MS 28: Scalable Communication-Avoiding and

-Hiding Krylov Subspace Methods |

Organizers: Siegfried Cools, University of Antwerp, Belgium
Erin C. Carson, New York University, USA

10:50-11:10 High Performance Variants of Krylov Subspace Methods
Erin C. Carson, New York University, USA

11:15-11:35 About Parallel Variants of GMRES Algorithm

Jocelyne Erhel, Inria-Rennes, France

11:40-12:00 Enlarged GMRES for Reducing Communication

Olivier Tissot, Inria, France

MS 40: Scalable Communication-Avoiding and

-Hiding Krylov Subspace Methods |l

Organizers: Siegfried Cools, University of Antwerp, Belgium

2:40-3:00

3:05-3:25

3:30-3:50

3:55-4:15

Erin C. Carson, New York University, USA

Impact of Noise Models on Pipelined Krylov Methods
Hannah Morgan, University of Chicago, USA

Scalable Krylov Methods for Spectral Graph Partitioning
Pieter Ghysels, Lawrence Berkeley National Laboratory, USA

Using Non-Blocking Communication to Achieve Scalability for
Preconditioned Conjugate Gradient Methods

William D. Gropp, University of lllinois at Urbana-Champaign, USA

Performance of S-Step and Pipelined Krylov Methods

Piotr Luszczek, University of Tennessee, Knoxville, USA

High Performance Variants of

Krylov Subspace Methods

Erin Carson
New York University

SIAM PP18, Tokyo, Japan
March 8, 2018

Collaborators

Emmanuel Agullo, Inria, France

Siegfried Cools, University of Antwerp, Belgium

James Demmel, University of California, Berkeley, USA
Pieter Ghysels, Lawrence Berkeley National Laboratory, USA
Luc Giraud, Inria, France

Miro Rozloznik, Czech Academy of Sciences, Czech Republic
/denék Strakos, Charles University, Czech Republic

Petr Tichy, Czech Academy of Sciences, Czech Republic
Miroslav Ttima, Czech Academy of Sciences, Czech Republic
Wim Vanroose, Antwerp University, Belgium

Emrullah Fatih Yetkin, Inria, France

Exascale System Projections

Today's Systems Predicted Exascale

Systems*
System Peak 10 flops/s 108 flops/s

Node Memory 9 3

Bandwidth 10“ GB/s 10° GB/s
Interconnect 1 2

Bandwidth 10" GB/s 104 GB/s

Memory Latency 10~7 s 5.10" 8¢

Interconnect Latency 10=6 s 5.10"7 ¢

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

, Predicted Exascale Factor
Today's Systems 5
Systems Improvement
System Peak 10 flops/s 108 flops/s 100
Node Memory 9 3
Bandwidth 104 GB/s 10° GB/s 10
Interconnect 1 2
Bandwidth 10 GB/s 104 GB/s 10
Memory Latency 10~7 s 5.10" 8¢ 2

Interconnect Latency 10~ s 5-10"7s \ 2 /
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

* Reducing time spent moving data/waiting for data will be essential for
applications at exascale!

Exascale System Projections

, Predicted Exascale Factor
Today's Systems 5
Systems Improvement
System Peak 10 flops/s 108 flops/s 100
Node Memory 9 3
Bandwidth 104 GB/s 10° GB/s 10
Interconnect 1 2
Bandwidth 10 GB/s 104 GB/s 10
Memory Latency 10~7 s 5.10" 8¢ 2

Interconnect Latency 10~ s 5-10"7s \ 2 /
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

* Reducing time spent moving data/waiting for data will be essential for

applications at exascale!
= communication avoiding & communication hiding .

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace
:;CL(A, To) = Span{T'O,AT'O,AZT'O, ...,Ai_lro}

where A is an N X N matrix and ry is a length-N vector

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace
:;CL(A, To) = Span{TO,ATO,AZTO, ...,Ai_lro}

where A is an N X N matrix and ry is a length-N vector

In each iteration:
* Add a dimension to the Krylov subspace
— Forms nested sequence of Krylov subspaces

Ki(A,1y) cKy(A 1) € - €Ki (A1)

* Orthogonalize (with respect to some C;)
* Linear systems: Select approximate solution
X; € xg + K;(A, 1)
using 1; = b — Ax; L C;

Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace
:;CL(A, To) = Span{TO,ATO,AZTO, ...,Ai_lro}

where A is an N X N matrix and ry is a length-N vector

In each iteration:
* Add a dimension to the Krylov subspace
— Forms nested sequence of Krylov subspaces

Ki(A,1y) cKy(A 1) € - €Ki (A1)

