
MS 28: Scalable Communication-Avoiding and
-Hiding Krylov Subspace Methods I

Organizers: Siegfried Cools, University of Antwerp, Belgium

Erin C. Carson, New York University, USA

10:50-11:10 High Performance Variants of Krylov Subspace Methods

Erin C. Carson, New York University, USA

11:15-11:35 About Parallel Variants of GMRES Algorithm

Jocelyne Erhel, Inria-Rennes, France

11:40-12:00 Enlarged GMRES for Reducing Communication

OlivierTissot, Inria, France

MS 40: Scalable Communication-Avoiding and
-Hiding Krylov Subspace Methods II

Organizers: Siegfried Cools, University of Antwerp, Belgium

Erin C. Carson, New York University, USA

2:40-3:00 Impact of Noise Models on Pipelined Krylov Methods

Hannah Morgan, University of Chicago, USA

3:05-3:25 Scalable Krylov Methods for Spectral Graph Partitioning

Pieter Ghysels, Lawrence Berkeley National Laboratory, USA

3:30-3:50 Using Non-Blocking Communication to Achieve Scalability for
Preconditioned Conjugate Gradient Methods

William D. Gropp, University of Illinois at Urbana-Champaign, USA

3:55-4:15 Performance of S-Step and Pipelined Krylov Methods

Piotr Luszczek, University of Tennessee, Knoxville, USA

High Performance Variants of
Krylov Subspace Methods

Erin Carson

New York University

SIAM PP18, Tokyo, Japan

March 8, 2018

Collaborators

Emmanuel Agullo, Inria, France

Siegfried Cools, University of Antwerp, Belgium

James Demmel, University of California, Berkeley, USA

Pieter Ghysels, Lawrence Berkeley National Laboratory, USA

Luc Giraud, Inria, France

Miro Rozložník, Czech Academy of Sciences, Czech Republic

Zdeněk Strakoš, Charles University, Czech Republic

Petr Tichý, Czech Academy of Sciences, Czech Republic

Miroslav Tůma, Czech Academy of Sciences, Czech Republic

Wim Vanroose, Antwerp University, Belgium

Emrullah Fatih Yetkin, Inria, France

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

1

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Reducing time spent moving data/waiting for data will be essential for
applications at exascale!

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

• Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

1

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Reducing time spent moving data/waiting for data will be essential for
applications at exascale!

⇒ communication avoiding & communication hiding

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

• Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

1

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

2

Krylov Subspace Methods

In each iteration:

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Linear systems: Select approximate solution

𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

2

Krylov Subspace Methods

In each iteration:

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Linear systems: Select approximate solution

𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

Conjugate gradient method: 𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 ⟹ 𝒓𝑵 = 𝟎

2

Conjugate Gradient on the World's Fastest Computer

3

current #1
on top500

Conjugate Gradient on the World's Fastest Computer

3

current #1
on top500

Linpack benchmark
(dense 𝐴𝑥 = 𝑏, direct)

74% efficiency

Conjugate Gradient on the World's Fastest Computer

3

current #1
on top500

Linpack benchmark
(dense 𝐴𝑥 = 𝑏, direct)

74% efficiency

HPCG benchmark
(sparse 𝐴𝑥 = 𝑏, iterative)

0.4% efficiency

Conjugate Gradient on the World's Fastest Computer

3

The Conjugate Gradient (CG) Method

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

The Conjugate Gradient (CG) Method

Iteration Loop𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)

×

Cost Per Iteration

5

 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)

×

Cost Per Iteration

×

5

 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)

Low computation/communication ratio

⇒ Performance is communication-bound

SpMV

orthogonalize

×

Cost Per Iteration

×

5

Reducing Synchronization Cost

Communication cost has motivated many approaches to reducing
synchronization cost in Krylov subspace methods:

Hiding communication: Pipelined Krylov subspace methods
• Introduce auxiliary vectors to decouple SpMV and inner products

• Enables overlapping of communication and computation

Avoiding communication: s-step Krylov subspace methods
• Compute iterations in blocks of s (using a different Krylov subspace basis)

• Reduces number of synchronizations per iteration by a factor of O(s)

6

* Both equivalent to classical CG in exact arithmetic

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
7

Pipelined CG (Ghysels and Vanroose 2013)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

• Uses auxiliary vectors

𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖, 𝑧𝑖 ≡ 𝐴2𝑟𝑖

Pipelined CG (Ghysels and Vanroose 2013)

