The Behavior of Synchronization-Reducing Variants of the Conjugate Gradient Method in Finite Precision

> Erin Carson New York University

Householder Symposium XX, Blacksburg, Virginia June 19, 2017

Collaborators

Miroslav Rozložník

Institute of Computer Science, Czech Academy of Sciences

Zdeněk Strakoš

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Petr Tichý Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Miroslav Tůma

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Preprint NCMM/2016/08: <u>http://www.karlin.mff.cuni.cz/~strakos/download/2016_CarRozStrTicTum_16.pdf</u>

James Demmel University of California, Berkeley Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

Krylov subspace methods

• Krylov Subspace Method for solving Ax = b: projection process onto the Krylov subspace

$$\mathcal{K}_{i}(A, r_{0}) = \operatorname{span}\{r_{0}, Ar_{0}, A^{2}r_{0}, \dots, A^{i-1}r_{0}\}$$

where A is an $N \times N$ matrix and $r_0 = b - Ax_0$ is a length-N vector

- In each iteration,
 - Add a dimension to the Krylov subspace
 - Forms nested sequence of Krylov subspaces

 $\mathcal{K}_1(A, r_0) \subset \mathcal{K}_2(A, r_0) \subset \cdots \subset \mathcal{K}_i(A, r_0)$

- Orthogonalize (with respect to some C_i)
- Select approximate solution $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using $r_i = b - Ax_i \perp C_i$

Krylov subspace methods

• Krylov Subspace Method for solving Ax = b: projection process onto the Krylov subspace

$$\mathcal{K}_{i}(A, r_{0}) = \operatorname{span}\{r_{0}, Ar_{0}, A^{2}r_{0}, \dots, A^{i-1}r_{0}\}$$

where A is an $N \times N$ matrix and $r_0 = b - Ax_0$ is a length-N vector

- In each iteration,
 - Add a dimension to the Krylov subspace
 - Forms nested sequence of Krylov subspaces

 $\mathcal{K}_1(A, r_0) \subset \mathcal{K}_2(A, r_0) \subset \cdots \subset \mathcal{K}_i(A, r_0)$

- Orthogonalize (with respect to some C_i)
- Select approximate solution $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using $r_i = b - Ax_i \perp C_i$

Krylov subspace methods

• Krylov Subspace Method for solving Ax = b: projection process onto the Krylov subspace

$$\mathcal{K}_{i}(A, r_{0}) = \operatorname{span}\{r_{0}, Ar_{0}, A^{2}r_{0}, \dots, A^{i-1}r_{0}\}$$

where A is an $N \times N$ matrix and $r_0 = b - Ax_0$ is a length-N vector

- In each iteration,
 - Add a dimension to the Krylov subspace
 - Forms nested sequence of Krylov subspaces

 $\mathcal{K}_1(A, r_0) \subset \mathcal{K}_2(A, r_0) \subset \cdots \subset \mathcal{K}_i(A, r_0)$

- Orthogonalize (with respect to some C_i)
- Select approximate solution $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using $r_i = b - Ax_i \perp C_i$

• Conjugate gradient method: A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$ $r_i \perp \mathcal{K}_i(A, r_0) \iff ||x - x_i||_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} ||x - z||_A \implies r_{N+1} = 0$

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \end{aligned}$$

$$\begin{aligned} \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$
end

minimizes $||x - x_i||_A$ along line $z(\alpha) = x_{i-1} + \alpha p_{i-1}$

lf

$$p_i \perp_A p_j$$
 for $i \neq j$,

1-dimensional minimizations in each iteration give *i*-dimensional minimization over the whole subspace

$$x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{p_0, \dots, p_{i-1}\}$$

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

 $r_0 = b - Ax_0, \ p_0 = r_0$ for i = 1:nmax $\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$ $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$ $r_i = r_{i-1} - \alpha_{i-1}Ap_{i-1}$ $\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$ $p_i = r_i + \beta_i p_{i-1}$ end