* Orthogonalize (with respect to some C;)
* Linear systems: Select approximate solution 0
x; € xo + K;i(A,71p)

using 1; = b — Ax; L C;

Conjugate gradient method: A is symmetric positive definite, C; = K;(4,1y)

r; L XK;(A4,r = X —Xill4 = min X—Z = rv=20
L3 (Am) e =xilla =, min =zl v

Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway

Site: Mational Supercamputing Center in Wuxi
Manufacturer: MRCFC

Cores: 10,647 600

Memaory: 1,310,720 GE

Processor: Sunway SW26010 260C 1.45GHz
Interconnect: Sunway

Performance

Linpack Performance [Rmax] 93.014.6 TFlop/s

Thecretical Peak [Rpeak] 125,436 TFlop/s

Nmax 12,288,000

HPCG [TFleop/s] 4508

Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway m CUTTENE 41
SW26010 260C 1.45GHz, Sunway on top500
Site: Mational Supercamputing Center in Wuxi

Manufacturer: MRCFC

Cores: 10,647 600

Memaory: 1,310,720 GE

Processor: Sunway SW26010 260C 1.45GHz

Interconnect: Sunway

Performance

Linpack Performance [Rmax] 93.014.6 TFlop/s

Thecretical Peak [Rpeak] 125,436 TFlop/s

Nmax 12,288,000

HPCG [TFleop/s] 4508

Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway

SW26010 260C 1.45GHz, Sunway

Site:

Manufacturer:

Cores:

Memaory:

Processor:

Interconnect:

Performance

Linpack Performance [Rmax)
Thecretical Peak [Rpeak]
Nmax

HPCG [TFlop/s]

Mational Supercomputing Center in Wuxi
MRCFC

10,647 600

1,310,720 GE

Sunway SW24010 260C 1.45GHz

Sunway

93,0146 TFlop/s

125,436 TFlop/s
12,288,000
4308

current #1
‘ on topb00

Linpack benchmark

d (dense Ax = b, direct)

74% efficiency

Conjugate Gradient on the World's Fastest Computer

Sunway TalthulLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway

current #1
‘ on topb00

Site: Mational Supercomputing Center in Wuxi
Manufacturer: NMECPC
Cores: 10,647 600
Memaory: 1,310,720 GE .
Linpack benchmark
Processor: Sunway SW26010 260C 1.45GHz |~ .
(dense Ax = b, direct)
Int t: S .
nierconnec Ry 74% efﬂuency
Performance

93,0146 TFlop/s

Thecretical Peak [Rpeak] 125,436 TFlop/s

Linpack Performance [Rmax)

| HPCG benchmark
(sparse Ax = b, iterative)

HPCG [TFlop/s] 0.4% efficiency

Nmax 12,288,000

The Conjugate Gradient (CG) Method

T'O :b_Axo, pO :T'O
fori = 1:nmax

end

The Conjugate Gradient (CG) Method

. _ lteration Loo

fori = 1:nmax

end

The Conjugate Gradient (CG) Method

TO :b_Axo, pO :TO
fori = 1:nmax

end

Iteration Loop

Sparse Matrix
X Vector

The Conjugate Gradient (CG) Method

for i

end

TO :b_Axo, pO :TO

= 1:nmax

Ti—1Ti—1

M1 T T ap,

Xi = Xj—1 T QAj_1Pi-1

r, =Ti—1 — Aj_1Ap;—4

T
T'i ri

Bi =

Ti1Ti-1

p; =1 + BiPi—1

Iteration Loop

Sparse Matrix
X Vector

Inner Products

The Conjugate Gradient (CG) Method

_ _ Iteration Loo
ro—b_Axo, po—ro p

for i = 1:nmax Sparse Matrix
T
T X Vector
al—l - T AD;
pl—l Pi-1

Inner Products

Xi = Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;_4

T
T'i ri

Bi =

Ti1Ti-1

p; =1 + BiPi—1

end

The Conjugate Gradient (CG) Method

. _ Iteration Loo
ro—b_Axo, po—ro p

forl == 1:nmaX Sparse Matrix
T
" T X Vector
i-1 — _T
Di_
t 1- Inner Products

Xi = Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;_4

rlT'ri
ﬁi = —F Inner Products
Ti—1Ti-1

p; =1 + BiPi—1

end

The Conjugate Gradient (CG) Method

. _ Iteration Loo
ro—b_Axo, po—ro p

'Forl == 1:nmaX Sparse Matrix
T
" T X Vector
i-1 — _T
Di_
t 1- Inner Products

Xi = Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;_4

riT'ri
,81' = —F Inner Products
Ti1Ti-1

p; =T + BiPi—1

end

The Conjugate Gradient (CG) Method

. _ Iteration Loo
ro—b_Axo, po—ro p

forl == 1:nmaX Sparse Matrix
T
" T X Vector
i-1 — _T
Di_
t 1- Inner Products

Xi = Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;_4

T
Ti ri

Bi = —F

Ti—1Ti-1

p; =T + BiPi—1

Inner Products

end

End Loop

Cost Per lteration

— Sparse matrix-vector multiplication (SpMV) §
* 0(nnz) flops » a

* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)

