High performance Krylov subspace method variants

 and their behavior in finite precision

 and their behavior in finite precision}

Erin Carson
New York University

HPCSE17, May 24, 2017

Collaborators

Miroslav Rozložník

Institute of Computer Science, Czech Academy of Sciences

Zdeněk Strakoš

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Petr Tichý

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Miroslav Tůma

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Preprint NCMM/2016/08:
http://www.karlin.mff.cuni.cz/~strakos/download/2016 CarRozStrTicTum 16.pdf

Conjugate Gradient method for solving $A x=b$ double precision $\left(\varepsilon=2^{-53}\right)$
$\left\|x_{i}-x\right\|_{A}=\sqrt{\left(x_{i}-x\right)^{T} A\left(x_{i}-x\right)}$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i} p_{i} \\
& r_{i}=r_{i-1}-\alpha_{i} A p_{i} \\
& p_{i}=r_{i}+\beta_{i} p_{i}
\end{aligned}
$$

Conjugate Gradient method for solving $A x=b$ double precision $\left(\varepsilon=2^{-53}\right)$
$\left\|x_{i}-x\right\|_{A}=\sqrt{\left(x_{i}-x\right)^{T} A\left(x_{i}-x\right)}$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i} p_{i} \\
& r_{i}=r_{i-1}-\alpha_{i} A p_{i} \\
& p_{i}=r_{i}+\beta_{i} p_{i}
\end{aligned}
$$

Krylov subspace methods

- Linear systems $A x=b$, eigenvalue problems, singular value problems, least squares, etc.
- Best for: A large \& very sparse, stored implicitly, or only approximation needed
- Krylov Subspace Method is a projection process onto the Krylov subspace

$$
\mathcal{K}_{i}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
$$

where A is an $N \times N$ matrix and $r_{0}=b-A x_{0}$ is a length N vector

- In each iteration,
- Add a dimension to the Krylov subspace
- Forms nested sequence of Krylov subspaces

$$
\mathcal{K}_{1}\left(A, r_{0}\right) \subset \mathcal{K}_{2}\left(A, r_{0}\right) \subset \cdots \subset \mathcal{K}_{i}\left(A, r_{0}\right)
$$

- Orthogonalize (with respect to some \mathcal{C}_{i})
- Select approximate solution $x_{i} \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)$ using $r_{i}=b-A x_{i} \perp \mathcal{C}_{i}$
- Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

The conjugate gradient method

A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

The conjugate gradient method
A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

$$
r_{i} \perp \mathcal{K}_{i}\left(A, r_{0}\right) \quad \Leftrightarrow \quad\left\|x-x_{i}\right\|_{A}=\min _{z \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)}\|x-z\|_{A}
$$

The conjugate gradient method
A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

$$
\begin{aligned}
r_{i} \perp \mathcal{K}_{i}\left(A, r_{0}\right) & \Leftrightarrow \quad\left\|x-x_{i}\right\|_{A}=\min _{z \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)}\|x-z\|_{A} \\
& \Rightarrow \quad r_{N+1}=0
\end{aligned}
$$

The conjugate gradient method

A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

$$
\begin{aligned}
r_{i} \perp \mathcal{K}_{i}\left(A, r_{0}\right) & \Leftrightarrow \quad\left\|x-x_{i}\right\|_{A}=\min _{z \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)}\|x-z\|_{A} \\
& \Longrightarrow \quad r_{N+1}=0
\end{aligned}
$$

Connection with Lanczos

- With $v_{1}=r_{0} /\left\|r_{0}\right\|, i$ iterations of Lanczos produces $N \times i$ matrix $V_{i}=$ [v_{1}, \ldots, v_{i}], and $i \times i$ tridiagonal matrix T_{i} such that

$$
A V_{i}=V_{i} T_{i}+\delta_{i+1} v_{i+1} e_{i}^{T}, \quad T_{i}=V_{i}^{*} A V_{i}
$$

- CG approximation x_{i} is obtained by solving the reduced model

$$
T_{i} y_{i}=\left\|r_{0}\right\| e_{1}, \quad x_{i}=x_{0}+V_{i} y_{i}
$$

The conjugate gradient method

A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

$$
\begin{aligned}
r_{i} \perp \mathcal{K}_{i}\left(A, r_{0}\right) & \Leftrightarrow \quad\left\|x-x_{i}\right\|_{A}=\min _{z \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)}\|x-z\|_{A} \\
& \Longrightarrow \quad r_{N+1}=0
\end{aligned}
$$

Connection with Lanczos

- With $v_{1}=r_{0} /\left\|r_{0}\right\|, i$ iterations of Lanczos produces $N \times i$ matrix $V_{i}=$ [v_{1}, \ldots, v_{i}], and $i \times i$ tridiagonal matrix T_{i} such that

$$
A V_{i}=V_{i} T_{i}+\delta_{i+1} v_{i+1} e_{i}^{T}, \quad T_{i}=V_{i}^{*} A V_{i}
$$

- CG approximation x_{i} is obtained by solving the reduced model

$$
T_{i} y_{i}=\left\|r_{0}\right\| e_{1}, \quad x_{i}=x_{0}+V_{i} y_{i}
$$

- Connections with orthogonal polynomials, Stieltjes problem of moments, GaussCristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

The conjugate gradient method

A is symmetric positive definite, $\mathcal{C}_{i}=\mathcal{K}_{i}\left(A, r_{0}\right)$

$$
\begin{aligned}
r_{i} \perp \mathcal{K}_{i}\left(A, r_{0}\right) & \Leftrightarrow \quad\left\|x-x_{i}\right\|_{A}=\min _{z \in x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)}\|x-z\|_{A} \\
& \Rightarrow \quad r_{N+1}=0
\end{aligned}
$$

