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Exascale System Projections

Today's Systems Predicted Exascale

Systems*
System Peak 10 flops/s 108 flops/s

Node Memory 9 3

Bandwidth 10“ GB/s 10° GB/s
Interconnect 1 2

Bandwidth 10" GB/s 104 GB/s

Memory Latency 10~7 s 5.10" 8¢

Interconnect Latency 10=6 s 5.10"7 ¢

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)



Exascale System Projections

, Predicted Exascale Factor
Today's Systems 5
Systems Improvement
System Peak 10 flops/s 108 flops/s 100
Node Memory 9 3
Bandwidth 104 GB/s 10° GB/s 10
Interconnect 1 2
Bandwidth 10 GB/s 104 GB/s 10
Memory Latency 10~7 s 5.10" 8¢ 2

Interconnect Latency 10~ s 5-10"7s \ 2 /
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

* Reducing time spent moving data/waiting for data will be essential for
applications at exascale!
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, Predicted Exascale Factor
Today's Systems 5
Systems Improvement
System Peak 10 flops/s 108 flops/s 100
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Interconnect Latency 10~ s 5-10"7s \ 2 /
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

* Reducing time spent moving data/waiting for data will be essential for

applications at exascale!
= communication avoiding & communication hiding .



Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace
:;CL(A, To) = Span{T'O,AT'O,AZT'O, ...,Ai_lro}

where A is an N X N matrix and ry is a length-N vector



Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace
:;CL(A, To) = Span{TO,ATO,AZTO, ...,Ai_lro}

where A is an N X N matrix and ry is a length-N vector

In each iteration:
* Add a dimension to the Krylov subspace
— Forms nested sequence of Krylov subspaces

Ki(A,1y) cKy(A 1) € - €Ki (A1)

* Orthogonalize (with respect to some C;)
* Linear systems: Select approximate solution
X; € xg + K;(A, 1)
using 1; = b — Ax; L C;




Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace
:;CL(A, To) = Span{TO,ATO,AZTO, ...,Ai_lro}

where A is an N X N matrix and ry is a length-N vector

In each iteration:
* Add a dimension to the Krylov subspace
— Forms nested sequence of Krylov subspaces

Ki(A,1y) cKy(A 1) € - €Ki (A1)

* Orthogonalize (with respect to some C;)
* Linear systems: Select approximate solution 0
x; € xo + K;i(A,71p)

using 1; = b — Ax; L C;

Conjugate gradient method: A is symmetric positive definite, C; = K;(4,1y)

r; L XK;(A4,r = X —Xill4 = min X—Z = rv=20
L3 (Am) e =xilla =, min =zl v



Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway

Site: Mational Supercamputing Center in Wuxi
Manufacturer: MRCFC

Cores: 10,647 600

Memaory: 1,310,720 GE

Processor: Sunway SW26010 260C 1.45GHz
Interconnect: Sunway

Performance

Linpack Performance [Rmax] 93.014.6 TFlop/s

Thecretical Peak [Rpeak] 125,436 TFlop/s

Nmax 12,288,000

HPCG [TFleop/s] 4508




Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway m CUTTENE 41
SW26010 260C 1.45GHz, Sunway on top500
Site: Mational Supercamputing Center in Wuxi

Manufacturer: MRCFC

Cores: 10,647 600

Memaory: 1,310,720 GE

Processor: Sunway SW26010 260C 1.45GHz

Interconnect: Sunway

Performance

Linpack Performance [Rmax] 93.014.6 TFlop/s

Thecretical Peak [Rpeak] 125,436 TFlop/s

Nmax 12,288,000

HPCG [TFleop/s] 4508




Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway

SW26010 260C 1.45GHz, Sunway

Site:

Manufacturer:

Cores:

Memaory:

Processor:

Interconnect:

Performance

Linpack Performance [Rmax)
Thecretical Peak [Rpeak]
Nmax

HPCG [TFlop/s]

Mational Supercomputing Center in Wuxi
MRCFC

10,647 600

1,310,720 GE

Sunway SW24010 260C 1.45GHz

Sunway

93,0146 TFlop/s

125,436 TFlop/s
12,288,000
4308

current #1
‘ on topb00

Linpack benchmark

d (dense Ax = b, direct)