Cost Per lteration

— Sparse matrix-vector multiplication (SpMV)

* 0(nnz) flops »
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)

— Inner products

* O(N) flops
» global synchronization (MPI Allreduce) —
* all processors must exchange data and wait for a//

communication to finish before proceeding

Cost Per lteration

— Sparse matrix-vector multiplication (SpMV)

* 0(nnz) flops »
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)

— Inner products

* O(N) flops
» global synchronization (MPI Allreduce) —
* all processors must exchange data and wait for a//

communication to finish before proceeding

SpMV
Low computation/communication ratio
e

orthogonali = Performance is communication-bound

Reducing Synchronization Cost

Communication cost has motivated many approaches to reducing
synchronization cost in Krylov subspace methods:

Hiding communication: Pipelined Krylov subspace methods

* Introduce auxiliary vectors to decouple SpMV and inner products
* Enables overlapping of communication and computation

Avoiding communication: s-step Krylov subspace methods

» Compute iterations in blocks of s (using a different Krylov subspace basis)
* Reduces number of synchronizations per iteration by a factor of O(s)

* Both equivalent to classical CG in exact arithmetic

Pipelined CG (Ghysels and Vanroose 2013)

T'O - b_Axo, pO =T0
So = AZI?(), W0T= Aro, Zoy = AWO,
o = 1o To/Po So
for i = 1:nmax
Xi =Xj_1ta&_1Di—1
i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—1

q; = Aw;
T

B; = i Ti

i — T

Ti—1Ti-1
T

o = Ti Ti

l

— wlri=Bi/ai—Drir
pi =1 + Bibi—1
S; = Wi + BiSi—1
zi = q; + Bizi—4

end

Pipelined CG (Ghysels and Vanroose 2013)

T'O = b_Axo, pO =T0
SO = Apo, Wo = Aro,ZO = AWO, ¢ USGS aUX|||ary vectors

T
Aoy =713 T S = =
0 = 70 To/Po So s; = Ap;, w; = Ary, z; = A%,
for i = 1:nmax

Xi = Xi—1+ a;i_1Di-1
i ="i-1 — &j-1Si-1

Wi =W;i_1 —&i—1Zj—1

q; = Aw;
T

B; = i Ti

i — T

Ti—1Ti-1
T

o = Ti Ti

l

— wlri=Bi/ai—Drir
pi =1 + Bibi—1
S; = Wi + BiSi—1
zi = q; + Bizi—4

end

Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

SO = Apo, Wo = Aro, Zoy = AWO, USGS aUX|||ary vectors
— T T
Qg = 79 7o/Po So

for i = 1:nmax

Si = Api/ W; = Ari, Z; = Azri

Xi = Xi—1 + Q&j—1Pi—1 .
* Removes sequential dependency

1 =Tio1 — ®&i—1Si—1 between SpMV and inner products
Wi = Wi — &j-1Zj—1

= Aw: :
i = AW * Allows the use of nonblocking
T . .
B; = — (asynchronous) MPIl communication to
¥ rl T "
i~1 overlap SpMV and inner products
a; = i Ty » See talk by W. Gropp in Part Il: MS40

— wlri=Bi/ai_)rl T
p; =1 + Bibi—1
Si =w; + Bisi_4

zZi=q; +Pizi_4

* Hides the latency of global
communications

end

Pipelined CG (Ghysels and Vanroose 2013)

T'O == b_Axo, po =T0

SO == Apo, Wgo = Aro,ZO - AWO,
— 4T T .

Ao =T To/PoSo Iteration Loop

for i = 1:nmax

Xi = Xi—1+ a;i_1Di-1
i ="i-1 — &j-1Si-1

Wi = Wi1 — &j-1Zj—1

q; = Aw;
T

B; = i Ti

i — T

Ti1Ti-1
T

o = Ti Ti

l

— wlri=Bi/ai_)rl T
pi =1 + Bibi—1
S; = Wi + BiSi—1
zi = q; + Bizi—4

end

Pipelined CG (Ghysels and Vanroose 2013)

T'O == b_Axo, pO =T0

SO == Apo, Wgo = Aro,ZO - AWO,
— 4T T .