minimizes $||x - x_i||_A$ along line $z(\alpha) = x_{i-1} + \alpha p_{i-1}$

lf

$$p_i \perp_A p_j$$
 for $i \neq j$,

1-dimensional minimizations in each iteration give *i*-dimensional minimization over the whole subspace

$$x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{p_0, \dots p_{i-1}\}$$

 \Rightarrow CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \\ \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \\ \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \\ \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \end{aligned}$$

$$\begin{aligned} \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \end{aligned}$$

$$\begin{aligned} \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0} \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} \alpha_{i-1} &= \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}Ap_{i-1} \\ \beta_{i} &= \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \end{aligned}$$
end

	Petascale Systems (2009)
System Peak	$2\cdot 10^{15}$ flops/s
Node Memory Bandwidth	25 GB/s
Total Node Interconnect Bandwidth	3.5 GB/s
Memory Latency	100 ns
Interconnect Latency	1 μ s

	Petascale Systems (2009)	Predicted Exascale Systems
System Peak	$2\cdot 10^{15}$ flops/s	10 ¹⁸ flops/s
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s
Memory Latency	100 ns	50 ns
Interconnect Latency	1 μ s	0.5 μs

	Petascale Systems (2009)	Predicted Exascale Systems	Factor Improvement
System Peak	$2\cdot 10^{15}$ flops/s	10 ¹⁸ flops/s	~1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~2
Interconnect Latency	1 μ s	0.5 μs	~2

	Petascale Systems (2009)	Predicted Exascale Systems	Factor Improvement
System Peak	$2\cdot 10^{15}$ flops/s	10 ¹⁸ flops/s	~1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~2
Interconnect Latency	1 μ s	0.5 μs	~2

- Gaps between communication/computation cost only growing larger in future systems
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors
- Pipelined CG
 - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
 - Modifications also allow decoupling of SpMV and inner products enables overlapping

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors
- Pipelined CG
 - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
 - Modifications also allow decoupling of SpMV and inner products enables overlapping
- s-step CG
 - Compute iterations in blocks of s using a different Krylov subspace basis
 - Enables one synchronization per s iterations

Well-known that roundoff error has two effects:

1. Delay of convergence

- No longer have exact Krylov subspace
- Can lose numerical rank deficiency
- Residuals no longer orthogonal
 - Minimization no longer exact!

2. Loss of attainable accuracy

• Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!

Well-known that roundoff error has two effects:

- 1. Delay of convergence
 - No longer have exact Krylov subspace
 - Can lose numerical rank deficiency
 - Residuals no longer orthogonal
 - Minimization no longer exact!

2. Loss of attainable accuracy

 Rounding errors cause true residual b – Ax_i and updated residual r_i deviate!

A: bcsstk03 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

Well-known that roundoff error has two effects:

- 1. Delay of convergence
 - No longer have exact Krylov subspace
 - Can lose numerical rank deficiency
 - Residuals no longer orthogonal
 - Minimization no longer exact!

2. Loss of attainable accuracy

 Rounding errors cause true residual b – Ax_i and updated residual r_i deviate!

A: bcsstk03 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

Well-known that roundoff error has two effects:

- 1. Delay of convergence
 - No longer have exact Krylov subspace
 - Can lose numerical rank deficiency
 - Residuals no longer orthogonal
 - Minimization no longer exact!
- 2. Loss of attainable accuracy
 - Rounding errors cause true residual b – Ax_i and updated residual r_i deviate!

A: bcsstk03 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

• Synchronization-reducing variants are designed to reduce the time/iteration

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the **runtime**, **subject to some constraint on accuracy**

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the **runtime**, **subject to some constraint on accuracy**
- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy

- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the **runtime**, **subject to some constraint on accuracy**
- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy
- Crucial that we understand and take into account how algorithm modifications will affect the convergence rate and attainable accuracy!

