MS 28: Scalable Communication-Avoiding and -Hiding Krylov Subspace Methods I

Organizers: Siegfried Cools, University of Antwerp, Belgium Erin C. Carson, New York University, USA

10:50-11:10 High Performance Variants of Krylov Subspace Methods Erin C. Carson, New York University, USA

11:15-11:35 About Parallel Variants of GMRES Algorithm
Jocelyne Erhel, Inria-Rennes, France
11:40-12:00 Enlarged GMRES for Reducing Communication
OlivierTissot, Inria, France

MS 40: Scalable Communication-Avoiding and -Hiding Krylov Subspace Methods II

Organizers: Siegfried Cools, University of Antwerp, Belgium Erin C. Carson, New York University, USA

2:40-3:00 Impact of Noise Models on Pipelined Krylov Methods Hannah Morgan, University of Chicago, USA

3:05-3:25 Scalable Krylov Methods for Spectral Graph Partitioning
Pieter Ghyse/s, Lawrence Berkeley National Laboratory, USA
3:30-3:50 Using Non-Blocking Communication to Achieve Scalability for Preconditioned Conjugate Gradient Methods
William D. Gropp, University of Illinois at Urbana-Champaign, USA
3:55-4:15 Performance of S-Step and Pipelined Krylov Methods
Piotr Luszczek, University of Tennessee, Knoxville, USA

High Performance Variants of Krylov Subspace Methods

Erin Carson
New York University

SIAM PP18, Tokyo, Japan
March 8, 2018

Collaborators

Emmanuel Agullo, Inria, France
Siegfried Cools, University of Antwerp, Belgium James Demmel, University of California, Berkeley, USA Pieter Ghysels, Lawrence Berkeley National Laboratory, USA Luc Giraud, Inria, France
Miro Rozložník, Czech Academy of Sciences, Czech Republic
Zdeněk Strakoš, Charles University, Czech Republic
Petr Tichý, Czech Academy of Sciences, Czech Republic
Miroslav Tůma, Czech Academy of Sciences, Czech Republic Wim Vanroose, Antwerp University, Belgium
Emrullah Fatih Yetkin, Inria, France

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$
Node Memory Bandwidth	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$
Interconnect Bandwidth	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$
Memory Latency	$10^{-7} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$
Interconnect Latency	$10^{-6} \mathrm{~s}$	$5 \cdot 10^{-7} \mathrm{~s}$

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*	Factor Improvement
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$	100
Node Memory Bandwidth	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$	10
Interconnect Bandwidth	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$	10
Memory Latency	$10^{-7} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$	2
Interconnect Latency	$10^{-6} \mathrm{~s}$	$5 \cdot 10^{-7} \mathrm{~s}$	2

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Movement of data (communication) is much more expensive than floating point operations (computation), in terms of both time and energy
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*	Factor Improvement
System Peak	$10^{16} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$	100
Node Memory Bandwidth	$10^{2} \mathrm{~GB} / \mathrm{s}$	$10^{3} \mathrm{~GB} / \mathrm{s}$	10
Interconnect Bandwidth	$10^{1} \mathrm{~GB} / \mathrm{s}$	$10^{2} \mathrm{~GB} / \mathrm{s}$	10
Memory Latency	$10^{-7} \mathrm{~s}$	$5 \cdot 10^{-8} \mathrm{~s}$	2
Interconnect Latency	$10^{-6} \mathrm{~s}$	$5 \cdot 10^{-7} \mathrm{~s}$	2

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Movement of data (communication) is much more expensive than floating point operations (computation), in terms of both time and energy
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!
\Rightarrow communication avoiding \& communication hiding

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

$$
\mathcal{K}_{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
$$

where A is an $N \times N$ matrix and r_{0} is a length- N vector

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

$$
\mathcal{K}_{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
$$

where A is an $N \times N$ matrix and r_{0} is a length- N vector

In each iteration:

- Add a dimension to the Krylov subspace
- Forms nested sequence of Krylov subspaces

$$
\mathcal{K}_{1}\left(A, r_{0}\right) \subset \mathcal{K}_{2}\left(A, r_{0}\right) \subset \cdots \subset \mathcal{K}_{i}\left(A, r_{0}\right)
$$