Ao =T To/PoSo Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—q

q; = Aw;
T

B; = i Ti

i — T

Ti1Ti-1
T

o = Ti Ti

l

— wlri=Bi/ai_)rl T
pi =1 + Bibi—1
S; = Wi + BiSi—1
zi = q; + Bizi—4

end

Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

So =Ap0,W0 =ATO,ZO =AWO,
— T .
Ao =T To/PoSo Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—q

o
)
q; = Aw; < Inner
T, 2 Products
B; = 1
borliria
T
o = ri T'i
;=

wlri—(Bi/ai— 1T
pi =1 + Bibi—1
S; = Wi + BiSi—1
zi = q; + Bizi—4

end

Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

So = AZ;O' W0T= Aro, Zoy = AWO,
Qg = 79 7o/Po So

for i = 1:nmax

end

Xi = Xi—1 t &i_1Pi—1

i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—q

q; = Aw;
T

B; = i Ti

1~ ..T

Ti—1Ti-1
T

o = ri T'i

;=

wlri—(Bi/ai— 1T
pi =1 + Bibi—1
S; = Wi + BiSi—1

z; =q; + Bizi—q

Overlap

Iteration Loop

Inner

Products

Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

So = AZ;O' W0T= Aro, Zoy = AWO,
Qg = 79 7o/Po So

for i = 1:nmax

end

Xi = Xi—1 t &i_1Pi—1

i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—q

q; = Aw;
T

B; = Ti Ti

1~ ..T

Ti—1Ti-1
T

o = ri T'i

;=

wlri—(Bi/ai— 1T
pi =1 + Bibi—1
S; = Wi + BiSi—1

z; =q; + Bizi—q

Overlap

Iteration Loop

Inner

Products

Pipelined CG (Ghysels and Vanroose 2013)

To = b — Axg, po = 10

So = AZ;O' W0T= Aro, Zoy = AWO,
Qg = 79 7o/Po So

for i = 1:nmax

end

Xi = Xi—1 t &i_1Pi—1

i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—q

q; = Aw;
T

B; = Ti Ti

1~ ..T

Ti—1Ti-1
T

o = ri T'i

;=

wlri—(Bi/ai— 1T
pi =1 + Bibi—1
S; = Wi + BiSi—1

z; =q; + Bizi—q

Overlap

Iteration Loop

Precond
Inner

Products

End Loop

Overview of Pipelined KSMs

Pipelined GMRES (Ghysels et al. 2013)

* Deep pipelines - compute £ new Krylov basis vectors during
global communication, orthogonalize after ¢ iterations

* Talk by W. Vanroose, IP7 Sat March 10

Pipelined CG (Ghysels et al. 2013)
« With deep pipelines (Cornelis et al. 2018)

Pipelined BiCGSTAB (Cools et al. 2017)

Probabilistic performance modeling of pipelined KSMs
* Talk by H. Morgan, Part |I: MS40

s-step CG

T'O - b —Axo,po - ro

for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
Span(yk) = jCS+1(AJ psk) + f}CS(AI rsk)

—qqT
Gk = Y Y
I O I __ I
Xo = U, Ty = €s42,Pp = €1
forj=1:s
T
I L
Ask+j-1 —

il 1GkBrP}—,

I ’
Xj = Xj_1t Asg+j-1Pj-1

! !

_ !
T =1_q1 — Qsk+j-1BkPj_1
IT !
Bsk+j = VLS
! !
S] rjzlgkrj—l

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsk> Ts(k+1) Pske+1)] = Yk [xs, 75, Ds]

end

Block iterations into groups of s

Construct basis matrix Y, to
expand Krylov subspace s
dimensions at once
* Same latency cost as 1
SpMV (under assumptions
on sparsity)

1 global synchronization to
compute inner products between
basis vectors

Update coordinates of iteration
vectors in the constructed basis
* requires no communication

s-step CG

To = b= AXopo =T Outer Loop
for k = 0:nmax/s
Compute Y and By, such that AYy = YpBy and

Span(yk) = ‘7(5+1(A1 psk) + fK‘S(AJ rsk)

T
Gk = Y Y
I O I __ I
Xo = U, Ty = €s42,Pp = €1
forj=1:s
T
I L
Ask+j-1 —

il 1GkBrP}—,

I ’
Xj = Xj_1 t Qsptj-1Pj-1

r__ !
T =1_q1 — Qsk+j-1BkPj_1
IT !