Maximum attainable accuracy

• Accuracy depends on the size of the true residual: $||b - A\hat{x}_i||$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $||b A\hat{x}_i||$
- Rounding errors cause the true residual, $b A \hat{x}_i$, and the updated residual, \hat{r}_i , to deviate
Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $||b A\hat{x}_i||$
- Rounding errors cause the true residual, $b A \hat{x}_i$, and the updated residual, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

$$||b - A\hat{x}_i|| \le ||\hat{r}_i|| + ||b - A\hat{x}_i - \hat{r}_i||$$

• As $\|\hat{r}_i\| \to 0$, $\|b - A\hat{x}_i\|$ depends on $\|b - A\hat{x}_i - \hat{r}_i\|$

Maximum attainable accuracy

- Accuracy depends on the size of the true residual: $||b A\hat{x}_i||$
- Rounding errors cause the true residual, $b A\hat{x}_i$, and the updated residual, \hat{r}_i , to deviate
- Writing $b A\hat{x}_i = \hat{r}_i + b A\hat{x}_i \hat{r}_i$,

 $||b - A\hat{x}_i|| \le ||\hat{r}_i|| + ||b - A\hat{x}_i - \hat{r}_i||$

• As $\|\hat{r}_i\| \to 0$, $\|b - A\hat{x}_i\|$ depends on $\|b - A\hat{x}_i - \hat{r}_i\|$

Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i \quad \text{and} \quad$

and $\hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta r_i}$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta x_i} \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta r_i}$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{x_i} \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{r_i}$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

 $f_i = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i)$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{x_i} \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{r_i}$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

$$f_{i} = b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i})$$

= $f_{i-1} + A\delta x_{i} + \delta r_{i}$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{x}_i \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{r}_i$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

$$\begin{aligned} f_i &= b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_i) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_i) \\ &= f_{i-1} + A\delta x_i + \delta r_i \\ &= f_0 + \sum_{m=1}^i (A\delta x_m + \delta r_m) \end{aligned}$$

• In finite precision HSCG, iterates are updated by

 $\hat{x}_i = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{x}_i \quad \text{and} \quad \hat{r}_i = \hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \boldsymbol{\delta}\boldsymbol{r}_i$

• Let $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

$$\begin{aligned} f_{i} &= b - A(\hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} - \delta x_{i}) - (\hat{r}_{i-1} - \hat{\alpha}_{i-1}A\hat{p}_{i-1} - \delta r_{i}) \\ &= f_{i-1} + A\delta x_{i} + \delta r_{i} \\ &= f_{0} + \sum_{m=1}^{i} (A\delta x_{m} + \delta r_{m}) \end{aligned}$$

 $||f_i|| \le O(\varepsilon) \sum_{m=0}^{i} N_A ||A|| ||\hat{x}_m|| + ||\hat{r}_m|| \quad \text{van der Vorst and Ye, 2000}$ $||f_i|| \le O(\varepsilon) ||A|| (||x|| + \max_{m=0,\dots,i} ||\hat{x}_m||) \quad \text{Greenbaum, 1997}$

 $||f_i|| \le O(\varepsilon) N_A |||A||| ||A^{-1}|| \sum_{m=0}^i ||\hat{r}_m||$

Sleijpen and van der Vorst, 1995

• Modify HSCG recurrence coefficient computation

- Modify HSCG recurrence coefficient computation
 - Compute β_i from α_{i-1} and Ap_{i-1} using relation

 $||r_i||^2 = \alpha_{i-1}^2 ||Ap_{i-1}||^2 - ||r_{i-1}||^2$

- Modify HSCG recurrence coefficient computation
 - Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$\|r_i\|^2 = \alpha_{i-1}^2 \|Ap_{i-1}\|^2 - \|r_{i-1}\|^2$$

• Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985); many similar approaches

- Modify HSCG recurrence coefficient computation
 - Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$\|r_i\|^2 = \alpha_{i-1}^2 \|Ap_{i-1}\|^2 - \|r_{i-1}\|^2$$

- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985); many similar approaches
- Could also compute α_{i-1} from β_{i-1} :

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$

- Modify HSCG recurrence coefficient computation
 - Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$\|r_i\|^2 = \alpha_{i-1}^2 \|Ap_{i-1}\|^2 - \|r_{i-1}\|^2$$

- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985); many similar approaches
- Could also compute α_{i-1} from β_{i-1} :

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$

- Use 3-term recurrences for r_i and x_i (STCG)
 - First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)

- Modify HSCG recurrence coefficient computation
 - Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$\|r_i\|^2 = \alpha_{i-1}^2 \|Ap_{i-1}\|^2 - \|r_{i-1}\|^2$$

- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985); many similar approaches
- Could also compute α_{i-1} from β_{i-1} :

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$

- Use 3-term recurrences for r_i and x_i (STCG)
 - First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
 - Each iteration can be performed with a single synchronization point on parallel computers (Strakoš 1985, 1987)

Example: HSCG with modified formula for α_{i-1} :

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$

Example: HSCG with modified formula for α_{i-1} :

$$\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$$

- Rounding errors made in computing $\hat{\alpha}_{i-1}$ do not contribute to the residual gap
- But may change computed \hat{x}_i , \hat{r}_i , which can affect convergence rate...

 Gutknecht and Strakoš (2000): attainable accuracy for STCG can be much worse than for HSCG

 Gutknecht and Strakoš (2000): attainable accuracy for STCG can be much worse than for HSCG

- Gutknecht and Strakoš (2000): attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

- Gutknecht and Strakoš (2000): attainable accuracy for STCG can be much worse than for HSCG
- Residual gap bounded by sum of local errors PLUS local errors multiplied by factors which depend on

$$\max_{0 \le \ell < j \le i} \frac{\left\| r_j \right\|^2}{\| r_\ell \|^2}$$

⇒ Large residual oscillations can cause these factors to be large!⇒ Local errors can be amplified!

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
sumptime and

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and • using an auxiliary recurrence for Ap_i

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and • using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i
- Also uses auxiliary vectors for Ar_i and A^2r_i to remove sequential dependency between SpMV and inner products
 - Allows the use of nonblocking (asynchronous) MPI communication to *overlap* SpMV and inner product
 - Hides the latency of global communications

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

end

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

end

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

end
• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

 $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$

• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

• In finite precision:

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

• In finite precision:

$$\hat{x}_{i} = \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} \qquad \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i}$$

$$f_i = \hat{r}_i - (b - A\hat{x}_i)$$

• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

• In finite precision:

$$\begin{aligned} \hat{x}_{i} &= \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} & \hat{r}_{i} &= \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i} \\ f_{i} &= \hat{r}_{i} - (b - A\hat{x}_{i}) \\ &= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i} \end{aligned}$$

• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

• In finite precision:

$$\begin{aligned} \hat{x}_{i} &= \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} & \hat{r}_{i} &= \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i} \\ \\ f_{i} &= \hat{r}_{i} - (b - A\hat{x}_{i}) \\ &= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i} \\ &= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i} \end{aligned}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

• In finite precision:

$$\begin{aligned} \hat{x}_{i} &= \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} & \hat{r}_{i} &= \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i} \\ f_{i} &= \hat{r}_{i} - (b - A\hat{x}_{i}) \\ &= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i} \\ &= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i} \end{aligned}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

• In finite precision:

$$\begin{aligned} \hat{x}_{i} &= \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \delta x_{i} & \hat{r}_{i} &= \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \delta r_{i} \\ f_{i} &= \hat{r}_{i} - (b - A\hat{x}_{i}) \\ &= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \delta r_{i} + A\delta x_{i} \\ &= f_{0} + \sum_{m=1}^{i} (\delta r_{m} + A\delta x_{m}) - G_{i}d_{i} \end{aligned}$$

where

$$G_i = \hat{S}_i - A\hat{P}_i, \quad d_i = [\hat{\alpha}_0, \dots, \hat{\alpha}_{i-1}]^T$$

