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Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

Today's Systems
Predicted Exascale

Systems*
Factor 

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect 
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2
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applications at exascale! 
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Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

2



Krylov Subspace Methods

In each iteration: 

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Linear systems: Select approximate solution

𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

Krylov Subspace Method: projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0
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Conjugate gradient method: 𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 ⟹ 𝒓𝑵 = 𝟎
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Conjugate Gradient on the World's Fastest Computer
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current #1 
on top500

Linpack benchmark 
(dense 𝐴𝑥 = 𝑏, direct)

74% efficiency

HPCG benchmark 
(sparse 𝐴𝑥 = 𝑏, iterative)

0.4% efficiency

Conjugate Gradient on the World's Fastest Computer
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The Conjugate Gradient (CG) Method 

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end
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The Conjugate Gradient (CG) Method 
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The Conjugate Gradient (CG) Method 
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The Conjugate Gradient (CG) Method 

Iteration Loop

Sparse Matrix 
× Vector

Inner Products

Vector Updates

Inner Products
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 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring 

processors (nearest neighbor MPI collective)

×

Cost Per Iteration
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 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding
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 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)
• all processors must exchange data and wait for all

communication to finish before proceeding

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring 

processors (nearest neighbor MPI collective)

Low computation/communication ratio 

⇒ Performance is communication-bound

SpMV

orthogonalize

×

Cost Per Iteration

×
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Reducing Synchronization Cost

Communication cost has motivated many approaches to reducing 
synchronization cost in Krylov subspace methods:

Hiding communication: Pipelined Krylov subspace methods 
• Introduce auxiliary vectors to decouple SpMV and inner products

• Enables overlapping of communication and computation 

Avoiding communication: s-step Krylov subspace methods
• Compute iterations in blocks of s (using a different Krylov subspace basis)

• Reduces number of synchronizations per iteration by a factor of O(s)

6

* Both equivalent to classical CG in exact arithmetic



𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax 

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖−  𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
7

Pipelined CG (Ghysels and Vanroose 2013)
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• Uses auxiliary vectors 

𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖, 𝑧𝑖 ≡ 𝐴2𝑟𝑖

Pipelined CG (Ghysels and Vanroose 2013)
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• Uses auxiliary vectors 

𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖, 𝑧𝑖 ≡ 𝐴2𝑟𝑖

• Removes sequential dependency 
between SpMV and inner products

• Allows the use of nonblocking
(asynchronous) MPI communication to
overlap SpMV and inner products

• See talk by W. Gropp in Part II: MS40

• Hides the latency of global 
communications

Pipelined CG (Ghysels and Vanroose 2013)
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Iteration Loop
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Iteration Loop

Inner 
Products

SpMV

Vector Updates
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Pipelined CG (Ghysels and Vanroose 2013)

Iteration Loop

Inner 
Products
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Vector Updates

End Loop

O
ve

rl
ap
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𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖
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𝑇𝑟𝑖−  𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖
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end
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Overview of Pipelined KSMs

• Pipelined GMRES (Ghysels et al. 2013)

• Deep pipelines - compute ℓ new Krylov basis vectors during 
global communication, orthogonalize after ℓ iterations

• Talk by W. Vanroose, IP7 Sat March 10

• Pipelined CG (Ghysels et al. 2013)

• With deep pipelines (Cornelis et al. 2018)

• Pipelined BiCGSTAB (Cools et al. 2017)

• Probabilistic performance modeling of pipelined KSMs

• Talk by H. Morgan, Part II: MS40

8



s-step CG
𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and 

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1 ] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
9

• Block iterations into groups of s

• Construct basis matrix 𝒴𝑘 to 
expand Krylov subspace s 
dimensions at once
• Same latency cost as 1 

SpMV (under assumptions 
on sparsity)

• 1 global synchronization to 
compute inner products between 
basis vectors

• Update coordinates of iteration 
vectors in the constructed basis 
• requires no communication



s-step CG

Outer Loop
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for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and 

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘
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′ = 𝑒1
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′
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′
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′ = 𝑥𝑗−1
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′
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′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
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s-step CG
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s-step CG

Outer Loop
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s-step CG

Outer Loop
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O(s) SPMVs

O(𝑠2) Inner 
Products (one 

synchronization)

Inner Loop
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Overview of s-step KSMs

• s-step CG/Lanczos: (Van Rosendale, 1983), (Chronopoulos and Gear, 
1989), (Leland, 1989), (Toledo, 1995), (Hoemmen et al., 2010)

• s-step GMRES/Arnoldi: (Walker, 1988), (Chronopoulous and Kim, 1990), 
(Bai, Hu, Reichel, 1991), (de Sturler, 1991), (Joubert, Carey, 1992), (Erhel, 
1995), (Hoemmen et al., 2010)

• s-step BICGSTAB (C. et al., 2012)

• s-step QMR (Feuerriegel, Bücker, 2013)

• s-step LSQR (C., 2015)

• Many others...

