
accumulation of local rounding errors

[Greenbaum, SIMAX 18, 1997]

• In 3-term recurrence variant, the loss of accuracy is caused by accumulation 
of local rounding errors, which is then amplified (by a factor related to the 
sizes of adjacent residual norms)

[Gutknecht and Strakoš, SIMAX 22, 2000]
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Example 7: Computational behavior of different CG algorithms

• In 2-term recurrence variant, loss of accuracy is caused by a simple 
accumulation of local rounding errors

[Greenbaum, SIMAX 18, 1997]

• In 3-term recurrence variant, the loss of accuracy is caused by accumulation 
of local rounding errors, which is then amplified (by a factor related to the 
sizes of adjacent residual norms)

[Gutknecht and Strakoš, SIMAX 22, 2000]

• The amplification of local rounding errors is even worse in other algorithmic 
variants, like pipelined and s-step CG

[C., Rozlozník, Strakoš, Tichý, Tůma, SISC 40, 2018], [C., PhD Thesis, 2015]

37



Example 7: Computational behavior of different CG algorithms

38

Main point: Rounding errors cause convergence delay and loss 
of attainable accuracy. These effects depend on the particular 

algorithm/implementation of CG. 



Example 8: Residual versus error and stopping criteria

Setup: Construction of Meurant [Meurant, Num. Algs. 84, 2020]

Let 𝑁 = 20.

Define two sequences of residual 2-norms and error 𝐴-norms:

1.  𝑟𝑘 2 = 1 if 𝑘 is odd, 𝑟𝑘 2 = 2 if 𝑘 is even for 𝑘 = 0, … , 𝑁 − 1

𝑒0 𝐴 = 1, 𝑒𝑘 𝐴 = 0.4 𝑒𝑘−1 𝐴 for 𝑘 = 1, … ,𝑁 − 1

2.  𝑟0 2 = 1, 𝑟𝑘 2 = 0.4 𝑟𝑘−1 2 for 𝑘 = 1,… ,𝑁 − 1

𝑒0 𝐴 = 1, 𝑒𝑘 𝐴 = 0.999 𝑒𝑘−1 𝐴 for 𝑘 = 1,… , 𝑁 − 1
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Example 8: Residual versus error and stopping criteria

Setup: Construction of Meurant [Meurant, Num. Algs. 84, 2020]

Let 𝑁 = 20.

Define two sequences of residual 2-norms and error 𝐴-norms:

1.  𝑟𝑘 2 = 1 if 𝑘 is odd, 𝑟𝑘 2 = 2 if 𝑘 is even for 𝑘 = 0, … , 𝑁 − 1

𝑒0 𝐴 = 1, 𝑒𝑘 𝐴 = 0.4 𝑒𝑘−1 𝐴 for 𝑘 = 1, … ,𝑁 − 1

2.  𝑟0 2 = 1, 𝑟𝑘 2 = 0.4 𝑟𝑘−1 2 for 𝑘 = 1,… ,𝑁 − 1

𝑒0 𝐴 = 1, 𝑒𝑘 𝐴 = 0.999 𝑒𝑘−1 𝐴 for 𝑘 = 1,… , 𝑁 − 1

𝜈𝑘 = Τ1 𝑟𝑘 2 , 𝑘 = 1, … , 𝑁 − 1

𝜎𝑘 = 𝑒𝑘 𝐴
2 𝑟𝑘 2 𝑟0 2 , 𝑘 = 0,… , 𝑁 − 1

Run exact CG on 𝐴 = 𝐿 + 𝐿𝑇
−1
, 𝑏 = 𝑒1 (using 𝑥0 = 0)

39

𝐿 =

𝜎0
𝜎1 𝜎1𝜈1
⋮ ⋮ ⋱

𝜎𝑁−1 𝜎𝑁−1𝜈1 ⋯ 𝜎𝑁−1𝜈𝑁−1



Example 8: Residual versus error and stopping criteria
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𝑟𝑘 2 = 1 if 𝑘 odd, 𝑟𝑘 2 = 2 if 𝑘 even for 𝑘 = 0,… ,𝑁 − 1
𝑒0 𝐴 = 1, 𝑒𝑘 𝐴 = 0.4 𝑒𝑘−1 𝐴 for 𝑘 = 1,… ,𝑁 − 1

