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Conjugate Gradient method for solving Ax = b
double precision (휀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖
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Krylov subspace methods

• In each iteration, 

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual 
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc. 

• Krylov Subspace Method is a projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

• Linear systems 𝐴𝑥 = 𝑏, eigenvalue problems, singular value problems, least squares, etc. 
• Best for: 𝐴 large & very sparse, stored implicitly, or only approximation needed 
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The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)
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𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
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𝑥 − 𝑧 𝐴
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Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that 

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model 

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖
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Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)
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Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

⇒ CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis 5



Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end
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minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

𝑥0 + 𝒦𝑖 𝐴, 𝑟0 = 𝑥0 + span{𝑝0, … 𝑝𝑖−1}

If 

𝑝𝑖 ⊥𝐴 𝑝𝑗 for 𝑖 ≠ 𝑗, 

1-dimensional minimizations in each 
iteration give 𝑖-dimensional 
minimization over the whole subspace
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Projection process in terms of communication:

Communication in CG
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Projection process in terms of communication:

“Add a dimension to 𝒦𝑖”
 Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring 

processors (P2P communication)

SpMV

×

Communication in CG
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“Orthogonalize with respect to 𝒞𝑖”

 Inner products

• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for all
communication to finish before proceeding
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 Inner products

• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for all
communication to finish before proceeding

Projection process in terms of communication:

“Add a dimension to 𝒦𝑖”
 Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring 

processors (P2P communication)

Dependencies between communication-bound kernels 
in each iteration limit performance!

SpMV

orthogonalize

×

×

Communication in CG
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Communication in HSCG
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Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor 
Improvement

System Peak ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 
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Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor 
Improvement

System Peak ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1

• Gaps between communication/computation cost only growing larger in 
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Reducing time spent moving data/waiting for data will be essential for 
applications at exascale! 9



Synchronization-reducing variants

Communication cost has motivated many approaches to reducing 
synchronization in CG:
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to 1 per iteration 
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Communication cost has motivated many approaches to reducing 
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG 

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points 
to 1 per iteration 

• Modifications also allow decoupling of SpMV and inner products - enables 
overlapping

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations
10



The effects of finite precision

Well-known that roundoff error has 
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank 

deficiency
• Residuals no longer orthogonal 

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!
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Well-known that roundoff error has 
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank 

deficiency
• Residuals no longer orthogonal 

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG
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• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint 
on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

• Changes to how the recurrences are 
computed can exacerbate finite 
precision effects of convergence delay 
and loss of accuracy

• Crucial that we understand and take 
into account how algorithm 
modifications will affect the 
convergence rate and attainable 
accuracy!
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= 𝑓0 +  𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(휀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 휀  𝑚=0
𝑖 𝑁𝐴 𝐴  𝑥𝑚 +  𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 휀 𝑁𝐴 𝐴 𝐴−1  𝑚=0
𝑖  𝑟𝑚 Sleijpen and van der Vorst, 1995
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2

• Can then also merge the updates of 𝑥𝑖, 𝑟𝑖, and 𝑝𝑖

• Developed independently by Johnson (1983, 1984), van 
Rosendale (1983, 1984), Saad (1985)

• Many other similar approaches

• Could also compute 𝛼𝑖−1 from 𝛽𝑖−1:

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1
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Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified formula for  𝛼𝑖−1
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CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as 

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖

we can combine these to obtain a 3-term recurrence for the residuals (STCG):
𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖
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• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young 
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)
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𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖
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(1992, 1993)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young 
(1981)
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− 𝑒𝑖−2
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1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)
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1
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𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end
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Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for 
HSCG
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• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for 
HSCG

• Residual gap bounded by sum of local errors PLUS local errors 
multiplied by factors which depend on 

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

⇒ Large residual oscillations can cause these factors to be large!