• Both ChG CG and GVCG use the same update formulas for x_i and r_i :

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}, \qquad r_i = r_{i-1} - \alpha_{i-1}s_{i-1}$$

• In finite precision:

$$\begin{aligned} \hat{x}_{i} &= \hat{x}_{i-1} + \hat{\alpha}_{i-1}\hat{p}_{i-1} + \boldsymbol{\delta} \boldsymbol{x}_{i} & \hat{r}_{i} = \hat{r}_{i-1} - \hat{\alpha}_{i-1}\hat{s}_{i-1} + \boldsymbol{\delta} \boldsymbol{r}_{i} \\ f_{i} &= \hat{r}_{i} - (b - A\hat{x}_{i}) \\ &= f_{i-1} - \hat{\alpha}_{i-1}(\hat{s}_{i-1} - A\hat{p}_{i-1}) + \boldsymbol{\delta} \boldsymbol{r}_{i} + A\boldsymbol{\delta} \boldsymbol{x}_{i} \\ &= f_{0} + \sum_{m=1}^{i} (\boldsymbol{\delta} \boldsymbol{r}_{m} + A\boldsymbol{\delta} \boldsymbol{x}_{m}) - G_{i}d_{i} \\ \end{aligned}$$
where
$$G_{i} &= \hat{S}_{i} - A\hat{P}_{i}, \quad d_{i} = [\hat{\alpha}_{0}, \dots, \hat{\alpha}_{i-1}]^{T}$$

• Bound on $||G_i||$ will differ depending on the method (other recurrences or auxiliary vectors used)

Methodology for bounding $||G_i||$

• To show how one can bound $||G_i||$ for a particular pipelined variant, we consider the simplest version of a method with auxiliary vector $s_i \equiv Ap_i$:

$$\begin{aligned} r_{0} &= b - Ax_{0}, p_{0} = r_{0}, s_{0} = Ap_{0} \\ \text{for } i &= 1:\text{nmax} \\ & \alpha_{i-1} = \frac{(r_{i-1}, r_{i-1})}{(p_{i-1}, s_{i-1})} \\ & x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1} \\ & r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1} \\ & \beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ & p_{i} = r_{i} + \beta_{i}p_{i-1} \\ & s_{i} = Ar_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

Methodology for bounding $||G_i||$

• To show how one can bound $||G_i||$ for a particular pipelined variant, we consider the simplest version of a method with auxiliary vector $s_i \equiv Ap_i$:

$$\begin{aligned} r_{0} &= b - Ax_{0}, p_{0} = r_{0}, s_{0} = Ap_{0} \\ \text{for } i &= 1:\text{nmax} \\ & \alpha_{i-1} = \frac{(r_{i-1}, r_{i-1})}{(p_{i-1}, s_{i-1})} \\ & x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1} \\ & r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1} \\ & \beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ & p_{i} = r_{i} + \beta_{i}p_{i-1} \\ & s_{i} = Ar_{i} + \beta_{i}s_{i-1} \end{aligned}$$
 end

$$\hat{R}_{i} = \hat{P}_{i}\hat{U}_{i} - \Delta P_{i}$$
$$A\hat{R}_{i} = \hat{S}_{i}\hat{U}_{i} - \Delta S_{i}$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\widehat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\widehat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