Connection with Lanczos

- With $v_{1}=r_{0} /\left\|r_{0}\right\|, i$ iterations of Lanczos produces $N \times i$ matrix $V_{i}=$ $\left[v_{1}, \ldots, v_{i}\right]$, and $i \times i$ tridiagonal matrix T_{i} such that

$$
A V_{i}=V_{i} T_{i}+\delta_{i+1} v_{i+1} e_{i}^{T}, \quad T_{i}=V_{i}^{*} A V_{i}
$$

- CG approximation x_{i} is obtained by solving the reduced model

$$
T_{i} y_{i}=\left\|r_{0}\right\| e_{1}, \quad x_{i}=x_{0}+V_{i} y_{i}
$$

- Connections with orthogonal polynomials, Stieltjes problem of moments, GaussCristoffel quadrature, others (see 2013 book of Liesen and Strakoš)
\Rightarrow CG (and other Krylov subspace methods) are highly nonlinear
- Good for convergence, bad for ease of finite precision analysis

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_{i}, r_{i}, p_{i}

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_{i}, r_{i}, p_{i}

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end } \quad
\end{aligned}
$$

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_{i}, r_{i}, p_{i}

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

minimizes $\left\|x-x_{i}\right\|_{A}$ along line

$$
z(\alpha)=x_{i-1}+\alpha p_{i-1}
$$

If

$$
p_{i} \perp_{A} p_{j} \text { for } i \neq j
$$

1-dimensional minimizations in each iteration give i-dimensional minimization over the whole subspace

$$
x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)=x_{0}+\operatorname{span}\left\{p_{0}, \ldots p_{i-1}\right\}
$$

Communication in CG

Projection process in terms of communication:

Communication in CG

Projection process in terms of communication:
"Add a dimension to $\mathcal{K}_{i}{ }^{\prime}$
\rightarrow Sparse matrix-vector multiplication (SpMV)

- Must communicate vector entries w/ neighboring processors (P2P communication)

SpMV

Communication in CG

Projection process in terms of communication:
"Add a dimension to $\mathcal{K}_{i}{ }^{\prime}$
\rightarrow Sparse matrix-vector multiplication (SpMV)

- Must communicate vector entries w/ neighboring processors (P2P communication)
"Orthogonalize with respect to \mathcal{C}_{i} "
\rightarrow Inner products
- global synchronization (MPI_Allreduce)
- all processors must exchange data and wait for all communication to finish before proceeding

SpMV
orthogonalize

Communication in CG

Projection process in terms of communication:
"Add a dimension to $\mathcal{K}_{i}{ }^{\prime}$
\rightarrow Sparse matrix-vector multiplication (SpMV)

- Must communicate vector entries w/ neighboring processors (P2P communication)
"Orthogonalize with respect to \mathcal{C}_{i} "
\rightarrow Inner products
- global synchronization (MPI_Allreduce)
- all processors must exchange data and wait for all
 communication to finish before proceeding

Dependencies between communication-bound kernels in each iteration limit performance!

Communication in HSCG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Communication in HSCG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Communication in HSCG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Communication in HSCG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Communication in HSCG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Communication in HSCG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}} \\
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} A p_{i-1} \\
\beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1}
\end{array} \\
& \text { end }
\end{aligned}
$$

Future exascale systems

	Petascale Systems (2009)
System Peak	$2 \cdot 10^{15} \mathrm{flops} / \mathrm{s}$
Node Memory Bandwidth	$25 \mathrm{~GB} / \mathrm{s}$
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$
Memory Latency	100 ns
Interconnect Latency	$1 \mu \mathrm{~s}$

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Future exascale systems

	Petascale Systems (2009)	Predicted Exascale Systems
System Peak	$2 \cdot 10^{15} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$
Node Memory Bandwidth	$25 \mathrm{~GB} / \mathrm{s}$	$0.4-4 \mathrm{~TB} / \mathrm{s}$
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$	$100-400 \mathrm{~GB} / \mathrm{s}$
Memory Latency	100 ns	50 ns
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)		

Future exascale systems

	Petascale Systems (2009)	Predicted Exascale Systems	Factor Improvement
System Peak	$2 \cdot 10^{15} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$	~ 1000
Node Memory Bandwidth	$25 \mathrm{~GB} / \mathrm{s}$	$0.4-4 \mathrm{~TB} / \mathrm{s}$	$\sim 10-100$
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$	$100-400 \mathrm{~GB} / \mathrm{s}$	~ 100
Memory Latency	100 ns	50 ns	~ 1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)			

Future exascale systems

	Petascale Systems (2009)	Predicted Exascale Systems	Factor Improvement
System Peak	$2 \cdot 10^{15} \mathrm{flops} / \mathrm{s}$	$10^{18} \mathrm{flops} / \mathrm{s}$	~ 1000
Node Memory Bandwidth	$25 \mathrm{~GB} / \mathrm{s}$	$0.4-4 \mathrm{~TB} / \mathrm{s}$	$\sim 10-100$
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$	$100-400 \mathrm{~GB} / \mathrm{s}$	~ 100
Memory Latency	100 ns	50 ns	~ 1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Gaps between communication/computation cost only growing larger in future systems
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Early work: CG with a single synchronization point per iteration
- 3-term recurrence CG
- Using modified computation of recurrence coefficients
- Using auxiliary vectors

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Early work: CG with a single synchronization point per iteration
- 3-term recurrence CG
- Using modified computation of recurrence coefficients
- Using auxiliary vectors
- Pipelined Krylov subspace methods
- Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
- Modifications also allow decoupling of SpMV and inner products - enables overlapping

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Early work: CG with a single synchronization point per iteration
- 3-term recurrence CG
- Using modified computation of recurrence coefficients
- Using auxiliary vectors
- Pipelined Krylov subspace methods
- Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
- Modifications also allow decoupling of SpMV and inner products - enables overlapping
- s-step Krylov subspace methods
- Compute iterations in blocks of s using a different Krylov subspace basis
- Enables one synchronization per s iterations

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal - Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal - Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true residual $b-A x_{i}$ and updated residual r_{i} deviate!

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$

The effects of finite precision

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal - Minimization no longer exact!