Bsk+j = rT] Ly
S ! [
J Ti—19kTj—1

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsk> Ts(k+1) Pske+1)] = Yk [xs, 75, Ds]

end

s-step CG

TO - b _Axo,po - ro

Outer Loop
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and

Compute basis
span(Yy) = K1 (A, Dsi) + Ks(A,751) O(S) SPMVs
Gk = Ui Uk
xo = 0,79 = 542,00 = €1
forj=1:s
Ask+j-1 = JELS

il 1GkBrP}—,

I ’
Xj = Xj_1 t Qsptj-1Pj-1

! !

—_ 4
T =1_q1 — Qsk+j-1BkPj_1
T !
Bsk+j = 7;{ L
S /4 [;
J TiZ19kTj-1

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsk> Ts(k+1) Pske+1)] = Yk [xs, 75, Ds]

end

s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yi) = Kss1(A,psk) + K (A, 751)

g
Gk = Y Y
I O I __ A
Xo = U, Ty = €s4+2,P0 = €1
forj=1:s
T
_ _Tj=aGKTjs
Ask+j-1 =

Pl 1GkBrP] 4

I /
Xj = Xj_q1 t Ask4j-1Dj-1

! !

— !
T =Tj—1 — Ask+j-1BrkPj-1
T l
Bsk+j = L
ST T;Z1gkr]{—1

I ’
p; =1 + Bsk+jPj-1

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)

s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yi) = Kss1(A,psk) + K (A, 751)

g
Gk = Y Y
I O I __ A
Xo = U, Ty = €s4+2,P0 = €1
forj=1:s
T
_ _Tj=aGKTjs
Ask+j-1 =

Pl 1GkBrP] 4

I /
Xj = Xj_q1 t Ask4j-1Dj-1

! !

— !
T =Tj—1 — Ask+j-1BrkPj-1
T l
Bsk+j = L
ST T;Z1gkr]{—1

I ’
p; =1 + Bsk+jPj-1

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)

Inner Loop

s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yi) = Kss1(A,psk) + K (A, 751)

g
Gk = Y Y
I O I __ A
Xo = U, Ty = €s4+2,P0 = €1
forj=1:s
T
_ _Tj=aGKTjs
Ask+j-1 =

Pl GkBrD}_y
I /
Xj = Xj_1 T Akt j-1Pj-1

! !

!
T =Tj_q — Ask+j—1BrkPj-1

IT !

Ti GkTj

IT !
Ti—19kTj—1

I ’
pj =1 + Bsk+jPj-1

ﬁsk+j =

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no
comm.)

s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yi) = Kss1(A,psk) + K (A, 751)

g
Gk = Y Y
I O I __ A
Xo = U, Ty = €s4+2,P0 = €1
forj=1:s
T
_ _Tj=aGKTjs
Ask+j-1 =

Pl GkBrD}_y
I /
Xj = Xj_1 T Akt j-1Pj-1

! !

!
T =Tj_q — Ask+j—1BrkPj-1

IT !

Ti GkTj

IT !
Ti—19kTj—1

I ’
pj =1 + Bsk+jPj-1

ﬁsk+j =

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)

Inner Loop

Local Vector
Updates (no
comm.)

End Inner Loop

s-step CG

o =b — Axg,po =19
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yi) = Kss1(A,psk) + K (A, 751)

g
Gk = Y Yk
I O I __ A
Xo = U, Ty = €s4+2,P0 = €1
forj=1:s
T
_ _Tj=aGKTjs
Ask+j-1 =

Pl GkBrD}_y
I /
Xj = Xj_1 T Akt j-1Pj-1

! !

!
T =Tj_q — Ask+j—1BrkPj-1

IT !

Ti GkTj

IT !
Ti—19kTj—1

I ’
pj =1 + Bsk+jPj-1

ﬁsk+j =

end

[Xs(k+1)—Xsko Tsk+1) Psk+1)] = Yk [%5, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)

Inner Loop

Local Vector S
Updates (no times
comm.)

End Inner Loop

End Outer Loop 9

Overview of s-step KSMs

* s-step CG/Lanczos: (Van Rosendale, 1983), (Chronopoulos and Gear,
1989), (Leland, 1989), (Toledo, 1995), (Hoemmen et al., 2010)

* s-step GMRES/Arnoldi: (Walker, 1988), (Chronopoulous and Kim, 1990),
(Bai, Hu, Reichel, 1991), (de Sturler, 1991), (Joubert, Carey, 1992), (Erhel,
1995), (Hoemmen et al., 2010)

 s-step BICGSTAB (C. et al., 2012)

* s-step QMR (Feuerriegel, Biicker, 2013)
* s-step LSQR (C., 2015)

* Many others...

* Recent work:
 Hybrid pipelined s-step methods (Yamazaki et al., 2017)

* Talk by P. Luszczek in Part Il, MS40

* Improving convergence rate and scalability in preconditioned s-step
GMRES methods

* Talk by J. Erhel in MS28 (this session)

10

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!