7

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

• Uses auxiliary vectors

𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖, 𝑧𝑖 ≡ 𝐴2𝑟𝑖

• Removes sequential dependency
between SpMV and inner products

• Allows the use of nonblocking
(asynchronous) MPI communication to
overlap SpMV and inner products

• See talk by W. Gropp in Part II: MS40

• Hides the latency of global
communications

Pipelined CG (Ghysels and Vanroose 2013)

7

Iteration Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (Ghysels and Vanroose 2013)

7

Iteration Loop

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (Ghysels and Vanroose 2013)

7

Iteration Loop

Inner
Products

SpMV

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (Ghysels and Vanroose 2013)

7

Iteration Loop

Inner
Products

SpMV

Vector Updates
O

ve
rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (Ghysels and Vanroose 2013)

7

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (Ghysels and Vanroose 2013)

7

Pipelined CG (Ghysels and Vanroose 2013)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Precond

7

Overview of Pipelined KSMs

• Pipelined GMRES (Ghysels et al. 2013)

• Deep pipelines - compute ℓ new Krylov basis vectors during
global communication, orthogonalize after ℓ iterations

• Talk by W. Vanroose, IP7 Sat March 10

• Pipelined CG (Ghysels et al. 2013)

• With deep pipelines (Cornelis et al. 2018)

• Pipelined BiCGSTAB (Cools et al. 2017)

• Probabilistic performance modeling of pipelined KSMs

• Talk by H. Morgan, Part II: MS40

8

s-step CG
𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

• Block iterations into groups of s

• Construct basis matrix 𝒴𝑘 to
expand Krylov subspace s
dimensions at once
• Same latency cost as 1

SpMV (under assumptions
on sparsity)

• 1 global synchronization to
compute inner products between
basis vectors

• Update coordinates of iteration
vectors in the constructed basis
• requires no communication

s-step CG

Outer Loop
𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

End Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

Overview of s-step KSMs

• s-step CG/Lanczos: (Van Rosendale, 1983), (Chronopoulos and Gear,
1989), (Leland, 1989), (Toledo, 1995), (Hoemmen et al., 2010)

• s-step GMRES/Arnoldi: (Walker, 1988), (Chronopoulous and Kim, 1990),
(Bai, Hu, Reichel, 1991), (de Sturler, 1991), (Joubert, Carey, 1992), (Erhel,
1995), (Hoemmen et al., 2010)

• s-step BICGSTAB (C. et al., 2012)

• s-step QMR (Feuerriegel, Bücker, 2013)

• s-step LSQR (C., 2015)

• Many others...

• Recent work:

• Hybrid pipelined s-step methods (Yamazaki et al., 2017)

• Talk by P. Luszczek in Part II, MS40

• Improving convergence rate and scalability in preconditioned s-step
GMRES methods

• Talk by J. Erhel in MS28 (this session)
10

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

11

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

11

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

11

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG 11

• Synchronization-reducing variants are designed to reduce the time/iteration

Optimizing high performance iterative solvers

12

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

Optimizing high performance iterative solvers

12

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy

Optimizing high performance iterative solvers

12

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

12

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

• Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

12

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

Maximum attainable accuracy

13

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

Maximum attainable accuracy

13

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

13

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht
and Strakoš (2000).

Maximum attainable accuracy

13

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

14

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

14

accumulation of local rounding errors

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(휀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 휀 𝑚=0
𝑖 𝑁𝐴 𝐴 𝑥𝑚 + 𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 휀 𝑁𝐴 𝐴 𝐴−1 𝑚=0
𝑖 𝑟𝑚 Sleijpen and van der Vorst, 1995

14

accumulation of local rounding errors

Attainable accuracy of pipelined CG

• Pipelined CG updates 𝑥𝑖 and 𝑟𝑖 via:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

15

Attainable accuracy of pipelined CG

• Pipelined CG updates 𝑥𝑖 and 𝑟𝑖 via:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

15

Attainable accuracy of pipelined CG

• Pipelined CG updates 𝑥𝑖 and 𝑟𝑖 via:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

15

Attainable accuracy of pipelined CG

• Pipelined CG updates 𝑥𝑖 and 𝑟𝑖 via:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

15

Attainable accuracy of pipelined CG

• Pipelined CG updates 𝑥𝑖 and 𝑟𝑖 via:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