2. Loss of attainable accuracy

- Rounding errors cause true

A : bcsstk03 from UFSMC, b : equal components in the eigenbasis of A and $\|b\|=1$

$$
N=112, \kappa(A) \approx 7 \mathrm{e} 6
$$ residual $b-A x_{i}$ and updated residual r_{i} deviate!

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

$$
\text { runtime }=\text { (time/iteration }) \times(\# \text { iterations })
$$

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

$$
\text { runtime }=\text { (time/iteration }) \times(\# \text { iterations })
$$

- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy

Optimizing high performance iterative solvers

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

$$
\text { runtime }=\text { (time/iteration }) \times(\# \text { iterations })
$$

- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy
- Crucial that we understand and take into account how algorithm modifications will affect the convergence rate and attainable accuracy!

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\widehat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \widehat{x}_{i}\right\|$
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \hat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $\left\|b-A \hat{x}_{i}\right\|$
- Rounding errors cause the true residual, $\boldsymbol{b}-\boldsymbol{A} \widehat{\boldsymbol{x}}_{\boldsymbol{i}}$, and the updated residual, $\hat{\boldsymbol{r}}_{\boldsymbol{i}}$, to deviate
- Writing $b-A \hat{x}_{i}=\hat{r}_{i}+b-A \hat{x}_{i}-\hat{r}_{i}$,

$$
\left\|b-A \widehat{x}_{i}\right\| \leq\left\|\hat{r}_{i}\right\|+\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|
$$

- As $\left\|\hat{r}_{i}\right\| \rightarrow 0,\left\|b-A \hat{x}_{i}\right\|$ depends on $\left\|b-A \hat{x}_{i}-\hat{r}_{i}\right\|$
- Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
f_{i}=b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \widehat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i}
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)
\end{aligned}
$$

Maximum attainable accuracy of HSCG

- In finite precision HSCG, iterates are updated by

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \text { and } \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

- Let $f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$

$$
\begin{aligned}
f_{i} & =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right) \\
& =f_{i-1}+A \delta x_{i}+\delta r_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(A \delta x_{m}+\delta r_{m}\right)
\end{aligned}
$$

$\left\|f_{i}\right\| \leq O(\varepsilon) \sum_{m=0}^{i} N_{A}\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\| \quad$ van der Vorst and $\mathrm{Ye}, 2000$
$\left\|f_{i}\right\| \leq O(\varepsilon)\|A\|\left(\|x\|+\max _{m=0, \ldots, i}\left\|\hat{x}_{m}\right\|\right) \quad$ Greenbaum, 1997
$\left\|f_{i}\right\| \leq O(\varepsilon) N_{A}\||A|\|\left\|A^{-1}\right\| \sum_{m=0}^{i}\left\|\hat{r}_{m}\right\| \quad$ Sleijpen and van der Vorst, 1995

Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in HSCG to 1 synchronization point per iteration

Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in HSCG to 1 synchronization point per iteration
- Compute β_{i} from α_{i-1} and $A p_{i-1}$ using relation

$$
\left\|r_{i}\right\|^{2}=\alpha_{i-1}^{2}\left\|A p_{i-1}\right\|^{2}-\left\|r_{i-1}\right\|^{2}
$$

- Can then also merge the updates of x_{i}, r_{i}, and p_{i}
- Developed independently by Johnson $(1983,1984)$, van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches

Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in HSCG to 1 synchronization point per iteration
- Compute β_{i} from α_{i-1} and $A p_{i-1}$ using relation

$$
\left\|r_{i}\right\|^{2}=\alpha_{i-1}^{2}\left\|A p_{i-1}\right\|^{2}-\left\|r_{i-1}\right\|^{2}
$$

- Can then also merge the updates of x_{i}, r_{i}, and p_{i}
- Developed independently by Johnson $(1983,1984)$, van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches
- Could also compute α_{i-1} from β_{i-1} :

$$
\alpha_{i-1}=\left(\frac{r_{i-1}^{T} A r_{i-1}}{r_{i-1}^{T} r_{i-1}}-\frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}
$$

Modified recurrence coefficient computation

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?

Modified recurrence coefficient computation

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $\left\|f_{i}\right\|$

$$
\begin{aligned}
f_{i} & =b-A \hat{x}_{i}-\hat{r}_{i} \\
& =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
\end{aligned}
$$

Modified recurrence coefficient computation

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $\left\|f_{i}\right\|$

$$
\begin{aligned}
f_{i} & =b-A \hat{x}_{i}-\hat{r}_{i} \\
& =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
\end{aligned}
$$

- As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_{i} and \hat{r}_{i},

$$
f_{i}=f_{i-1}+A \delta x_{i}+\delta r_{i}
$$

still holds

Modified recurrence coefficient computation

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $\left\|f_{i}\right\|$

$$
\begin{aligned}
f_{i} & =b-A \hat{x}_{i}-\hat{r}_{i} \\
& =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
\end{aligned}
$$

- As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_{i} and \hat{r}_{i},

$$
f_{i}=f_{i-1}+A \delta x_{i}+\delta r_{i}
$$

still holds

- Rounding errors made in computing $\hat{\alpha}_{i-1}$ do not contribute to the residual gap

Modified recurrence coefficient computation

- What is the effect of changing the way the recurrence coefficients (α and β) are computed in HSCG?
- Notice that neither α nor β appear in the bounds on $\left\|f_{i}\right\|$

$$
\begin{aligned}
f_{i} & =b-A \hat{x}_{i}-\hat{r}_{i} \\
& =b-A\left(\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}-\delta x_{i}\right)-\left(\hat{r}_{i-1}-\hat{\alpha}_{i-1} A \hat{p}_{i-1}-\delta r_{i}\right)
\end{aligned}
$$

- As long as the same $\hat{\alpha}_{i-1}$ is used in updating \hat{x}_{i} and \hat{r}_{i},

$$
f_{i}=f_{i-1}+A \delta x_{i}+\delta r_{i}
$$

still holds

- Rounding errors made in computing $\hat{\alpha}_{i-1}$ do not contribute to the residual gap
- But may change computed \hat{x}_{i}, \hat{r}_{i}, which can affect convergence rate...