Methodology for bounding $||G_i||$

• To show how one can bound $||G_i||$ for a particular pipelined variant, we consider the simplest version of a method with auxiliary vector $s_i \equiv Ap_i$:

$$\begin{aligned} r_{0} &= b - Ax_{0}, p_{0} = r_{0}, s_{0} = Ap_{0} \\ \text{for } i &= 1:\text{nmax} \\ & \alpha_{i-1} = \frac{(r_{i-1}, r_{i-1})}{(p_{i-1}, s_{i-1})} \\ & x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1} \\ & r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1} \\ & \beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ & p_{i} = r_{i} + \beta_{i}p_{i-1} \\ & s_{i} = Ar_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

$$\hat{R}_{i} = \hat{P}_{i}\hat{U}_{i} - \Delta P_{i}$$
$$A\hat{R}_{i} = \hat{S}_{i}\hat{U}_{i} - \Delta S_{i}$$

$$\widehat{U}_i = \begin{bmatrix} 1 & -\hat{\beta}_1 & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

$$G_i \equiv \hat{S}_i - A\hat{P}_i = (\Delta S_i - A\Delta P_i)\hat{U}_i^{-1}$$

$$\|G_i\| \leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_i) \|A\| \|\widehat{P}_i\| + \|A\| \|\widehat{R}_i\| \|\widehat{U}_i^{-1}\| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\hat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \hat{\beta}_{1} & \dots & \dots & \hat{\beta}_{1}\hat{\beta}_{2} & \cdots & \hat{\beta}_{i-1} \\ 0 & 1 & \hat{\beta}_{2} & \dots & \hat{\beta}_{2} & \cdots & \hat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \hat{\beta}_{i-1} \\ 0 & \cdots & \cdots & 0 & 1 \end{bmatrix}$$

$$\|G_{i}\| \leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_{i}) \|A\| \|\widehat{P}_{i}\| + \|A\| \|\widehat{R}_{i}\| \|\widehat{U}_{i}^{-1}\| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\hat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \hat{\beta}_{1} & \dots & \dots & \hat{\beta}_{1}\hat{\beta}_{2} & \cdots & \hat{\beta}_{i-1} \\ 0 & 1 & \hat{\beta}_{2} & \dots & \hat{\beta}_{2} & \cdots & \hat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & 1 & & \hat{\beta}_{i-1} \\ 0 & \cdots & \cdots & 0 & & 1 \end{bmatrix}$$

$$\beta_{\ell}\beta_{\ell+1}\cdots\beta_j = \frac{\left\|r_j\right\|^2}{\|r_{\ell-1}\|^2}, \qquad \ell < j$$

$$\|G_{i}\| \leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_{i}) \|A\| \|\widehat{P}_{i}\| + \|A\| \|\widehat{R}_{i}\| \|\widehat{U}_{i}^{-1}\| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\hat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \hat{\beta}_{1} & \dots & \dots & \hat{\beta}_{1}\hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\ 0 & 1 & \hat{\beta}_{2} & \dots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \hat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

$$\beta_{\ell}\beta_{\ell+1}\cdots\beta_j = \frac{\left\|r_j\right\|^2}{\|r_{\ell-1}\|^2}, \qquad \ell < j$$

- Very similar to the results for attainable accuracy in the 3-term STCG
 - Residual oscillations can cause these factors to be large!
 - Errors in computed recurrence coefficients can be amplified!
- Seemingly innocuous change can cause drastic loss of accuracy

$$\|G_{i}\| \leq \frac{O(\varepsilon)}{1 - O(\varepsilon)} \left(\kappa(\widehat{U}_{i}) \|A\| \|\widehat{P}_{i}\| + \|A\| \|\widehat{R}_{i}\| \|\widehat{U}_{i}^{-1}\| \right)$$

$$\widehat{U}_{i} = \begin{bmatrix} 1 & -\hat{\beta}_{1} & 0 & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & 1 & -\hat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix} \qquad \widehat{U}_{i}^{-1} = \begin{bmatrix} 1 & \hat{\beta}_{1} & \dots & \dots & \hat{\beta}_{1}\hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\ 0 & 1 & \hat{\beta}_{2} & \dots & \hat{\beta}_{2} \cdots \hat{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \hat{\beta}_{i-1} \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

$$\beta_{\ell}\beta_{\ell+1}\cdots\beta_j = \frac{\left\|r_j\right\|^2}{\|r_{\ell-1}\|^2}, \qquad \ell < j$$