- Orthogonalize (with respect to some \mathcal{C}_{i})
- Linear systems: Select approximate solution

$$
x_{i} \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)
$$

using $r_{i}=b-A x_{i} \perp \mathcal{C}_{i}$

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

$$
\mathcal{K}_{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
$$

where A is an $N \times N$ matrix and r_{0} is a length- N vector

In each iteration:

- Add a dimension to the Krylov subspace
- Forms nested sequence of Krylov subspaces

$$
\mathcal{K}_{1}\left(A, r_{0}\right) \subset \mathcal{K}_{2}\left(A, r_{0}\right) \subset \cdots \subset \mathcal{K}_{i}\left(A, r_{0}\right)
$$

- Orthogonalize (with respect to some \mathcal{C}_{i})
- Linear systems: Select approximate solution

$$
x_{i} \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)
$$

using $r_{i}=b-A x_{i} \perp \mathcal{C}_{i}$

Conjugate gradient method: A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

$$
r_{i} \perp \mathcal{K}_{i}\left(A, r_{0}\right) \quad \Leftrightarrow \quad\left\|x-x_{i}\right\|_{A}=\min _{z \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)}\|x-z\|_{A} \quad \Rightarrow \quad r_{N}=\mathbf{0}
$$

Conjugate Gradient on the World's Fastest Computer

Sunway Taihulight - Sunway MPP, Sunway	
SW26010 260C1.45GHz, Sunway	
Site:	National Supercomputing Center in Wuxi
Manufacturer:	NRCPC
Cores:	$10,649,600$
Memory:	$1,310,720 \mathrm{~GB}$
Processor:	Sunway SW26010 260C 1.45 GHz
Interconnect:	Sunway
Performance	
Linpack Performance IRmaxl	$93,014.6$ TFlop/s
Theoretical Peak (Rpeak]	125,436 TFlop/s
Nmax	$12,288,000$
HPCG [TFlop/s]	480.8

Conjugate Gradient on the World's Fastest Computer

Sunway TaihuLight - Sunway MPP, Sunway	
SW26010 260C1.45GHz, Sunway	
Site:	National Supercomputing Center in Wuxi
Manufacturer:	NRCPC
Cores:	$10,649,600$
Memory:	$1,310,720 \mathrm{~GB}$
Processor:	Sunway SW26010 260C 1.45 GHz
Interconnect:	Sunway
Performance	
Linpack Performance IRmaxl	$93,014.6$ TFlop/s
Theoretical Peak (Rpeak]	125,436 TFlop/s
Nmax	$12,288,000$
HPCG [TFlop/s]	480.8

Conjugate Gradient on the World's Fastest Computer

Sunway TaihuLight - Sunway MPP, Sunway	
SW26010 260 C 1.45 GHz, Sunway	
Site:	National Supercomputing Center in Wuxi
Manufacturer:	NRCPC
Cores:	$10,649,600$
Memory:	$1,310,720 \mathrm{~GB}$
Processor:	Sunway SW26010 260C 1.45 GHz
Interconnect:	Sunway
Performance	
Linpack Performance IRmaxl	$93,014.6$ TFlop/s
Theoretical Peak (Rpeak]	125,436 TFlop/s
Nmax	$12,288,000$
HPCG [TFlop/s]	480.8

Linpack benchmark (dense $A x=b$, direct)

74\% efficiency

Conjugate Gradient on the World's Fastest Computer

| Sunway Taihulight - Sunway MPP, Sunway | |
| :--- | :--- | :--- |
| SW26010 260C 1.45GHz, Sunway | current \#1 |
| on top500 | |

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end }
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\\
\qquad \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\text { end }
\end{array} p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& \text { end }
\end{aligned}
$$

Iteration Loop

Sparse Matrix \times Vector

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\text { end } \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end }
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end }
\end{array}
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

The Conjugate Gradient (CG) Method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1: \mathrm{nmax} \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array}
\end{aligned}
$$

Cost Per Iteration

\rightarrow Sparse matrix-vector multiplication (SpMV)

- O (nnz) flops
- Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)

Cost Per Iteration

\rightarrow Sparse matrix-vector multiplication (SpMV)

- O (nnz) flops
- Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)

\rightarrow Inner products
- $O(N)$ flops
- global synchronization (MPI_Allreduce)
- all processors must exchange data and wait for all communication to finish before proceeding

Cost Per Iteration

\rightarrow Sparse matrix-vector multiplication (SpMV)

- O (nnz) flops
- Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)