15

Attainable accuracy of pipelined CG

⇒ Amplification of local rounding errors possible depending on 𝛼𝑖
′𝑠 and 𝛽𝑖

′𝑠

See recent work: (Cools et al., 2017), (Carson et al., 2017)

• Pipelined CG updates 𝑥𝑖 and 𝑟𝑖 via:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

15

Numerical Example

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

16

Numerical Example

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

𝐴: nos4 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 100, 𝜅 𝐴 ≈ 2e3

16

For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 휀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

17

For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 휀𝒄𝛤

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 휀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

Γ = max
ℓ≤𝑘

 𝒴ℓ
+ ⋅ 𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

(see C., 2015)

17

For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 휀𝒄𝛤

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 휀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

Γ = max
ℓ≤𝑘

 𝒴ℓ
+ ⋅ 𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

(see C., 2015)

17
⇒ Amplification of local rounding errors possible depending on conditioning of basis

Numerical example

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

18

Numerical example

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

18

Numerical example

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

18

Numerical example

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

* Can also use other, more well-conditioned bases to improve convergence rate
and accuracy (see, e.g. Philippe and Reichel, 2012).

18

Numerical example

𝐴: nos4 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 100, 𝜅 𝐴 ≈ 2e3

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

19

Residual Replacement

• Idea: improve accuracy by replacing 𝑟𝑖 with fl(𝑏 − 𝐴 𝑥𝑖) in certain
iterations (Van der Vorst and Ye, 2000)

20

Residual Replacement

• Idea: improve accuracy by replacing 𝑟𝑖 with fl(𝑏 − 𝐴 𝑥𝑖) in certain
iterations (Van der Vorst and Ye, 2000)

• Choose when to replace based on estimate of 𝑓𝑖 ≡ ‖𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖‖

• Replace often enough such that ‖𝑓𝑖‖ remains small

• But don't replace when error in computing fl(𝑏 − 𝐴 𝑥𝑖) would
perturb recurrence and cause convergence delay

• See (Strakoš and Tichý, 2002)

20

Residual Replacement

• Idea: improve accuracy by replacing 𝑟𝑖 with fl(𝑏 − 𝐴 𝑥𝑖) in certain
iterations (Van der Vorst and Ye, 2000)

• Choose when to replace based on estimate of 𝑓𝑖 ≡ ‖𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖‖

• Replace often enough such that ‖𝑓𝑖‖ remains small

• But don't replace when error in computing fl(𝑏 − 𝐴 𝑥𝑖) would
perturb recurrence and cause convergence delay

• See (Strakoš and Tichý, 2002)

• This strategy can be adapted for both pipelined KSMs (Cools and
Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)

20

Residual Replacement

• Idea: improve accuracy by replacing 𝑟𝑖 with fl(𝑏 − 𝐴 𝑥𝑖) in certain
iterations (Van der Vorst and Ye, 2000)

• Choose when to replace based on estimate of 𝑓𝑖 ≡ ‖𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖‖

• Replace often enough such that ‖𝑓𝑖‖ remains small

• But don't replace when error in computing fl(𝑏 − 𝐴 𝑥𝑖) would
perturb recurrence and cause convergence delay

• See (Strakoš and Tichý, 2002)

• This strategy can be adapted for both pipelined KSMs (Cools and
Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)

• In both cases, estimate of ‖𝑓𝑖‖ can be computed inexpensively

• Improves accuracy to comparable level as classical method in
many cases

20

Scalability of pipelined CG with RR

21

Conclusions and takeaways

• Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

• Pipelined methods, s-step methods, hybrid approaches

• But must also consider finite precision behavior!

22

Conclusions and takeaways

• Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

• Pipelined methods, s-step methods, hybrid approaches

• But must also consider finite precision behavior!

• Other communication-avoiding and communication-hiding approaches
possible

• e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this
session)

22

Conclusions and takeaways

• Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

• Pipelined methods, s-step methods, hybrid approaches

• But must also consider finite precision behavior!

• Other communication-avoiding and communication-hiding approaches
possible

• e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this
session)

• Best approach is highly application-dependent

• Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels
in Part II: MS40

22

Conclusions and takeaways

• Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

• Pipelined methods, s-step methods, hybrid approaches

• But must also consider finite precision behavior!

• Other communication-avoiding and communication-hiding approaches
possible

• e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this
session)

• Best approach is highly application-dependent

• Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels
in Part II: MS40

• Many interesting open problems and challenges as we push toward exascale-
level computing!

22

Thank You!

erinc@cims.nyu.edu

math.nyu.edu/~erinc