⇒ Local errors can be amplified!
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Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989) 

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and 
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(  𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21
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Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖
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• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and 𝐴2𝑟𝑖 to remove sequential 
dependency between SpMV and inner products

• Allows the use of nonblocking (asynchronous) MPI communication to
overlap SpMV and inner products

• Hides the latency of global communications
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GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax 

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖−  𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
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GVCG (Ghysels and Vanroose 2014)
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Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 휀

1 − 𝑂 휀
𝜅( 𝑈𝑖) 𝐴  𝑃𝑖 + 𝐴  𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 −  𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 −  𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1  𝛽1 … …  𝛽1
 𝛽2 ⋯  𝛽𝑖−1

0 1  𝛽2 …  𝛽2 ⋯  𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1  𝛽𝑖−1

0 ⋯ ⋯ 0 1
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2 , ℓ < 𝑗
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• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!
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• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Very similar to the results for attainable accuracy in the 3-term STCG
• Seemingly innocuous change can cause drastic loss of accuracy

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗
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2 , ℓ < 𝑗
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effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖



Simple pipelined CG

27

effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖



s-step CG

• Idea: Compute blocks of 𝑠 iterations at once 

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s
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s-step CG

• Idea: Compute blocks of 𝑠 iterations at once 

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68) 
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van 

Rosendale (1983);   Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes; 
growing relative cost of communication
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Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖
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s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that   span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to 

the recurrence 𝐴𝒴 = 𝒴 ℬ
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s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be 
computed by independently by each processor without communication: 
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s-step CG
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𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘
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′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠
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Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴  𝒴𝑘 =  𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ =  𝑥𝑘,𝑗−1

′ +  𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ =  𝑟𝑘,𝑗−1

′ − ℬ𝑘  𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with    𝑞𝑘,𝑗−1
′ = fl(  𝛼𝑠𝑘+𝑗−1  𝑝𝑘,𝑗−1

′ )

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 =  𝒴𝑘  𝑥𝑘,𝑗
′ +  𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 =  𝒴𝑘  𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗
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Error in 
basis change

Sources of local roundoff error in s-step CG
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• We can write the gap between the true and updated residuals 𝑓 in terms 
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper 

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−  

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +  

𝑖=1

𝑠

𝐴  𝒴ℓ𝜉ℓ,𝑖 +  𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ  𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −  

𝑖=1

𝑗

𝐴  𝒴𝑘𝜉𝑘,𝑖 +  𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ  𝑞𝑘,𝑖−1
′
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For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 휀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 휀𝒄 𝚪𝒌  

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 휀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

 Γ𝑘 = max
ℓ≤𝑘

Γℓ ,     where     Γℓ =  𝒴ℓ
+ ⋅  𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖

(see C., 2015)
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s-step CG
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s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])
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s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

Can also use other, more well-conditioned bases to improve convergence rate 
and accuracy (see, e.g. Philippe and Reichel, 2012). 
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s-step CG

• Even assuming perfect parallel scalability with s (which is usually not the case 
due to extra SpMVs and inner products), already at 𝑠 = 4 we are worse than 
HSCG in terms of number of synchronizations!
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A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3
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A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires 
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10, 

any of these methods will work!



Speedups for real applications
• s-step BICGSTAB bottom-solver implemented in BoxLib (AMR framework 

from LBL)

Low Mach Number Combustion Code (LMC): gas-phase combustion simulation

• Compared GMG with BICGSTAB vs. GMG with s-step BICGSTAB (s=4) on a 
Cray XE6 for two different applications

• Up to 2.5x speedup in bottom solve; up to 1.5x in overall MG solve

38
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(see Williams et al., IPDPS 2014)



Conclusions and takeaways

• Think of the bigger picture

• Much focus on modifying methods to speed up iterations

• But the speed of an iteration only part of the runtime:

runtime = (time/iteration) x (#iterations)
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Conclusions and takeaways

• Think of the bigger picture

• Much focus on modifying methods to speed up iterations

• But the speed of an iteration only part of the runtime:

runtime = (time/iteration) x (#iterations)

• And a solver that can't solve to required accuracy is useless!

• Solver runtime is only part of a larger scientific code

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization! 
see Málek and Strakoš, 2015)

• Key challenge: identify problems (or classes of problems) for which 
synchronization-reducing Krylov subspace methods can reduce runtime 
while meeting application-specific accuracy constraints

⇒ Requires understanding the effects of finite precision computations on 
convergence rate and accuracy
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Thank You!

erinc@cims.nyu.edu

math.nyu.edu/~erinc