\rightarrow Inner products
- $O(N)$ flops
- global synchronization (MPI_Allreduce)
- all processors must exchange data and wait for all communication to finish before proceeding

Low computation/communication ratio
\Rightarrow Performance is communication-bound

Reducing Synchronization Cost

Communication cost has motivated many approaches to reducing synchronization cost in Krylov subspace methods:

Hiding communication: Pipelined Krylov subspace methods

- Introduce auxiliary vectors to decouple SpMV and inner products
- Enables overlapping of communication and computation

Avoiding communication: s-step Krylov subspace methods

- Compute iterations in blocks of s (using a different Krylov subspace basis)
- Reduces number of synchronizations per iteration by a factor of O(s)
* Both equivalent to classical CG in exact arithmetic

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

- Uses auxiliary vectors

$$
s_{i} \equiv A p_{i}, w_{i} \equiv A r_{i}, z_{i} \equiv A^{2} r_{i}
$$

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

- Uses auxiliary vectors

$$
s_{i} \equiv A p_{i}, w_{i} \equiv A r_{i}, z_{i} \equiv A^{2} r_{i}
$$

- Removes sequential dependency between SpMV and inner products
- Allows the use of nonblocking (asynchronous) MPI communication to overlap SpMV and inner products
- See talk by W. Gropp in Part II: MS40
- Hides the latency of global communications

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Pipelined CG (Ghysels and Vanroose 2013)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Overview of Pipelined KSMs

- Pipelined GMRES (Ghysels et al. 2013)
- Deep pipelines - compute ℓ new Krylov basis vectors during global communication, orthogonalize after ℓ iterations
- Talk by W. Vanroose, IP7 Sat March 10
- Pipelined CG (Ghysels et al. 2013)
- With deep pipelines (Cornelis et al. 2018)
- Pipelined BiCGSTAB (Cools et al. 2017)
- Probabilistic performance modeling of pipelined KSMs
- Talk by H. Morgan, Part II: MS40

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s \\
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime} \\
& \text { end } \\
& {\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]}
\end{aligned}
$$

- Block iterations into groups of s
- Construct basis matrix \mathcal{Y}_{k} to expand Krylov subspace s dimensions at once
- Same latency cost as 1 SpMV (under assumptions on sparsity)
- 1 global synchronization to compute inner products between basis vectors
- Update coordinates of iteration vectors in the constructed basis
- requires no communication

s-step CG

$$
r_{0}=b-A x_{0}, p_{0}=r_{0}
$$

for $k=0: n \max / s$
Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

$$
\mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k}
$$

$$
x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1}
$$

$$
\text { for } j=1: s
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$
end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s
\end{aligned}
$$

Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

Outer Loop
$\mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k}$
$x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1}$
for $j=1: s$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}}
$$

$$
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime}
$$

$$
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime}
$$

$$
\beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}
$$

$$
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s
\end{aligned}
$$

Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

$$
\begin{aligned}
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}}
$$

$$
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime}
$$

$$
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime}
$$

$$
\beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}
$$

$$
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \text { nmax } / s
\end{aligned}
$$

Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A \underline{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k}$ and

$$
\operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right)
$$

$$
\begin{aligned}
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

Outer Loop

Compute basis
O(s) SPMVs
$\mathrm{O}\left(s^{2}\right)$ Inner
Products (one
synchronization)

Inner Loop

Local Vector
Updates (no comm.)
end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s \\
& \\
& \quad \begin{array}{l}
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} G_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
\beta_{s k+j}=\frac{r_{j}^{\prime \prime} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} G_{k} r_{j-1}^{\prime}} \\
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{array} \\
& \text { end }
\end{aligned}
$$

$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$ end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{-1}^{\prime} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime \prime} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

Overview of s-step KSMs

- s-step CG/Lanczos: (Van Rosendale, 1983), (Chronopoulos and Gear, 1989), (Leland, 1989), (Toledo, 1995), (Hoemmen et al., 2010)
- s-step GMRES/Arnoldi: (Walker, 1988), (Chronopoulous and Kim, 1990), (Bai, Hu, Reichel, 1991), (de Sturler, 1991), (Joubert, Carey, 1992), (Erhel, 1995), (Hoemmen et al., 2010)
- s-step BICGSTAB (C. et al., 2012)
- s-step QMR (Feuerriegel, Bücker, 2013)
- s-step LSQR (C., 2015)
- Many others...
- Recent work:
- Hybrid pipelined s-step methods (Yamazaki et al., 2017)
- Talk by P. Luszczek in Part II, MS40
- Improving convergence rate and scalability in preconditioned s-step GMRES methods
- Talk by J. Erhel in MS28 (this session)

The effect of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

The effect of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal - Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$ residual $b-A x_{i}$ and updated residual r_{i} deviate!