11

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!

A-norm of the error

Classical CG, double precision
107t
10'10‘ _
10'15 _
0 200 400 600 800 1000 1200
lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6

11

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!

A-norm of the error

Classical CG, double precision
107t
10'10‘ _
10'15 _
0 200 400 600 800 1000 1200
lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6

11

The effect of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!

A-norm of the error

Classical CG, double precision
10
10'10‘ _
10'15 _
0 200 400 600 800 1000 1200
lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG .

Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration

12

Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration

* But this is not the whole story!

12

Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration

* But this is not the whole story!

* What we really want to minimize is the runtime, subject to some constraint
on accuracy

12

Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration
* But this is not the whole story!

* What we really want to minimize is the runtime, subject to some constraint
on accuracy

* Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

A-norm of the error

0 200 400 600 800 1000 1200
lteration

A: bcsstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7e6 12

Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration
* But this is not the whole story!

* What we really want to minimize is the runtime, subject to some constraint
on accuracy

* Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

A-norm of the error

* Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

0 200 400 600 800 1000 1200
lteration

A: bcsstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7e6 12

Maximum attainable accuracy

» Accuracy depends on the size of the true residual: ||b — AX;||

13

Maximum attainable accuracy

» Accuracy depends on the size of the true residual: ||b — AX;||

* Rounding errors cause the true residual, b — AX;, and the updated residual, 7;,
to deviate

13

Maximum attainable accuracy

» Accuracy depends on the size of the true residual: ||b — AX;||

* Rounding errors cause the true residual, b — AX;, and the updated residual, 7;,
to deviate

° Writing b —AjC\i = ”I,’\'i + b —AjC\i — 7,’\'1',

b = A%l < |71l + [Ib — A%; — 7]l

* As ||7]| = 0, ||b — AX;|| depends on ||b — AX; — 7|

13

Maximum attainable accuracy

» Accuracy depends on the size of the true residual: ||b — AX;||

* Rounding errors cause the true residual, b — AX;, and the updated residual, 7;,
to deviate

° Writing b —AjC\i = ”I,’\'i + b —AjC\i — 7,’\'1',

b = A%l < |71l + [Ib — A%; — 7]l

* As ||7]| = 0, ||b — AX;|| depends on ||b — AX; — 7|

* Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Bjorck, Elfving and Strakos (1998) and Gutknecht

and Strakos (2000).

13

Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N

X;=Xi_q+a_1Pi-1 —6x; and fy = i1 — Qj_14p;—1 — OT;

14

Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N N

X; =X;_1+ Qj_1P;_1 — 6x; and o =1_1— &;_1Ap;_1 — Or;

. Let f, = b — AR, —

14

Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N

X;=Xi_q+a_1Pi-1 —6x; and fy = i1 — Qj_14p;—1 — OT;

. Let f, = b — AR, —

A\ N

fi =b—A&;_1 + Qj_1P;—1 — 6x;) — (fi—1 — @;_1AP;—1 — 617)

14

Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N N

X; =X;_1+ Qj_1P;_1 — 6x; and o =1_1— &;_1Ap;_1 — Or;

. Let f, = b — AR, —

fi =b—A&;_1 + Qj_1P;—1 — 6x;) — (fi—1 — @;_1AP;—1 — 617)
— fi—l + A5xi + 57"l'

14

Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N N

X; =X;_1+ Qj_1P;_1 — 6x; and o =1_1— &;_1Ap;_1 — Or;

. Let f, = b — AR, —

N

fi =b—A&;_1 + Qj_1P;—1 — 6x;) — (fi—1 — @;_1AP;—1 — 617)
— fi—l + A5xi + 57"l'
= fO + Z;.rl:l(A5xm + 5rm)

14

Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N N

X; =X;_1+ Qj_1P;_1 — 6x; and o =1_1— &;_1Ap;_1 — Or;

. Let f, = b — AR, —

fi =b—A@®;—1 +Q;_1P;—1 — 6x;) — (Fi_1 — @;_1AP;_1 — OT17)
— fi—l + A5xi + 57"l'

=fo+ Z;.n:1(145xm + 67p) <—— accumulation of local rounding errors

14

Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N N

X; =X;_1+ Qj_1P;_1 — 6x; and o =1_1— &;_1Ap;_1 — Or;

. Let f, = b — AR, —

fi =b—A@®;—1 +Q;_1P;—1 — 6x;) — (Fi_1 — @;_1AP;_1 — OT17)
— fi—l + A5xi + 57"l'