• Recent work:

• Hybrid pipelined s-step methods (Yamazaki et al., 2017)

• Talk by P. Luszczek in Part II, MS40

• Improving convergence rate and scalability in preconditioned s-step 
GMRES methods

• Talk by J. Erhel in MS28 (this session)
10



The effect of finite precision

Well-known that roundoff error has 
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank 

deficiency
• Residuals no longer orthogonal 

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!
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Well-known that roundoff error has 
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank 

deficiency
• Residuals no longer orthogonal 

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG 11



• Synchronization-reducing variants are designed to reduce the time/iteration

Optimizing high performance iterative solvers
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• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint 
on accuracy 

Optimizing high performance iterative solvers

• Changes to how the recurrences are 
computed can exacerbate finite 
precision effects of convergence delay 
and loss of accuracy

• Crucial that we understand and take 
into account how algorithm 
modifications will affect the 
convergence rate and attainable 
accuracy!

12

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6
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• As  𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst 
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht 
and Strakoš (2000).

Maximum attainable accuracy

13



• In finite precision HSCG, iterates are updated by 
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Attainable accuracy of pipelined CG

• Pipelined CG updates 𝑥𝑖 and 𝑟𝑖 via:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1,         𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
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Attainable accuracy of pipelined CG

⇒ Amplification of local rounding errors possible depending on 𝛼𝑖
′𝑠 and 𝛽𝑖

′𝑠

See recent work: (Cools et al., 2017), (Carson et al., 2017)
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Numerical Example

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

16



Numerical Example

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

𝐴: nos4 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 100, 𝜅 𝐴 ≈ 2e3
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For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 휀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 휀𝒄𝛤  

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 휀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

Γ = max
ℓ≤𝑘

 𝒴ℓ
+ ⋅  𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖

(see C., 2015)
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Numerical example

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6
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𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6
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Numerical example

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

* Can also use other, more well-conditioned bases to improve convergence rate 
and accuracy (see, e.g. Philippe and Reichel, 2012). 
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Numerical example

𝐴: nos4 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 100, 𝜅 𝐴 ≈ 2e3

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])
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Residual Replacement

• Idea: improve accuracy by replacing  𝑟𝑖 with fl(𝑏 − 𝐴 𝑥𝑖) in certain 
iterations (Van der Vorst and Ye, 2000)
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• Choose when to replace based on estimate of 𝑓𝑖 ≡ ‖𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖‖

• Replace often enough such that ‖𝑓𝑖‖ remains small

• But don't replace when error in computing fl(𝑏 − 𝐴 𝑥𝑖) would 
perturb recurrence and cause convergence delay

• See (Strakoš and Tichý, 2002)
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• Choose when to replace based on estimate of 𝑓𝑖 ≡ ‖𝑏 − 𝐴 𝑥𝑖 −  𝑟𝑖‖

• Replace often enough such that ‖𝑓𝑖‖ remains small

• But don't replace when error in computing fl(𝑏 − 𝐴 𝑥𝑖) would 
perturb recurrence and cause convergence delay

• See (Strakoš and Tichý, 2002)

• This strategy can be adapted for both pipelined KSMs (Cools and 
Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)

• In both cases, estimate of ‖𝑓𝑖‖ can be computed inexpensively 

• Improves accuracy to comparable level as classical method in 
many cases 
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Scalability of pipelined CG with RR
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Conclusions and takeaways

• Need new approaches to reducing synchronization cost in Krylov subspace 
methods for large-scale problems

• Pipelined methods, s-step methods, hybrid approaches

• But must also consider finite precision behavior!
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• Need new approaches to reducing synchronization cost in Krylov subspace 
methods for large-scale problems

• Pipelined methods, s-step methods, hybrid approaches

• But must also consider finite precision behavior!

• Other communication-avoiding and communication-hiding approaches 
possible

• e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this 
session)

• Best approach is highly application-dependent

• Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels
in Part II: MS40

• Many interesting open problems and challenges as we push toward exascale-
level computing!

22



Thank You!

erinc@cims.nyu.edu

math.nyu.edu/~erinc