Modified recurrence coefficient computation

Example: HSCG with modified formula for α_{i-1}

$$
\alpha_{i-1}=\left(\frac{r_{i-1}^{T} A r_{i-1}}{r_{i-1}^{T} r_{i-1}}-\frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}
$$

CG with two three-term recurrences (STCG)

- HSCG recurrences can be written as

$$
A P_{i}=R_{i+1} \underline{L}_{i}, \quad R_{i}=P_{i} U_{i}
$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$
A R_{i}=R_{i+1} \underline{T_{i}}, \quad \underline{T_{i}}=\underline{L}_{i} U_{i}
$$

CG with two three-term recurrences (STCG)

- HSCG recurrences can be written as

$$
A P_{i}=R_{i+1} \underline{L}_{i}, \quad R_{i}=P_{i} U_{i}
$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$
A R_{i}=R_{i+1} \underline{T}_{i}, \quad \underline{T_{i}}=\underline{L}_{i} U_{i}
$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \quad p_{0}=r_{0}, \quad x_{-1}=x_{0}, \quad r_{-1}=r_{0}, \quad e_{-1}=0 \\
& \text { for } i=1 \text { nmax } \\
& \qquad q_{i-1}=\frac{\left(r_{i-1}, A r_{i-1}\right)}{\left(r_{i-1}, r_{i-1}\right)}-e_{i-2} \\
& x_{i}=x_{i-1}+\frac{1}{q_{i-1}}\left(r_{i-1}+e_{i-2}\left(x_{i-1}-x_{i-2}\right)\right) \\
& \qquad r_{i}=r_{i-1}+\frac{1}{q_{i-1}}\left(-A r_{i-1}+e_{i-2}\left(r_{i-1}-r_{i-2}\right)\right) \\
& \text { end }
\end{aligned}
$$

CG with two three-term recurrences (STCG)

- HSCG recurrences can be written as

$$
A P_{i}=R_{i+1} \underline{L_{i}}, \quad R_{i}=P_{i} U_{i}
$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$
A R_{i}=R_{i+1} \underline{T_{i}}, \quad \underline{T_{i}}=\underline{L}_{i} U_{i}
$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$
r_{0}=b-A x_{0}, \quad p_{0}=r_{0}, \quad x_{-1}=x_{0}, \quad r_{-1}=r_{0}, \quad e_{-1}=0
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& q_{i-1}=\frac{\left(r_{i-1}, A r_{i-1}\right)}{\left(r_{i-1}, r_{i-1}\right)}-e_{i-2} \\
& x_{i}=x_{i-1}+\frac{1}{q_{i-1}}\left(r_{i-1}+e_{i-2}\left(x_{i-1}-x_{i-2}\right)\right) \\
& r_{i}=r_{i-1}+\frac{1}{q_{i-1}}\left(-A r_{i-1}+e_{i-2}\left(r_{i-1}-r_{i-2}\right)\right) \\
& e_{i-1}=q_{i-1} \frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)}
\end{aligned}
$$

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

CG with two three-term recurrences (STCG)

- HSCG recurrences can be written as

$$
A P_{i}=R_{i+1} \underline{L_{i}}, \quad R_{i}=P_{i} U_{i}
$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$
A R_{i}=R_{i+1} \underline{T_{i}}, \quad \underline{T_{i}}=\underline{L}_{i} U_{i}
$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$
r_{0}=b-A x_{0}, \quad p_{0}=r_{0}, \quad x_{-1}=x_{0}, \quad r_{-1}=r_{0}, \quad e_{-1}=0
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& q_{i-1}=\frac{\left(r_{i-1}, A r_{i-1}\right)}{\left(r_{i-1}, r_{i-1}\right)}-e_{i-2} \\
& x_{i}=x_{i-1}+\frac{1}{q_{i-1}}\left(r_{i-1}+e_{i-2}\left(x_{i-1}-x_{i-2}\right)\right) \\
& r_{i}=r_{i-1}+\frac{1}{q_{i-1}}\left(-A r_{i-1}+e_{i-2}\left(r_{i-1}-r_{i-2}\right)\right) \\
& e_{i-1}=q_{i-1} \frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)}
\end{aligned}
$$

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)
end

- Similar approach (computing α_{i} using β_{i-1}) used by D'Azevedo, Eijkhout, Romaine $(1992,1993)$

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

$$
\max _{0 \leq \ell<j \leq i} \frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell}\right\|^{2}}
$$

Attainable accuracy of STCG

- Analyzed by Gutknecht and Strakoš (2000)
- Attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

$$
\max _{0 \leq \ell<j \leq i} \frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell}\right\|^{2}}
$$

\Rightarrow Large residual oscillations can cause these factors to be large!
\Rightarrow Local errors can be amplified!

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_{i} and using an auxiliary recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, \quad \alpha_{0}=\left(r_{0}, r_{0}\right) /\left(p_{0}, s_{0}\right) \\
& \text { for } i=1: \mathrm{nmax} \\
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=A r_{i} \\
& \beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
& \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(w_{i}, r_{i}\right)-\left(\beta_{i} / \alpha_{i-1}\right)\left(r_{i}, r_{i}\right)} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}
\end{aligned}
$$

end

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
- Uses auxiliary vector $s_{i} \equiv A p_{i}$ and same formula for α_{i}

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
- Uses auxiliary vector $s_{i} \equiv A p_{i}$ and same formula for α_{i}
- Also uses auxiliary vectors for $A r_{i}$ and $A^{2} r_{i}$ to remove sequential dependency between SpMV and inner products