- Very similar to the results for attainable accuracy in the 3-term STCG
 - Residual oscillations can cause these factors to be large!
 - Errors in computed recurrence coefficients can be amplified!
- Seemingly innocuous change can cause drastic loss of accuracy
- For GVCG, bound on $||G_i||$ can be larger due to use of additional auxiliary vectors

Behavior of "pipelined" CG variants

effect of using auxiliary vector $s_i \equiv Ap_i$

Behavior of "pipelined" CG variants

effect of changing formula for recurrence coefficient α and using auxiliary vector $s_i \equiv Ap_i$

Behavior of "pipelined" CG variants

effect of changing formula for recurrence coefficient α and using auxiliary vectors $s_i \equiv Ap_i$, $w_i \equiv Ar_i$, $z_i \equiv A^2r_i$

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s

- Idea: Compute blocks of *s* iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)

- Idea: Compute blocks of *s* iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

- Idea: Compute blocks of *s* iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

 $x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

s steps of s-step CG:

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$ according to the recurrence $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$ according to the recurrence $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$

Compute inner products between basis vectors in one synchronization $\mathcal{G} = \mathcal{Y}^T \mathcal{Y}$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$ according to the recurrence $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$

Compute inner products between basis vectors in one synchronization $\mathcal{G} = \mathcal{Y}^T \mathcal{Y}$

Compute s iterations of vector updates

Perform s iterations of vector updates by updating coordinates in basis \mathcal{Y} :

 $x_{i+j} - x_i = \mathcal{Y}x'_j, \qquad r_{i+j} = \mathcal{Y}r'_j, \qquad p_{i+j} = \mathcal{Y}p'_j$

$$\begin{array}{rcl} Ap_{i+j} &=& A\underline{\mathcal{Y}}p_j'\\ n\\ n\\ & & \\ \end{array} \times \end{array}$$

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$ $x'_{j} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$

end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $G_k = Y_k^T Y_k$ $x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$ $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

 $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$

Outer Loop

Compute basis

end
$r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{i-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$ $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{i-1}^{\prime T} \mathcal{G}_k r_{i-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$

end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$ $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$

end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$ $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$

end

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}_k} = \hat{\mathcal{Y}}_k \mathcal{B}_k + \Delta \mathcal{Y}_k$$

Updating coordinate vectors in the inner loop:

$$\begin{aligned} \hat{x}'_{k,j} &= \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j} \\ \hat{r}'_{k,j} &= \hat{r}'_{k,j-1} - \mathcal{B}_k \ \hat{q}'_{k,j-1} + \eta_{k,j} \\ & \text{with} \quad \hat{q}'_{k,j-1} = \text{fl}(\hat{\alpha}_{sk+j-1}\hat{p}'_{k,j-1}) \end{aligned}$$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}}_{k} = \hat{\mathcal{Y}}_{k}\mathcal{B}_{k} + \Delta\mathcal{Y}_{k} <$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$\begin{aligned} \hat{x}'_{k,j} &= \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j} \\ \hat{r}'_{k,j} &= \hat{r}'_{k,j-1} - \mathcal{B}_k \ \hat{q}'_{k,j-1} + \eta_{k,j} \\ & \text{with} \quad \hat{q}'_{k,j-1} = \text{fl}(\hat{\alpha}_{sk+j-1}\hat{p}'_{k,j-1}) \end{aligned}$$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}}_{k} = \hat{\mathcal{Y}}_{k}\mathcal{B}_{k} + \Delta\mathcal{Y}_{k} \leftarrow$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop:

$$\hat{x}'_{k,j} = \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j}$$
Error in updating

$$\hat{r}'_{k,j} = \hat{r}'_{k,j-1} - \mathcal{B}_k \ \hat{q}'_{k,j-1} + \eta_{k,j}$$
with $\hat{q}'_{k,j-1} = \operatorname{fl}(\hat{\alpha}_{sk+j-1}\hat{p}'_{k,j-1})$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$