=fo+ Z;.n:1(145xm + 67p) <—— accumulation of local rounding errors

If:ll < 0(¢e) Z,inzo NAANNZ .l + |7l van der Vorst and Ye, 2000

If;ll < 0(€)||A||(||x|| + max l.||9?m||) Greenbaum, 1997

AN < OENLNANNAT ZE ol I Sleijpen and van der Vorst, 1995
14

Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1

15

Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1

* In finite precision:

N

X; = Xi—1 + &;_1P;—1 + 0X; fy = Ti—q1 — Qj—1 Sj—1 + OT;

15

Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1

* In finite precision:
Xi = Xi—1 + Q—1Pj—1 + 6x; fy = Ti—1 — @j—1 Si—1 + OT;
fi == (b= AR)
= fi-1 — @i-1(8i—1 — AP;—1) + 67y + Abx;

= fo+ XL _1(81, + Abx,,) — G;d

where

Gi — S'i —A i di - [C,Z\O, ...,&i_l]T

15

Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1

* In finite precision:

Xi =Xj—q +a&_1D;—1 + 6x; ry = fi_qg — Qj—q §;—1 + 6T
fi =i - (b - A%)
= fi—1— @;—1(8;—1 — ApP;_1) + 617 + Abx;

=fot+ Z£n=1(6rm + Adxy,) — Gid;

where

Gi — S'i —A i di - [C,Z\O, ...,&i_l]T

15

Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1

* In finite precision:

Xi =Xj—q +a&_1D;—1 + 6x; ry = fi_qg — Qj—q §;—1 + 6T
fi =i - (b - A%)
= fi—1— @;—1(8;—1 — ApP;_1) + 617 + Abx;

=fot+ Z£n=1(6rm + Adxy) — Gid;

where

Gi = S‘i —A i di — [6/20, ...,&i_l]T

15

Attainable accuracy of pipelined CG

* Pipelined CG updates x; and r; via:
Xi = Xj—1 + &i—1Pi—1, Ty =Ti—1 — Xj—1Si—1

* In finite precision:

Xi =Xj—q +a&_1D;—1 + 6x; ry = fi_qg — Qj—q §;—1 + 6T
fi =i - (b - A%)
= fi—1— @;—1(8;—1 — ApP;_1) + 617 + Abx;

=fot+ Z£n=1(6rm + Adxy) — Gid;

where

Gi = S‘i — A i di = [6{0, ...,ai_l]T

= Amplification of local rounding errors possible depending on @;s and B;s
See recent work: (Cools et al., 2017), (Carson et al., 2017)

15

Numerical Example

Classical CG |]
. — PipeCG]
_ 10
o
=
@
@
=
LE 10-10 L
=
| .
o
N
<L
10'15 L

0 200 400 600 800 1000 1200
lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6

16

Numerical Example

—Classical CG |] ol —Classical CG
—— PipeCG ' 10 —— PipeCG
[10-5 1 e
= o
@ @
E 10-10‘ L E
= =
- g 10
< < 10
10'15 L
' ' ' ' ' 10713 ' ' '
0 200 400 600 800 1000 1200 0 50 100 150 200
lteration Iteration
A: besstk03 from UFSMC, b: equal components in A: nos4 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1 the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6 N =100,k(A) = 2e3

16

Attainable accuracy of s-step CG

i
Il < Mfoll +) L+ MIANIZI +]
m=1

17

Attainable accuracy of s-step CG

i
Il < Mfoll +) L+ MIANIZI +]
m=1

For s-step CG: i = sk +j (see C., 2015)

sk+j
Vet | < Wfoll + €T)" (1 + WA | + [l
m=1

where c is a low-degree polynomial in s, and

[= max [[G7]| - [||Tell

<k

17

Attainable accuracy of s-step CG

i
Il < Mfoll +) L+ MIANIZI +]
m=1

For s-step CG: i = sk +j (see C., 2015)

sk+j
Vet | < Wfoll + €T)" (1 + WA | + [l
m=1

where c is a low-degree polynomial in s, and

[= max [[G7]| - [||Tell

<k

= Amplification of local rounding errors possible depending on conditioning of basis .