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
- Uses auxiliary vector $s_{i} \equiv A p_{i}$ and same formula for α_{i}
- Also uses auxiliary vectors for $A r_{i}$ and $A^{2} r_{i}$ to remove sequential dependency between SpMV and inner products
- Allows the use of nonblocking (asynchronous) MPI communication to overlap SpMV and inner products
- Hides the latency of global communications

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$r_{0}=b-A x_{0}, p_{0}=r_{0}$
$s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}$,
$\alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}$
for $i=1$:nmax

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0}, \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

GVCG (Ghysels and Vanroose 2014)

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& s_{0}=A p_{0}, w_{0}=A r_{0}, z_{0}=A w_{0} \\
& \alpha_{0}=r_{0}^{T} r_{0} / p_{0}^{T} s_{0}
\end{aligned}
$$

$$
\text { for } i=1 \text { :nmax }
$$

$$
\begin{aligned}
& x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
& r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
& w_{i}=w_{i-1}-\alpha_{i-1} z_{i-1} \\
& q_{i}=A w_{i} \\
& \beta_{i}=\frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}} \\
& \alpha_{i}=\frac{r_{i}^{T} r_{i}}{w_{i}^{T} r_{i}-\left(\beta_{i} / \alpha_{i-1}\right) r_{i}^{T} r_{i}} \\
& p_{i}=r_{i}+\beta_{i} p_{i-1} \\
& s_{i}=w_{i}+\beta_{i} s_{i-1} \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}
\end{aligned}
$$

end

Attainable accuracy of pipelined CG

- What is the effect of adding auxiliary recurrences to the CG method?

Attainable accuracy of pipelined CG

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0}, s_{0}=A p_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{\left(r_{i-1}, r_{i-1}\right)}{\left(p_{i-1}, s_{i-1}\right)} \\
\\
\qquad x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
\\
\beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
\\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end } \\
s_{i}=A r_{i}+\beta_{i} s_{i-1}
\end{array}
\end{aligned}
$$

Attainable accuracy of pipelined CG

- What is the effect of adding auxiliary recurrences to the CG method?
- To isolate the effects, we consider a simplified version of a pipelined method
- Uses same update formulas for α and β as HSCG, but uses additional recurrence for $A p_{i}$

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0}, s_{0}=A p_{0} \\
& \text { for } i=1 \text { :nmax } \\
& \qquad \begin{array}{l}
\alpha_{i-1}=\frac{\left(r_{i-1}, r_{i-1}\right)}{\left(p_{i-1}, s_{i-1}\right)} \\
\\
\qquad x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1} \\
r_{i}=r_{i-1}-\alpha_{i-1} s_{i-1} \\
\\
\beta_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)} \\
\\
\qquad p_{i}=r_{i}+\beta_{i} p_{i-1} \\
\text { end } \\
s_{i}=A r_{i}+\beta_{i} s_{i-1}
\end{array}
\end{aligned}
$$

Attainable accuracy of simple pipelined CG

$$
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i}=\hat{r}_{i}-\left(b-A \hat{x}_{i}\right)
\end{gathered}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
\hat{x}_{i}=\hat{x}_{i-1} & +\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i}
\end{aligned}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
& \hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
& \qquad \begin{aligned}
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
& \hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
& \qquad \begin{aligned}
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{aligned}
& \hat{x}_{i}=\hat{x}_{i-1}+\hat{\alpha}_{i-1} \hat{p}_{i-1}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}} \quad \hat{r}_{i}=\hat{r}_{i-1}-\hat{\alpha}_{i-1} \hat{s}_{i-1}+\boldsymbol{\delta} \boldsymbol{r}_{\boldsymbol{i}} \\
& \qquad \begin{aligned}
f_{i} & =\hat{r}_{i}-\left(b-A \hat{x}_{i}\right) \\
& =f_{i-1}-\hat{\alpha}_{i-1}\left(\hat{s}_{i-1}-A \hat{p}_{i-1}\right)+\delta r_{i}+A \delta x_{i} \\
& =f_{0}+\sum_{m=1}^{i}\left(\delta r_{m}+A \delta x_{m}\right)-G_{i} d_{i}
\end{aligned}
\end{aligned}
$$

where

$$
G_{i}=\hat{S}_{i}-A \hat{P}_{i}, \quad d_{i}=\left[\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{i-1}\right]^{T}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{array}{cl}
\left\|G_{i}\right\| \leq & \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\hat{P}_{i}\right\|+\|A\|\left\|\widehat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \\
0 & 1 & \hat{\beta}_{\hat{\beta}_{2}} & \cdots & \hat{\beta}_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right]
\end{array}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\left\|G_{i}\right\| \leq \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\widehat{P}_{i}\right\|+\|A\|\left\|\hat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
0 & 1 & \hat{\beta}_{2} & \cdots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right] \\
\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j}=\frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell-1}\right\|^{2}}, \quad \ell<j
\end{gathered}
$$

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\left\|G_{i}\right\| \leq \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\widehat{P}_{i}\right\|+\|A\|\left\|\hat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
0 & 1 & \hat{\beta}_{2} & \cdots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right] \\
\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j}=\frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell-1}\right\|^{2}}, \quad \ell<j
\end{gathered}
$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!