The effect of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal - Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$ residual $b-A x_{i}$ and updated residual r_{i} deviate!

The effect of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal - Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$ residual $b-A x_{i}$ and updated residual r_{i} deviate!

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy
- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$
$N=112, \kappa(A) \approx 7 \mathrm{e} 6$

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy
- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy
- Crucial that we understand and take into account how algorithm modifications will affect the convergence rate and attainable accuracy!

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$
- Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
f_{i}=b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i}
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right) \longleftarrow \text { accumulation of local rounding errors }
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right) \longleftarrow \text { accumulation of local rounding errors }
\end{aligned}
$$

$\left\|f_{i}\right\| \leq O(\varepsilon) \sum_{m=0}^{i} N_{A}\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\| \quad$ van der Vorst and $\mathrm{Ye}, 2000$
$\left\|f_{i}\right\| \leq O(\varepsilon)\|A\|\left(\|x\|+\max _{m=0, \ldots, i}\left\|\hat{x}_{m}\right\|\right) \quad$ Greenbaum, 1997
$\left\|f_{i}\right\| \leq O(\varepsilon) N_{A}\||A|\|\left\|A^{-1}\right\| \sum_{m=0}^{i}\left\|\hat{r}_{m}\right\| \quad$ Sleijpen and van der Vorst, 1995

Attainable accuracy of pipelined CG

- Pipelined CG updates x_{i} and r_{i} via:

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}, \quad r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1}
$$

Attainable accuracy of pipelined CG

- Pipelined CG updates x_{i} and r_{i} via:

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}, \quad r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1}
$$

- In finite precision:

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

Attainable accuracy of pipelined CG

- Pipelined CG updates x_{i} and r_{i} via:

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}, \quad r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1}
$$

- In finite precision:

$$
\begin{aligned}
\hat{x}_{i}= & \hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Attainable accuracy of pipelined CG

- Pipelined CG updates x_{i} and r_{i} via:

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}, \quad r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1}
$$

- In finite precision:

$$
\begin{aligned}
\hat{x}_{i} & =\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Attainable accuracy of pipelined CG

- Pipelined CG updates x_{i} and r_{i} via:

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}, \quad r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1}
$$

- In finite precision:

$$
\begin{aligned}
\hat{x}_{i} & =\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Attainable accuracy of pipelined CG

- Pipelined CG updates x_{i} and r_{i} via:

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}, \quad r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1}
$$

- In finite precision:

$$
\begin{aligned}
\hat{x}_{i} & =\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \boldsymbol{\delta} x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

\Rightarrow Amplification of local rounding errors possible depending on $\alpha_{i}^{\prime} s$ and $\beta_{i}^{\prime} s$ See recent work: (Cools et al., 2017), (Carson et al., 2017)

Numerical Example

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

Numerical Example

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

A : nos4 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=100, \kappa(A) \approx 2 \mathrm{e} 3
$$

Attainable accuracy of s-step CG

$$
f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}
$$

For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

Attainable accuracy of s-step CG

$f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$
For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

For s-step CG: $i \equiv s k+j$ (see C., 2015)

$$
\left\|f_{s k+j}\right\| \leq\left\|f_{0}\right\|+\varepsilon c \Gamma \sum_{m=1}^{s k+j}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

where c is a low-degree polynomial in s, and

$$
\Gamma=\max _{\ell \leq k}\left\|\hat{y}_{\ell}^{+}\right\| \cdot\left\|\left|\hat{y}_{\ell}\right|\right\|
$$

Attainable accuracy of s-step CG

$f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$
For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

For s-step CG: $i \equiv s k+j$ (see C., 2015)

$$
\left\|f_{s k+j}\right\| \leq\left\|f_{0}\right\|+\varepsilon c \Gamma \sum_{m=1}^{s k+j}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

where c is a low-degree polynomial in s, and

$$
\Gamma=\max _{\ell \leq k}\left\|\hat{y}_{t}^{+}\right\| \cdot\left\|\left|\hat{y}_{\ell}\right|\right\|
$$

\Rightarrow Amplification of local rounding errors possible depending on conditioning of basis

Numerical example

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

Numerical example

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

Numerical example

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

Numerical example

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

* Can also use other, more well-conditioned bases to improve convergence rate and accuracy (see, e.g. Philippe and Reichel, 2012).