Numerical example

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))

—Classical CG
s-step CG, s=2| |

A-norm of the error

0 1000 2000 3000 4000 5000
lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b|]| = 1
N =112,k(A) = 7e6
18

Numerical example

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))

—Classical CG
s-step CG, s=2 | |
s-step CG, s=3| |

A-norm of the error

0 1000 2000 3000 4000 5000
lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b|]| = 1
N =112,k(A) = 7e6
18

Numerical example

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))

—Classical CG
. | s-step CG, s=2| |
L. 1077 s-step CG, s=3| |
g | s-step CG, s=4 | |
5 _
©
= _
E 10-1[} L
E I
O
&
<
10'15 -
0 1000 2000 3000 4000 5000

lteration

A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b|]| = 1
N =112,k(A) = 7e6
18

Numerical example

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))

—Classical CG
. | s-step CG, s=2| |
L. 1077 s-step CG, s=3| |
g | s-step CG, s=4 | |
5 _
©
= _
E 10-1[} L
E I
O
&
<
10'15 -
0 1000 2000 3000 4000 5000

lteration

* Can also use other, more well-conditioned bases to improve convergence rate

and accuracy (see, e.g. Philippe and Reichel, 2012). .

Numerical example

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))

ol —Classical CG |

10 s-step CG, s=2| |
. s-step CG, s=3 | |
g s-step CG, 5=4 | |
@
2 qp°
©
=
2 10
< 10

10 ' ' '
0 50 100 150 200

lteration

A: nos4 from UFSMC, b: equal components in
the eigenbasisof A and [|b]| = 1
N =100,k(A) = 2e3
19

Residual Replacement

* ldea: improve accuracy by replacing 7; with flI(b — AX;) in certain
iterations (Van der Vorst and Ye, 2000)

20

Residual Replacement

* ldea: improve accuracy by replacing 7; with flI(b — AX;) in certain
iterations (Van der Vorst and Ye, 2000)
e Choose when to replace based on estimate of ||f;|| = ||b — AX; — 7|
* Replace often enough such that ||f;|| remains small

* But don't replace when error in computing fl(b — AX;) would
perturb recurrence and cause convergence delay

* See (Strakos and Tichy, 2002)

20

Residual Replacement

* ldea: improve accuracy by replacing 7; with flI(b — AX;) in certain
iterations (Van der Vorst and Ye, 2000)
e Choose when to replace based on estimate of ||f;|| = ||b — AX; — 7|
* Replace often enough such that ||f;|| remains small

* But don't replace when error in computing fl(b — AX;) would
perturb recurrence and cause convergence delay

* See (Strakos and Tichy, 2002)

* This strategy can be adapted for both pipelined KSMs (Cools and
Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)

20

Residual Replacement

* ldea: improve accuracy by replacing 7; with flI(b — AX;) in certain
iterations (Van der Vorst and Ye, 2000)
e Choose when to replace based on estimate of ||f;|| = ||b — AX; — 7|
* Replace often enough such that ||f;|| remains small

* But don't replace when error in computing fl(b — AX;) would
perturb recurrence and cause convergence delay

* See (Strakos and Tichy, 2002)

* This strategy can be adapted for both pipelined KSMs (Cools and
Vanroose, 2017) and s-step KSMs (Carson and Demmel, 2014)

* In both cases, estimate of ||f;|| can be computed inexpensively

* Improves accuracy to comparable level as classical method in
many cases

20

Scalability of pipelined CG with RR

» PETSc implementation using MPICH-3.1.3 communication
» Benchmark problem: 2D Laplacian model, 1,000,000 unknowns
» System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG Accuracy i.f.o. total time spent
(12-240 cores) (240 cores)

9_

" —8—CG

N 3 o ~
. . : -

residual norm

speedup over CG on 1 node
w

N
T

0 5 10 15 20
nr of nodes (x12 MPI procs) total time (s.)

21

Conclusions and takeaways

* Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

* Pipelined methods, s-step methods, hybrid approaches
« But must also consider finite precision behavior!

22

Conclusions and takeaways

* Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

* Pipelined methods, s-step methods, hybrid approaches
« But must also consider finite precision behavior!

* Other communication-avoiding and communication-hiding approaches
possible

* e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this
session)

22

Conclusions and takeaways

* Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

* Pipelined methods, s-step methods, hybrid approaches
« But must also consider finite precision behavior!

* Other communication-avoiding and communication-hiding approaches
possible

* e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this
session)

* Best approach is highly application-dependent

 Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels
in Part [I: MS40

22

Conclusions and takeaways

Need new approaches to reducing synchronization cost in Krylov subspace
methods for large-scale problems

* Pipelined methods, s-step methods, hybrid approaches
« But must also consider finite precision behavior!

* Other communication-avoiding and communication-hiding approaches
possible

* e.g., Enlarged Krylov subspace methods - Talk by O. Tissot, MS28 (this
session)

* Best approach is highly application-dependent

 Application of pipelined KSMs to graph partitioning - Talk by P. Ghysels
in Part [I: MS40

* Many interesting open problems and challenges as we push toward exascale-
level computing!

22

Thank Youl

erinc@cims.nyu.edu

math.nyu.edu/~erinc