Attainable accuracy of simple pipelined CG

$$
\begin{gathered}
\left\|G_{i}\right\| \leq \frac{O(\varepsilon)}{1-O(\varepsilon)}\left(\kappa\left(\widehat{U}_{i}\right)\|A\|\left\|\hat{P}_{i}\right\|+\|A\|\left\|\hat{R}_{i}\right\|\left\|\widehat{U}_{i}^{-1}\right\|\right) \\
\widehat{U}_{i}=\left[\begin{array}{cccc}
1 & -\hat{\beta}_{1} & 0 & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \widehat{U}_{i}^{-1}=\left[\begin{array}{ccccc}
1 & \hat{\beta}_{1} & \cdots & \cdots & \hat{\beta}_{1} \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
0 & 1 & \hat{\beta}_{2} & \cdots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & \hat{\beta}_{i-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right] \\
\beta_{\ell} \beta_{\ell+1} \cdots \beta_{j}=\frac{\left\|r_{j}\right\|^{2}}{\left\|r_{\ell-1}\right\|^{2}}, \quad \ell<j
\end{gathered}
$$

- Residual oscillations can cause these factors to be large!
- Errors in computed recurrence coefficients can be amplified!
- Very similar to the results for attainable accuracy in the 3-term STCG
- Seemingly innocuous change can cause drastic loss of accuracy

Simple pipelined CG

Simple pipelined CG

effect of using auxiliary vector $s_{i} \equiv A p_{i}$

Simple pipelined CG

effect of changing formula for recurrence coefficient α and using auxiliary vector $s_{i} \equiv A p_{i}$

Simple pipelined CG

effect of changing formula for recurrence coefficient α and using auxiliary vectors $s_{i} \equiv A p_{i}, w_{i} \equiv A r_{i}, z_{i} \equiv A^{2} r_{i}$

s-step CG

- Idea: Compute blocks of s iterations at once
- Compute updates in a different basis
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s

s-step CG

- Idea: Compute blocks of s iterations at once
- Compute updates in a different basis
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...

s-step CG

- Idea: Compute blocks of s iterations at once
- Compute updates in a different basis
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
- Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)

s-step CG

- Idea: Compute blocks of s iterations at once
- Compute updates in a different basis
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
- Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

s-step CG

- Idea: Compute blocks of s iterations at once
- Compute updates in a different basis
- Communicate every s iterations instead of every iteration
- Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
- Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)
- Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:

Expand solution space s dimensions at once
Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y})=\mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)$ according to the recurrence $A \underline{\mathcal{Y}}=\mathcal{Y} \mathcal{B}$

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:

Expand solution space s dimensions at once
Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y})=\mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)$ according to the recurrence $A \underline{\mathcal{Y}}=\mathcal{Y} \mathcal{B}$

Compute inner products between basis vectors in one synchronization

$$
\mathcal{G}=\mathcal{Y}^{T} \mathcal{Y}
$$

s-step CG

Key observation: After iteration i, for $j \in\{0, . ., s\}$,

$$
x_{i+j}-x_{i}, \quad r_{i+j}, \quad p_{i+j} \in \mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)
$$

s steps of s-step CG:

Expand solution space s dimensions at once
Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y})=\mathcal{K}_{s+1}\left(A, p_{i}\right)+\mathcal{K}_{s}\left(A, r_{i}\right)$ according to the recurrence $A \underline{\mathcal{Y}}=\mathcal{Y} \mathcal{B}$

Compute inner products between basis vectors in one synchronization

$$
\mathcal{G}=\mathcal{Y}^{T} \mathcal{Y}
$$

Compute s iterations of vector updates
Perform s iterations of vector updates by updating coordinates in basis \mathcal{Y} :

$$
x_{i+j}-x_{i}=\mathcal{Y} x_{j}^{\prime}, \quad r_{i+j}=\mathcal{Y} r_{j}^{\prime}, \quad p_{i+j}=\mathcal{Y} p_{j}^{\prime}
$$

s-step CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

s-step CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

s-step CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

$$
A p_{i+j} \quad=\quad A \underline{\mathcal{Y}} p_{j}^{\prime}
$$

s-step CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

$$
A p_{i+j} \quad=\quad A \underline{Y} p_{j}^{\prime}=\mathcal{Y}\left(\mathcal{B} p_{j}^{\prime}\right)
$$

$$
\stackrel{O(s)}{O(s)} \square^{\circ} \times \rrbracket
$$

s-step CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

s-step CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

s-step CG

For s iterations of updates, inner products and SpMVs (in basis \mathcal{Y}) can be computed by independently by each processor without communication:

$$
\begin{aligned}
& A p_{i+j} \quad=\quad \underline{\mathcal{Y}} p_{j}^{\prime}=\mathcal{Y}\left(\mathcal{B} p_{j}^{\prime}\right) \\
& \stackrel{O(s)}{O(s)} \square \square \square \\
& \left(r_{i+j}, r_{i+j}\right)=r_{j}^{\prime T} \mathcal{Y}^{T} \mathcal{Y} r_{j}^{\prime}=r_{j}^{\prime T} \mathcal{G} r_{j}^{\prime} \\
& \because \times \\
& \rightarrow \quad \quad \bullet \times \square \times \square
\end{aligned}
$$

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \text { nmax } / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \qquad \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end
$\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]$
end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \underline{\mathcal{Y}}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \quad \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{-1}^{\prime} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime \prime} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \quad \text { for } j=1: s
\end{aligned}
$$

$$
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}}
$$

$$
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime}
$$

$$
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime}
$$

$$
\beta_{s k+j}=\frac{r_{j}^{\prime T} G_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}
$$

$$
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\alpha_{s k+j-1}=\frac{r_{j-1}^{\prime T} G_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}}
$$

$$
x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime}
$$

$$
r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime}
$$

$$
\beta_{s k+j}=\frac{r_{j}^{\prime T} G_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}}
$$

$$
p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

s-step CG

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{0}=r_{0} \\
& \text { for } k=0: \mathrm{nmax} / s \\
& \quad \text { Compute } \mathcal{Y}_{k} \text { and } \mathcal{B}_{k} \text { such that } A \mathcal{Y}_{k}=\mathcal{Y}_{k} \mathcal{B}_{k} \text { and } \\
& \quad \operatorname{span}\left(\mathcal{Y}_{k}\right)=\mathcal{K}_{s+1}\left(A, p_{s k}\right)+\mathcal{K}_{s}\left(A, r_{s k}\right) \\
& \mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k} \\
& x_{0}^{\prime}=0, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1} \\
& \text { for } j=1: s
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s k+j-1}=\frac{r_{-1}^{\prime} \mathcal{G}_{k} r_{j-1}^{\prime}}{p_{j-1}^{\prime \prime} \mathcal{G}_{k} \mathcal{B}_{k} p_{j-1}^{\prime}} \\
& x_{j}^{\prime}=x_{j-1}^{\prime}+\alpha_{s k+j-1} p_{j-1}^{\prime} \\
& r_{j}^{\prime}=r_{j-1}^{\prime}-\alpha_{s k+j-1} \mathcal{B}_{k} p_{j-1}^{\prime} \\
& \beta_{s k+j}=\frac{r_{j}^{\prime T} \mathcal{G}_{k} r_{j}^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_{k} r_{j-1}^{\prime}} \\
& p_{j}^{\prime}=r_{j}^{\prime}+\beta_{s k+j} p_{j-1}^{\prime}
\end{aligned}
$$