Numerical example

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

A : nos4 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=100, \kappa(A) \approx 2 \mathrm{e} 3
$$

Residual Replacement

- Idea: improve accuracy by replacing \hat{r}_{i} with $\mathrm{fl}\left(b-A \hat{x}_{i}\right)$ in certain iterations (Van der Vorst and Ye, 2000)

Residual Replacement

- Idea: improve accuracy by replacing \hat{r}_{i} with $\mathrm{fl}\left(b-A \hat{x}_{i}\right)$ in certain iterations (Van der Vorst and Ye, 2000)
- Choose when to replace based on estimate of $\left\|f_{i}\right\| \equiv\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$
- Replace often enough such that $\left\|f_{i}\right\|$ remains small
- But don't replace when error in computing $\mathrm{fl}\left(b-A \hat{x}_{i}\right)$ would perturb recurrence and cause convergence delay
- See (Strakoš and Tichý, 2002)

Residual Replacement

- Idea: improve accuracy by replacing \hat{r}_{i} with $\mathrm{fl}\left(b-A \hat{x}_{i}\right)$ in certain iterations (Van der Vorst and Ye, 2000)
- Choose when to replace based on estimate of $\left\|f_{i}\right\| \equiv\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$
- Replace often enough such that $\left\|f_{i}\right\|$ remains small
- But don't replace when error in computing $\mathrm{fl}\left(b-A \hat{x}_{i}\right)$ would perturb recurrence and cause convergence delay
- See (Strakoš and Tichý, 2002)
- This strategy can be adapted for both pipelined KSMs (Cools and Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)

Residual Replacement

- Idea: improve accuracy by replacing \hat{r}_{i} with $\mathrm{fl}\left(b-A \hat{x}_{i}\right)$ in certain iterations (Van der Vorst and Ye, 2000)
- Choose when to replace based on estimate of $\left\|f_{i}\right\| \equiv\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$
- Replace often enough such that $\left\|f_{i}\right\|$ remains small
- But don't replace when error in computing $\mathrm{fl}\left(b-A \hat{x}_{i}\right)$ would perturb recurrence and cause convergence delay
- See (Strakoš and Tichý, 2002)
- This strategy can be adapted for both pipelined KSMs (Cools and Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)
- In both cases, estimate of $\left\|f_{i}\right\|$ can be computed inexpensively
- Improves accuracy to comparable level as classical method in many cases

Scalability of pipelined CG with RR

- PETSc implementation using MPICH-3.1.3 communication
- Benchmark problem: 2D Laplacian model, 1,000,000 unknowns
- System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG (12-240 cores)

Accuracy i.f.o. total time spent
(240 cores)

Conclusions and takeaways

- Need new approaches to reducing synchronization cost in Krylov subspace methods for large-scale problems
- Pipelined methods, s-step methods, hybrid approaches
- But must also consider finite precision behavior!

Conclusions and takeaways

- Need new approaches to reducing synchronization cost in Krylov subspace methods for large-scale problems
- Pipelined methods, s-step methods, hybrid approaches
- But must also consider finite precision behavior!
- Other communication-avoiding and communication-hiding approaches possible
- e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this session)

Conclusions and takeaways

- Need new approaches to reducing synchronization cost in Krylov subspace methods for large-scale problems
- Pipelined methods, s-step methods, hybrid approaches
- But must also consider finite precision behavior!
- Other communication-avoiding and communication-hiding approaches possible
- e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this session)
- Best approach is highly application-dependent
- Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels in Part II: MS40

Conclusions and takeaways

- Need new approaches to reducing synchronization cost in Krylov subspace methods for large-scale problems
- Pipelined methods, s-step methods, hybrid approaches
- But must also consider finite precision behavior!
- Other communication-avoiding and communication-hiding approaches possible
- e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this session)
- Best approach is highly application-dependent
- Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels in Part II: MS40
- Many interesting open problems and challenges as we push toward exascalelevel computing!

Thank You!

erinc@cims.nyu.edu
math.nyu.edu/~erinc