74% efficiency



Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway

current #1
‘ on topb00

Site: Mational Supercomputing Center in Wuxi
Manufacturer: NMECPC
Cores: 10,647 600
Memaory: 1,310,720 GE .
Linpack benchmark
Processor: Sunway SW26010 260C 1.45GHz |~ .
(dense Ax = b, direct)
Int t: S .
nierconnec Ry 74% efﬂuency
Performance

93,0146 TFlop/s

Thecretical Peak [Rpeak] 125,436 TFlop/s

Linpack Performance [Rmax)

| HPCG benchmark
(sparse Ax = b, iterative)

HPCG [TFlop/s] 0.4% efficiency

Nmax 12,288,000




The Conjugate Gradient (CG) Method

T'O :b_Axo, pO :T'O
fori = 1:nmax

end
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The Conjugate Gradient (CG) Method

TO :b_Axo, pO :TO
fori = 1:nmax

end

Iteration Loop

Sparse Matrix
X Vector




The Conjugate Gradient (CG) Method

for i

end

TO :b_Axo, pO :TO

= 1:nmax

Ti—1Ti—1

M1 T T ap,

Xi = Xj—1 T QAj_1Pi-1

r, =Ti—1 — Aj_1Ap;—4

T
T'i ri

Bi =

Ti1Ti-1

p; =1 + BiPi—1

Iteration Loop

Sparse Matrix
X Vector

Inner Products




The Conjugate Gradient (CG) Method

_ _ Iteration Loo
ro—b_Axo, po—ro p

for i = 1:nmax Sparse Matrix
T
T X Vector
al—l - T AD;
pl—l Pi-1

Inner Products

Xi = Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;_4

T
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Bi =

Ti1Ti-1

p; =1 + BiPi—1

end
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The Conjugate Gradient (CG) Method

. _ Iteration Loo
ro—b_Axo, po—ro p

forl == 1:nmaX Sparse Matrix
T
" T X Vector
i-1 — _T
Di_
t 1- Inner Products

Xi = Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;_4

T
Ti ri

Bi = —F

Ti—1Ti-1

p; =T + BiPi—1

Inner Products

end

End Loop




Cost Per lteration

— Sparse matrix-vector multiplication (SpMV) §
* 0(nnz) flops » a

* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)
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— Sparse matrix-vector multiplication (SpMV)

* 0(nnz) flops »
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)

— Inner products

* O(N) flops
» global synchronization (MPI Allreduce) —
* all processors must exchange data and wait for a//

communication to finish before proceeding



Cost Per lteration

— Sparse matrix-vector multiplication (SpMV)

* 0(nnz) flops »
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)

— Inner products

* O(N) flops
» global synchronization (MPI Allreduce) —
* all processors must exchange data and wait for a//

communication to finish before proceeding

SpMV
Low computation/communication ratio
e

orthogonali = Performance is communication-bound




Reducing Synchronization Cost

Communication cost has motivated many approaches to reducing
synchronization cost in Krylov subspace methods:

Hiding communication: Pipelined Krylov subspace methods

* Introduce auxiliary vectors to decouple SpMV and inner products
* Enables overlapping of communication and computation

Avoiding communication: s-step Krylov subspace methods

» Compute iterations in blocks of s (using a different Krylov subspace basis)
* Reduces number of synchronizations per iteration by a factor of O(s)

* Both equivalent to classical CG in exact arithmetic



Pipelined CG (Ghysels and Vanroose 2013)

T'O - b_Axo, pO =T0
So = AZI?(), W0T= Aro, Zoy = AWO,
o = 1o To/Po So
for i = 1:nmax
Xi =Xj_1ta&_1Di—1
i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—1

q; = Aw;
T

B; = i Ti

i — T

Ti—1Ti-1
T

o = Ti Ti

l

— wlri=Bi/ai—Drir
pi =1 + Bibi—1
S; = Wi + BiSi—1
zi = q; + Bizi—4

end




Pipelined CG (Ghysels and Vanroose 2013)

T'O = b_Axo, pO =T0
SO = Apo, Wo = Aro,ZO = AWO, ¢ USGS aUX|||ary vectors

T
Aoy =713 T S = =
0 = 70 To/Po So s; = Ap;, w; = Ary, z; = A%,
for i = 1:nmax

Xi = Xi—1+ a;i_1Di-1
i ="i-1 — &j-1Si-1

Wi =W;i_1 —&i—1Zj—1
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B; = i Ti
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o = Ti Ti

l

— wlri=Bi/ai—Drir
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S; = Wi + BiSi—1
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Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