end

$$
\left[x_{s(k+1)}-x_{s k}, r_{s(k+1)}, p_{s(k+1)}\right]=\mathcal{Y}_{k}\left[x_{s}^{\prime}, r_{s}^{\prime}, p_{s}^{\prime}\right]
$$

end

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Updating coordinate vectors in the inner loop:

$$
\begin{aligned}
& \hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} \\
& \hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} \\
& \quad \text { with } \quad \hat{q}_{k, j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{k, j-1}^{\prime}\right)
\end{aligned}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{y}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Updating coordinate vectors in the inner loop:

$$
\begin{aligned}
& \hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} \\
& \hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} \\
& \quad \text { with } \quad \hat{q}_{k, j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{k, j-1}^{\prime}\right)
\end{aligned}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{y}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Updating coordinate vectors in the inner loop:

$$
\begin{array}{cc}
\hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} & \begin{array}{c}
\text { Error in updating } \\
\text { coefficient vectors }
\end{array} \\
\hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} & \\
\quad \text { with } \quad \hat{q}_{k, j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{k, j-1}^{\prime}\right) &
\end{array}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

$$
A \hat{\mathcal{Y}}_{k}=\hat{\mathcal{Y}}_{k} \mathcal{B}_{k}+\Delta \mathcal{Y}_{k}
$$

Updating coordinate vectors in the inner loop:

$$
\begin{array}{cc}
\hat{x}_{k, j}^{\prime}=\hat{x}_{k, j-1}^{\prime}+\hat{q}_{k, j-1}^{\prime}+\xi_{k, j} & \begin{array}{c}
\text { Error in updating } \\
\text { coefficient vectors }
\end{array} \\
\hat{r}_{k, j}^{\prime}=\hat{r}_{k, j-1}^{\prime}-\mathcal{B}_{k} \hat{q}_{k, j-1}^{\prime}+\eta_{k, j} \longleftarrow \quad \text { with } \quad \hat{q}_{k, j-1}^{\prime}=\operatorname{fl}\left(\hat{\alpha}_{s k+j-1} \hat{p}_{k, j-1}^{\prime}\right) &
\end{array}
$$

Recovering CG vectors for use in next outer loop:

$$
\begin{aligned}
& \hat{x}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{x}_{k, j}^{\prime}+\hat{x}_{s k}+\phi_{s k+j} \\
& \hat{r}_{s k+j}=\hat{\mathcal{Y}}_{k} \hat{r}_{k, j}^{\prime}+\psi_{s k+j}
\end{aligned}
$$

Attainable accuracy of s-step CG

- We can write the gap between the true and updated residuals f in terms of these errors:

$$
\begin{aligned}
f_{s k+j}= & f_{0} \\
& -\sum_{\ell=0}^{k-1}\left[A \phi_{s \ell+s}+\psi_{s \ell+s}+\sum_{i=1}^{s}\left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell, i}+\hat{\mathcal{Y}}_{\ell} \eta_{\ell, i}-\Delta \mathcal{Y}_{\ell} \hat{q}_{\ell, i-1}^{\prime}\right]\right] \\
& -A \phi_{s k+j}-\psi_{s k+j}-\sum_{i=1}^{j}\left[A \hat{\mathcal{Y}}_{k} \xi_{k, i}+\hat{\mathcal{Y}}_{k} \eta_{k, i}-\Delta \mathcal{Y}_{\ell} \hat{q}_{k, i-1}^{\prime}\right]
\end{aligned}
$$

- Using standard rounding error results, this allows us to obtain an upper bound on $\left\|f_{s k+j}\right\|$.

Attainable accuracy of s-step CG

- We can write the gap between the true and updated residuals f in terms of these errors:

$$
\begin{aligned}
f_{s k+j}= & f_{0} \\
& -\sum_{\ell=0}^{k-1}\left[A \phi_{s \ell+s}+\psi_{s \ell+s}+\sum_{i=1}^{s}\left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell, i}+\hat{\mathcal{Y}}_{\ell} \eta_{\ell, i}-\Delta \mathcal{Y}_{\ell} \hat{q}_{\ell, i-1}^{\prime}\right]\right] \\
& -A \phi_{s k+j}-\psi_{s k+j}-\sum_{i=1}^{j}\left[A \hat{\mathcal{Y}}_{k} \xi_{k, i}+\hat{\mathcal{Y}}_{k} \eta_{k, i}-\Delta \mathcal{Y}_{\ell} \hat{q}_{k, i-1}^{\prime}\right]
\end{aligned}
$$

- Using standard rounding error results, this allows us to obtain an upper bound on $\left\|f_{s k+j}\right\|$.

Attainable accuracy of s-step CG

- We can write the gap between the true and updated residuals f in terms of these errors:

$$
\begin{aligned}
f_{s k+j}= & f_{0} \\
& -\sum_{\ell=0}^{k-1}\left[A \phi_{s \ell+s}+\psi_{s \ell+s}+\sum_{i=1}^{s}\left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell, i}+\hat{\mathcal{Y}}_{\ell} \eta_{\ell, i}-\Delta \mathcal{Y}_{\ell} \hat{q}_{\ell, i-1}^{\prime}\right]\right] \\
& -A \phi_{s k+j}-\psi_{s k+j}-\sum_{i=1}^{j}\left[A \hat{\mathcal{Y}}_{k} \xi_{k, i}+\hat{\mathcal{Y}}_{k} \eta_{k, i}-\Delta \mathcal{Y}_{\ell} \hat{q}_{k, i-1}^{\prime}\right]
\end{aligned}
$$

- Using standard rounding error results, this allows us to obtain an upper bound on $\left\|f_{s k+j}\right\|$.