𝑟0 2 = 1, 𝑟𝑘 2 = 0.4 𝑟𝑘−1 2 for 𝑘 = 1,… ,𝑁 − 1
𝑒0 𝐴 = 1, 𝑒𝑘 𝐴 = 0.999 𝑒𝑘−1 𝐴 for 𝑘 = 1,… , 𝑁 − 1



Example 8: Residual versus error and stopping criteria

• Hestenes and Stiefel comment that for any prescribed sequence of residual 
2-norms, there exists an SPD 𝐴 and RHS 𝑏 such that CG exhibits the 
prescribed convergence behavior (see Section 18)
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Example 8: Residual versus error and stopping criteria

• Hestenes and Stiefel comment that for any prescribed sequence of residual 
2-norms, there exists an SPD 𝐴 and RHS 𝑏 such that CG exhibits the 
prescribed convergence behavior (see Section 18)

• This means that small residual ↛ small error, large residual ↛ large error

• Thus residual norm is not a reliable stopping criterion (but it is often used, 
since it is computable and cheap)

• Lots of work on error estimation and stopping criteria for CG

[Hestenes and Stiefel, 1952 (Section 4)], [Golub and Meurant, BIT 37, 1997], 
[Golub and Strakoš Num. Algs. 8, 1994], [Meurant, Papež, and Tichý, Num. 
Algs. 88, 2021], [Strakoš and Tichý, ETNA 13, 2002], [Strakoš and Tichý, 
BIT 45, 2005], 

41



Example 8: Residual versus error and stopping criteria

42

Main point: The residual 2-norm is not a reliable indicator of 
the error in CG. 



Example 9: CG with “average” initial residuals

Setup:

Matrix 𝐴 and particular RHS 𝑏∗ come from discretization of a BVP with 
Dirichlet boundary conditions in [Morin, Nochetto, and Siebert, SIREV 44, 2002].

With standard FE discretization using standard uniform triangulation, we get a 
system with 𝑁 = 3969

Two preconditioners:

1. Laplace operator preconditioning

2. Algebraic incomplete Cholesky factorization of 𝐴 with drop tolerance 10−2
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Example 9: CG with “average” initial residuals

Setup:

Matrix 𝐴 and particular RHS 𝑏∗ come from discretization of a BVP with 
Dirichlet boundary conditions in [Morin, Nochetto, and Siebert, SIREV 44, 2002].

With standard FE discretization using standard uniform triangulation, we get a 
system with 𝑁 = 3969

Two preconditioners:

1. Laplace operator preconditioning

2. Algebraic incomplete Cholesky factorization of 𝐴 with drop tolerance 10−2

Run CG in double precision on preconditioned systems with 𝐴 and normalized 𝑏∗, 
and also 100 normalized random RHS’s generated via randn(N,1)

• For 𝑥0 = 0, this results in random initial residuals 𝑟0

43



Example 9: CG with “average” initial residuals
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Example 9: CG with “average” initial residuals
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Example 9: CG with “average” initial residuals

• It might seem that an “average” or “random” initial residual will give enough 
information about CG on real problems, but this is not the case

[Gergelits, Mardal, Nielsen, and Strakoš, SINUM 57, 2019]

45

𝑥 − 𝑥𝑘 𝐴 = min
𝑝∈𝑃𝑘 0

𝑝(𝐴)(𝑥 − 𝑥0) 𝐴 = min
𝑝∈𝑃𝑘 0



𝑖=1

𝑁

𝜂𝑖
2 𝑝 𝜆𝑖

2

𝜆𝑖

1/2



Example 9: CG with “average” initial residuals

46

Main point: The terms “average” and “random” have very 
specific meanings and should be used carefully. “Average” and 
“random” cases can not give a good indication of CG behavior 

for more general problems. 