SO = Apo, Wo = Aro, Zoy = AWO, USGS aUX|||ary vectors
— T T
Qg = 79 7o/Po So

for i = 1:nmax

Si = Api/ W; = Ari, Z; = Azri

Xi = Xi—1 + Q&j—1Pi—1 .
* Removes sequential dependency

1 =Tio1 — ®&i—1Si—1 between SpMV and inner products
Wi = Wi — &j-1Zj—1

= Aw: :
i = AW * Allows the use of nonblocking
T . .
B; = — (asynchronous) MPIl communication to
¥ rl T "
i~1 overlap SpMV and inner products
a; = i Ty » See talk by W. Gropp in Part Il: MS40

— wlri=Bi/ai_)rl T
p; =1 + Bibi—1
Si =w; + Bisi_4

zZi=q; +Pizi_4

* Hides the latency of global
communications

end




Pipelined CG (Ghysels and Vanroose 2013)

T'O == b_Axo, po =T0

SO == Apo, Wgo = Aro,ZO - AWO,
— 4T T .

Ao =T To/PoSo Iteration Loop
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Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

So =Ap0,W0 =ATO,ZO =AWO,
— T .
Ao =T To/PoSo Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—q

o
)
q; = Aw; < Inner
T, 2 Products
B; = 1
borliria
T
o = ri T'i
;=
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zi = q; + Bizi—4

end
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Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

So = AZ;O' W0T= Aro, Zoy = AWO,
Qg = 79 7o/Po So

for i = 1:nmax

end

Xi = Xi—1 t &i_1Pi—1

i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—q

q; = Aw;
T

B; = Ti Ti

1~ ..T

Ti—1Ti-1
T

o = ri T'i

;=

wlri—(Bi/ai— 1T
pi =1 + Bibi—1
S; = Wi + BiSi—1

z; =q; + Bizi—q

Overlap

Iteration Loop

Precond
Inner

Products

End Loop




Overview of Pipelined KSMs

Pipelined GMRES (Ghysels et al. 2013)

* Deep pipelines - compute £ new Krylov basis vectors during
global communication, orthogonalize after ¢ iterations

* Talk by W. Vanroose, IP7 Sat March 10

Pipelined CG (Ghysels et al. 2013)
« With deep pipelines (Cornelis et al. 2018)

Pipelined BiCGSTAB (Cools et al. 2017)

Probabilistic performance modeling of pipelined KSMs
* Talk by H. Morgan, Part |I: MS40



s-step CG

T'O - b —Axo,po - ro

for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
Span(yk) = jCS+1(AJ psk) + f}CS(AI rsk)

—qqT
Gk = Y Y
I O I __ I
Xo = U, Ty = €s42,Pp = €1
forj=1:s
T
I L
Ask+j-1 —

il 1GkBrP}—,

I ’
Xj = Xj_1t Asg+j-1Pj-1

! !

_ !
T =1_q1 — Qsk+j-1BkPj_1
IT !
Bsk+j = VLS
! !
S ] rjzlgkrj—l

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsk> Ts(k+1) Pske+1)] = Yk [xs, 75, Ds]

end

Block iterations into groups of s

Construct basis matrix Y, to
expand Krylov subspace s
dimensions at once
* Same latency cost as 1
SpMV (under assumptions
on sparsity)

1 global synchronization to
compute inner products between
basis vectors

Update coordinates of iteration
vectors in the constructed basis
* requires no communication



s-step CG

To = b= AXopo =T Outer Loop
for k = 0:nmax/s
Compute Y and By, such that AYy = YpBy and

Span(yk) = ‘7(5+1(A1 psk) + fK‘S(AJ rsk)

T
Gk = Y Y
I O I __ I
Xo = U, Ty = €s42,Pp = €1
forj=1:s
T
I L
Ask+j-1 —

il 1GkBrP}—,

I ’
Xj = Xj_1 t Qsptj-1Pj-1

r__ !
T =1_q1 — Qsk+j-1BkPj_1
IT !