Attainable accuracy of s-step CG

- We can write the gap between the true and updated residuals f in terms of these errors:

$$
\left.\begin{array}{rl}
f_{s k+j}= & f_{0} \\
& -\sum_{\ell=0}^{k-1}\left[A \phi_{s \ell+s}+\psi_{s \ell+s}+\sum_{i=1}^{s}\left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell, i}+\hat{\mathcal{Y}}_{\ell} \eta_{\ell, i}-\Delta \mathcal{Y}_{\ell} \hat{q}_{\ell, i-1}^{\prime}\right]\right.
\end{array}\right]
$$

- Using standard rounding error results, this allows us to obtain an upper bound on $\left\|f_{s k+j}\right\|$.

Attainable accuracy of s-step CG

$f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$
For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

Attainable accuracy of s-step CG

$f_{i} \equiv b-A \hat{x}_{i}-\hat{r}_{i}$
For CG:

$$
\left\|f_{i}\right\| \leq\left\|f_{0}\right\|+\varepsilon \sum_{m=1}^{i}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

For s-step CG: $i \equiv s k+j$

$$
\left\|f_{s k+j}\right\| \leq\left\|f_{0}\right\|+\varepsilon c \bar{\Gamma}_{k} \sum_{m=1}^{s k+j}(1+N)\|A\|\left\|\hat{x}_{m}\right\|+\left\|\hat{r}_{m}\right\|
$$

where c is a low-degree polynomial in s, and

$$
\bar{\Gamma}_{k}=\max _{\ell \leq k} \Gamma_{\ell}, \quad \text { where } \quad \Gamma_{\ell}=\left\|\hat{y}_{\ell}^{+}\right\| \cdot\left\|\mid \hat{y}_{\ell}\right\|
$$

s-step CG

s-step CG

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

s-step CG

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

s-step CG

s-step CG with monomial basis ($\left.\mathcal{Y}=\left[p_{i}, A p_{i}, \ldots, A^{s} p_{i}, r_{i}, A r_{i}, \ldots A^{s-1} r_{i}\right]\right)$

Can also use other, more well-conditioned bases to improve convergence rate and accuracy (see, e.g. Philippe and Reichel, 2012).

s-step CG

- Even assuming perfect parallel scalability with s (which is usually not the case due to extra SpMVs and inner products), already at $s=4$ we are worse than HSCG in terms of number of synchronizations!

A different problem...

A : nos4 from UFSMC,
b : equal components in the eigenbasis
of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from UFSMC,

b : equal components in the eigenbasis of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A: nos4 from UFSMC,

b : equal components in the eigenbasis
of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from UFSMC,
b : equal components in the eigenbasis
of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

A different problem...

A : nos4 from UFSMC,

b : equal components in the eigenbasis of A and $\|b\|=1$
$N=100, \kappa(A) \approx 2 \mathrm{e} 3$

If application only requires
$\left\|x-x_{i}\right\|_{A} \leq 10^{-10}$, any of these methods will work!

Speedups for real applications

- s-step BICGSTAB bottom-solver implemented in BoxLib (AMR framework from LBL)

Low Mach Number Combustion Code (LMC): gas-phase combustion simulation

- Compared GMG with BICGSTAB vs. GMG with s-step BICGSTAB ($s=4$) on a Cray XE6 for two different applications
- Up to $2.5 \times$ speedup in bottom solve; up to $1.5 x$ in overall MG solve

Conclusions and takeaways

- Think of the bigger picture
- Much focus on modifying methods to speed up iterations
- But the speed of an iteration only part of the runtime: runtime $=($ time $/$ iteration $) \times(\#$ iterations $)$

Conclusions and takeaways

- Think of the bigger picture
- Much focus on modifying methods to speed up iterations
- But the speed of an iteration only part of the runtime:

$$
\text { runtime }=(\text { time/iteration }) \times \text { (\#iterations })
$$

- And a solver that can't solve to required accuracy is useless!

Conclusions and takeaways

- Think of the bigger picture
- Much focus on modifying methods to speed up iterations
- But the speed of an iteration only part of the runtime:

$$
\text { runtime }=(\text { time/iteration }) \times \text { (\#iterations })
$$

- And a solver that can't solve to required accuracy is useless!
- Solver runtime is only part of a larger scientific code

Conclusions and takeaways

- Think of the bigger picture
- Much focus on modifying methods to speed up iterations
- But the speed of an iteration only part of the runtime:

$$
\text { runtime }=(\text { time/iteration }) \times \text { (\#iterations })
$$

- And a solver that can't solve to required accuracy is useless!
- Solver runtime is only part of a larger scientific code
- Design and implementation of iterative solvers requires a holistic approach
- Selecting the right method, parameters, stopping criteria
- Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)

Conclusions and takeaways

- Think of the bigger picture
- Much focus on modifying methods to speed up iterations
- But the speed of an iteration only part of the runtime: runtime $=($ time $/$ iteration $) \times(\#$ iterations $)$
- And a solver that can't solve to required accuracy is useless!
- Solver runtime is only part of a larger scientific code
- Design and implementation of iterative solvers requires a holistic approach
- Selecting the right method, parameters, stopping criteria
- Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)
- Key challenge: identify problems (or classes of problems) for which synchronization-reducing Krylov subspace methods can reduce runtime while meeting application-specific accuracy constraints
\Rightarrow Requires understanding the effects of finite precision computations on convergence rate and accuracy

Thank You!

erinc@cims.nyu.edu
math.nyu.edu/~erinc

