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Motivation
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People are awed at the prodigious speeds at which they execute primitive arithmetic 
operations such as addition and multiplication. Yet this speed is achieved at a price, 
almost every answer is wrong!

- B. N. Parlett, James Hardy (“Jim”) Wilkinson, ACM Turing Award site
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Motivation

• Goal: efficient, sufficiently accurate computations in spite of rounding errors

• Accumulation versus amplification: the role of the algorithm

• Accumulation of rounding errors: inevitable part of computation in finite 
precision arithmetic

• Amplification of rounding errors: property of the mathematical structure of the 
algorithm we use to transform the data
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Example: Conjugate Gradient Algorithms
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𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0,
𝑟−1 = 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1, 𝐴𝑟𝑖−1)

(𝑟𝑖−1, 𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1

(𝑟𝑖 , 𝑟𝑖)

(𝑟𝑖−1, 𝑟𝑖−1)
end

HSCG 
([Hestenes & Stiefel, 1952]) 

STCG 
([Stiefel, 1952/53], [Rutishauser, 1959], [Hageman & Young, 1981])

• Two algorithms for the CG method: HSCG and STCG
• Equivalent in exact arithmetic
• Don't look terribly different; can finite precision behavior be significantly different?
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• Attainable accuracy typically bounded in terms of the size of the residual gap 
(between true residual 𝑏 − 𝐴𝑥𝑖 and recursively updated residual 𝑟𝑖)
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• Attainable accuracy typically bounded in terms of the size of the residual gap 
(between true residual 𝑏 − 𝐴𝑥𝑖 and recursively updated residual 𝑟𝑖)

• For HSCG
• Bound on residual gap can be written as accumulation of local errors [Greenbaum, 

1997]

𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖 = 𝑓0 +  

𝑚=1

𝑖

𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚



Maximum Attainable Accuracy

• For STCG

• Attainable accuracy for STCG can be much worse than for HSCG [Gutknecht & 
Strakoš, 2000]
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Maximum Attainable Accuracy

• For STCG

• Attainable accuracy for STCG can be much worse than for HSCG [Gutknecht & 
Strakoš, 2000]

• Residual gap bounded by sum of local errors PLUS local errors multiplied by 
factors which depend on 

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

4

⇒ Large residual oscillations can cause these factors to be large!
⇒ Local errors can be amplified!

• Attainable accuracy typically bounded in terms of the size of the residual gap 
(between true residual 𝑏 − 𝐴𝑥𝑖 and recursively updated residual 𝑟𝑖)

• For HSCG
• Bound on residual gap can be written as accumulation of local errors [Greenbaum, 

1997]

𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖 = 𝑓0 +  

𝑚=1

𝑖

𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚



Numerical Example

𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6

5



Algorithms Designed for HPC

• Many other variants of CG motivated by solving large-
scale problems on large-scale machines

• Example: pipelined CG [Ghysels & Vanroose, 2014]
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• Many other variants of CG motivated by solving large-
scale problems on large-scale machines
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• Main idea: add auxiliary vectors 
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so that matrix-vector product and inner product 
computations are decoupled and can be overlapped
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• How does adding auxiliary vectors effect the 
numerical behavior?
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• How does adding auxiliary vectors effect the 
numerical behavior?

• Consider simplified version, where we just 
add one auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 to HSCG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax 

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end



Maximum Attainable Accuracy

For this simplified pipelined CG algorithm:
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𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖 = 𝑓0 −  

𝑗=0

𝑖

 𝛼𝑗𝑔𝑗 −  

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)

[C., Rozložník, Strakoš, Tichý, & Tůma, 2018]
see also [Cools et al., 2018]
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𝑗
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𝑗

 

ℓ=𝑘+1
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• Residual oscillations can cause these factors to be large!

• Very similar to the results for attainable accuracy in the 3-term STCG
• Seemingly innocuous change can cause amplification of local rounding errors

[C., Rozložník, Strakoš, Tichý, & Tůma, 2018]
see also [Cools et al., 2018]
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𝐴: bcsstk03 from SuiteSparse, 
𝑏: equal components in the eigenbasis of 𝐴 and 𝑏 = 1
𝑁 = 112, 𝜅 𝐴 ≈ 7e6
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Insights from Error Analysis

• Takeaway: even a small modification to HSCG recurrences (addition of one auxiliary 
vector) can cause rounding errors to be amplified 

• Amplification factors depend on size of residual oscillations 
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Insights from Error Analysis

• Takeaway: even a small modification to HSCG recurrences (addition of one auxiliary 
vector) can cause rounding errors to be amplified 

• Amplification factors depend on size of residual oscillations 

• Note: bounds may be far from tight; the important thing is the insight we can 
obtain from the bounds
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There is still a tendency to attach too much importance to the precise error 
bounds obtained by an a priori error analysis. In my opinion, the bound 
itself is usually the least important part of it. The main object of such an 
analysis is to expose the potential instabilities, if any, of an algorithm so 
that, hopefully, from the insight thus obtained one might be led to improved 
algorithms.

- J. H. Wilkinson, SIAM Rev. 14 (1971)
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are computed can cause significant changes to numerical behavior in finite precision 
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• It is critical to consider this in designing algorithms, especially in the context of HPC

• Even if algorithms are mathematically (in infinite precision) equivalent to the 
classical approach, effects of finite precision can negate any potential 
performance benefit

• Note: we only discussed maximum attainable accuracy, but convergence is also 
delayed due to finite precision computations

• In all presented CG algorithms, even HSCG, amplification of rounding errors 
contributes to convergence delay
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It is easy to be carried away by the excitement of producing an alternative 
method for which convergence can be rigorously demonstrated, and to overlook 
the fact that this method too will suffer from the incidence of rounding errors. 
Attractive mathematics does not protect one from the rigors of digital 
computation.

- J. H. Wilkinson, SIAM Rev. 14 (1971)
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Looking Forward

• With trend of multi-precision and low-precision computation, paying attention to 
amplification of rounding errors becomes especially important;

• Amplification factors that were small relative to double precision can now have 
a much greater affect

1 ⋅ 𝜀ℎ ≈ 1012 ⋅ 𝜀𝑑
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Looking Forward

• With trend of multi-precision and low-precision computation, paying attention to 
amplification of rounding errors becomes especially important;

• Amplification factors that were small relative to double precision can now have 
a much greater affect

1 ⋅ 𝜀ℎ ≈ 1012 ⋅ 𝜀𝑑

• Challenges: new number formats (IEEE 754 and beyond); efficient 
algorithms/implementations on multiprecision hardware; analysis of multiprecision
algorithms; refined notions of ill-conditioning and techniques used in error analysis
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Following in Wilkinson's Footsteps

• Wilkinson's resume includes experience with applications, hardware design 
and construction of computers, algorithm implementation, development of 
backward error analysis

• "bird's eye view" of numerical computation from the hardware to the 
algorithms to the application
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Following in Wilkinson's Footsteps

• Wilkinson's resume includes experience with applications, hardware design 
and construction of computers, algorithm implementation, development of 
backward error analysis

• "bird's eye view" of numerical computation from the hardware to the 
algorithms to the application

• Progress in numerical mathematics and high-performance computing must 
be tightly interdisciplinary and involve close collaboration between computer 
engineers, software engineers, computer scientists, applied mathematicians, 
computational science experts, ... 
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Thank you!
carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/
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