Bsk+j = rT] Ly
S ! [
J Ti—19kTj—1

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsk> Ts(k+1) Pske+1)] = Yk [xs, 75, Ds]

end




s-step CG

TO - b _Axo,po - ro

Outer Loop
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and

Compute basis
span(Yy) = K1 (A, Dsi) + Ks(A,751) O(S) SPMVs
Gk = Ui Uk
xo = 0,79 = 542,00 = €1
forj=1:s
Ask+j-1 = JELS

il 1GkBrP}—,

I ’
Xj = Xj_1 t Qsptj-1Pj-1

! !

—_ 4
T =1_q1 — Qsk+j-1BkPj_1
T !
Bsk+j = 7;{ L
S /4 [;
J TiZ19kTj-1

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsk> Ts(k+1) Pske+1)] = Yk [xs, 75, Ds]

end




s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yi) = Kss1(A,psk) + K (A, 751)

g
Gk = Y Y
I O I __ A
Xo = U, Ty = €s4+2,P0 = €1
forj=1:s
T
_ _Tj=aGKTjs
Ask+j-1 =

Pl 1GkBrP] 4

I /
Xj = Xj_q1 t Ask4j-1Dj-1

! !

— !
T =Tj—1 — Ask+j-1BrkPj-1
T l
Bsk+j = L
ST T;Z1gkr]{—1

I ’
p; =1 + Bsk+jPj-1

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)
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o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
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O(s?) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no
comm.)



s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yi) = Kss1(A,psk) + K (A, 751)

g
Gk = Y Y
I O I __ A
Xo = U, Ty = €s4+2,P0 = €1
forj=1:s
T
_ _Tj=aGKTjs
Ask+j-1 =
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I ’
pj =1 + Bsk+jPj-1

ﬁsk+j =

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)

Inner Loop

Local Vector
Updates (no
comm.)

End Inner Loop



s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
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Pl GkBrD}_y
I /
Xj = Xj_1 T Akt j-1Pj-1

! !

!
T =Tj_q — Ask+j—1BrkPj-1

IT !

Ti GkTj

IT !
Ti—19kTj—1

I ’
pj =1 + Bsk+jPj-1

ﬁsk+j =

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)

Inner Loop

Local Vector S
Updates (no times
comm.)

End Inner Loop

End Outer Loop 9



Overview of s-step KSMs

* s-step CG/Lanczos: (Van Rosendale, 1983), (Chronopoulos and Gear,
1989), (Leland, 1989), (Toledo, 1995), (Hoemmen et al., 2010)

* s-step GMRES/Arnoldi: (Walker, 1988), (Chronopoulous and Kim, 1990),
(Bai, Hu, Reichel, 1991), (de Sturler, 1991), (Joubert, Carey, 1992), (Erhel,
1995), (Hoemmen et al., 2010)

 s-step BICGSTAB (C. et al., 2012)

* s-step QMR (Feuerriegel, Biicker, 2013)
* s-step LSQR (C., 2015)

* Many others...

* Recent work:
 Hybrid pipelined s-step methods (Yamazaki et al., 2017)

* Talk by P. Luszczek in Part Il, MS40

* Improving convergence rate and scalability in preconditioned s-step
GMRES methods

* Talk by J. Erhel in MS28 (this session)

10



The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!
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Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!

A-norm of the error

Classical CG, double precision
10
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10'15 _
0 200 400 600 800 1000 1200
lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG .



Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration

12



Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration

* But this is not the whole story!

12



Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration

* But this is not the whole story!

* What we really want to minimize is the runtime, subject to some constraint
on accuracy

12



Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration
* But this is not the whole story!

* What we really want to minimize is the runtime, subject to some constraint
on accuracy

* Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

A-norm of the error

0 200 400 600 800 1000 1200
lteration

A: bcsstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7e6 12



Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration
* But this is not the whole story!