Example 10: The trajectory of finite precision CG computations

Setup:

𝐴: Diagonal matrix with 𝑁 = 35, 𝜆1 = 0.1, 𝜆𝑁 = 102, 𝜌 = 0.65

𝑏 = Τ1,… , 1 𝑇 𝑁 , 𝑥0 = 0

Run CG in double to produce iterates ҧ𝑥𝑘 and exact CG to produce iterates 𝑥𝑘
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Run CG in double to produce iterates ҧ𝑥𝑘 and exact CG to produce iterates 𝑥𝑘

Shift double precision iterates according to sequence

ℓ 𝑘 = max 𝑖 | rank 𝒦𝑖 𝐴, 𝑟0 = 𝑘 , 𝑘 = 1,2, …
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Example 10: The trajectory of finite precision CG computations

Setup:

𝐴: Diagonal matrix with 𝑁 = 35, 𝜆1 = 0.1, 𝜆𝑁 = 102, 𝜌 = 0.65

𝑏 = Τ1,… , 1 𝑇 𝑁 , 𝑥0 = 0

Run CG in double to produce iterates ҧ𝑥𝑘 and exact CG to produce iterates 𝑥𝑘

Shift double precision iterates according to sequence

ℓ 𝑘 = max 𝑖 | rank 𝒦𝑖 𝐴, 𝑟0 = 𝑘 , 𝑘 = 1,2, …

Quantities of interest:

𝑥 − ҧ𝑥ℓ(𝑘) 𝐴

𝑥 − 𝑥𝑘 𝐴
,

𝑥 − 𝑥𝑘 𝐴 − 𝑥 − ҧ𝑥ℓ 𝑘 𝐴

𝑥 − 𝑥𝑘 𝐴
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𝑥 − ҧ𝑥ℓ(𝑘) 𝐴

𝑥 − 𝑥𝑘 𝐴

𝑥 − 𝑥𝑘 𝐴 − 𝑥 − ҧ𝑥ℓ 𝑘 𝐴

𝑥 − 𝑥𝑘 𝐴
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𝑥− ҧ𝑥ℓ(𝑘) 𝐴

𝑥−𝑥𝑘 𝐴
≈ 1 means that the convergence trajectories for finite precision CG 

and exact CG are close to being identical.
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𝑥− ҧ𝑥ℓ(𝑘) 𝐴

𝑥−𝑥𝑘 𝐴
≈ 1 means that the convergence trajectories for finite precision CG 

and exact CG are close to being identical.

If 
𝑥−𝑥𝑘 𝐴− 𝑥− ҧ𝑥ℓ 𝑘 𝐴

𝑥−𝑥𝑘 𝐴
< 1, this means we can consider the trajectory of finite 

precision CG iterates to be enclosed within a narrow tunnel around the 
trajectory of exact CG iterates

49

[Gergelits, Master’s Thesis, 2013]
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[Gergelits, Master’s Thesis, 2013]

These appear to hold for this example, but 
have not been proven to hold in general!

[Gergelits, Master’s Thesis, 2013], [Gergelits, 
Hnětynková, Kubínová, Proc. HPCSE 2017]
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Main point: 
The approximate solutions produced by finite precision CG can 

be mapped to those produced by exact CG via a mapping 
defined by the rank deficiency of the Krylov subspace basis. 

It seems that the trajectory of the approximate solutions remains 
in a narrow “tunnel” around those produced by exact CG. 



Summary

• Krylov subspace methods are remarkable mathematical objects

• 70 years of investigation

• But we still have things to discover!

C., Jörg Liesen, and Zdeněk Strakoš. "70 years of Krylov subspace methods: 
The journey continues." arXiv preprint arXiv:2211.00953 (2022).

51



Summary

• Krylov subspace methods are remarkable mathematical objects

• 70 years of investigation

• But we still have things to discover!

C., Jörg Liesen, and Zdeněk Strakoš. "70 years of Krylov subspace methods: 
The journey continues." arXiv preprint arXiv:2211.00953 (2022).

51
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www.karlin.mff.cuni.cz/~carson/

Thank You!