* What we really want to minimize is the runtime, subject to some constraint
on accuracy

* Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

A-norm of the error

* Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

0 200 400 600 800 1000 1200
lteration

A: bcsstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7e6 12



Maximum attainable accuracy

» Accuracy depends on the size of the true residual: ||b — AX;||
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Maximum attainable accuracy

» Accuracy depends on the size of the true residual: ||b — AX;||

* Rounding errors cause the true residual, b — AX;, and the updated residual, 7;,
to deviate

° Writing b —AjC\i = ”I,’\'i + b —AjC\i — 7,’\'1',

b = A%l < |71l + [Ib — A%; — 7]l

* As ||7]| = 0, ||b — AX;|| depends on ||b — AX; — 7|

* Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Bjorck, Elfving and Strakos (1998) and Gutknecht

and Strakos (2000).
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Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N

X;=Xi_q+a_1Pi-1 —6x;  and fy = i1 — Qj_14p;—1 — OT;
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Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N N

X; =X;_1+ Qj_1P;_1 — 6x; and o =1_1— &;_1Ap;_1 — Or;

. Let f, = b — AR, —

fi =b—A@®;—1 +Q;_1P;—1 — 6x;) — (Fi_1 — @;_1AP;_1 — OT17)
— fi—l + A5xi + 57"l'

=fo+ Z;.n:1(145xm + 67p) <—— accumulation of local rounding errors

If:ll < 0(¢e) Z,inzo NAANNZ .l + |7l van der Vorst and Ye, 2000

If;ll < 0(€)||A||(||x|| + max l.||9?m||) Greenbaum, 1997

AN < OENLNANNAT ZE ol I Sleijpen and van der Vorst, 1995
14



Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1
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Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1

* In finite precision:

Xi =Xj—q +a&_1D;—1 + 6x; ry = fi_qg — Qj—q §;—1 + 6T
fi =i - (b - A%)
= fi—1— @;—1(8;—1 — ApP;_1) + 617 + Abx;

=fot+ Z£n=1(6rm + Adxy) — Gid;

where

Gi = S‘i — A i di = [6{0, ...,ai_l]T

= Amplification of local rounding errors possible depending on @;s and B;s
See recent work: (Cools et al., 2017), (Carson et al., 2017)
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Numerical Example
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Attainable accuracy of s-step CG
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i
Il < Mfoll + ) L+ MIANIZI + ]
m=1

For s-step CG: i = sk +j (see C., 2015)
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Vet | < Wfoll + €T )" (1 + WA | + [l
m=1

where c is a low-degree polynomial in s, and

[ = max [[G7]| - [||Tell

<k

= Amplification of local rounding errors possible depending on conditioning of basis .



Numerical example

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))
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Numerical example
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* Can also use other, more well-conditioned bases to improve convergence rate

and accuracy (see, e.g. Philippe and Reichel, 2012). .



Numerical example

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))
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Residual Replacement

* ldea: improve accuracy by replacing 7; with flI(b — AX;) in certain
iterations (Van der Vorst and Ye, 2000)
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* ldea: improve accuracy by replacing 7; with flI(b — AX;) in certain
iterations (Van der Vorst and Ye, 2000)
e Choose when to replace based on estimate of ||f;|| = ||b — AX; — 7|
* Replace often enough such that ||f;|| remains small

* But don't replace when error in computing fl(b — AX;) would
perturb recurrence and cause convergence delay

* See (Strakos and Tichy, 2002)

* This strategy can be adapted for both pipelined KSMs (Cools and
Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)

* In both cases, estimate of ||f;|| can be computed inexpensively

* Improves accuracy to comparable level as classical method in
many cases
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Scalability of pipelined CG with RR

» PETSc implementation using MPICH-3.1.3 communication
» Benchmark problem: 2D Laplacian model, 1,000,000 unknowns
» System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG Accuracy i.f.o. total time spent
(12-240 cores) (240 cores)

9_

" —8—CG

N 3 o ~
. . : -

residual norm

speedup over CG on 1 node
w

N
T

0 5 10 15 20
nr of nodes (x12 MPI procs) total time (s.)
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Conclusions and takeaways

* Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

* Pipelined methods, s-step methods, hybrid approaches
« But must also consider finite precision behavior!
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methods for large-scale problems

* Pipelined methods, s-step methods, hybrid approaches
« But must also consider finite precision behavior!

* Other communication-avoiding and communication-hiding approaches
possible

* e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this
session)

* Best approach is highly application-dependent

 Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels
in Part [I: MS40

* Many interesting open problems and challenges as we push toward exascale-
level computing!
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Thank Youl

erinc@cims.nyu.edu

math.nyu.edu/~erinc