Computing the *s*-step Krylov subspace basis:

$$A\underline{\hat{\mathcal{Y}}}_{k} = \hat{\mathcal{Y}}_{k}\mathcal{B}_{k} + \Delta\mathcal{Y}_{k} \leftarrow$$

Error in computing s-step basis

Updating coordinate vectors in the inner loop:

 $\hat{x}'_{k,j} = \hat{x}'_{k,j-1} + \hat{q}'_{k,j-1} + \xi_{k,j}$ Error in updating coefficient vectors with $\hat{q}'_{k,j-1} = \operatorname{fl}(\hat{\alpha}_{sk+j-1}\hat{p}'_{k,j-1})$

$$\hat{x}_{sk+j} = \hat{\mathcal{Y}}_k \hat{x}'_{k,j} + \hat{x}_{sk} + \phi_{sk+j}$$
Error in

$$\hat{r}_{sk+j} = \hat{\mathcal{Y}}_k \hat{r}'_{k,j} + \psi_{sk+j}$$
Error in
basis change

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$\begin{split} f_{sk+j} &= f_0 \\ &- \sum_{\ell=0}^{k-1} \left[A \phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}_{\ell,i-1}' \right] \right] \\ &- A \phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A \hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}_{k,i-1}' \right] \end{split}$$

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$\begin{split} f_{sk+j} &= f_0 \\ &- \sum_{\ell=0}^{k-1} \left[A \phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}_{\ell,i-1}' \right] \right] \\ &- A \phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A \hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}_{k,i-1}' \right] \end{split}$$

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A\phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A\hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{\ell,i-1} \right] \right]$$

$$-A\phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A\hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{k,i-1} \right]$$

• We can write the gap between the true and updated residuals *f* in terms of these errors:

$$f_{sk+j} = f_0$$

$$-\sum_{\ell=0}^{k-1} \left[A \phi_{s\ell+s} + \psi_{s\ell+s} + \sum_{i=1}^{s} \left[A \hat{\mathcal{Y}}_{\ell} \xi_{\ell,i} + \hat{\mathcal{Y}}_{\ell} \eta_{\ell,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{\ell,i-1} \right] \right]$$

$$-A \phi_{sk+j} - \psi_{sk+j} - \sum_{i=1}^{j} \left[A \hat{\mathcal{Y}}_{k} \xi_{k,i} + \hat{\mathcal{Y}}_{k} \eta_{k,i} - \Delta \mathcal{Y}_{\ell} \hat{q}'_{k,i-1} \right]$$

 $f_i \equiv b - A\hat{x}_i - \hat{r}_i$

For CG:

$$\|f_i\| \le \|f_0\| + \varepsilon \sum_{m=1}^i (1+N) \|A\| \|\hat{x}_m\| + \|\hat{r}_m\|$$

 $f_i \equiv b - A \hat{x}_i - \hat{r}_i$

For CG:

$$\|f_i\| \le \|f_0\| + \varepsilon \sum_{m=1}^i (1+N) \|A\| \|\hat{x}_m\| + \|\hat{r}_m\|$$

For s-step CG: $i \equiv sk + j$

$$\|f_{sk+j}\| \le \|f_0\| + \varepsilon C\Gamma \sum_{m=1}^{sk+j} (1+N) \|A\| \|\hat{x}_m\| + \|\hat{r}_m\|$$

where c is a low-degree polynomial in s, and

 $\Gamma = \max_{\ell \le k} \|\hat{\mathcal{Y}}_{\ell}^+\| \cdot \| |\hat{\mathcal{Y}}_{\ell}|\|$

(see C., 2015)

Roundoff error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$\begin{split} A\hat{V}_m &= \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m \\ \hat{V}_m &= [\hat{v}_1, \dots, \hat{v}_m], \quad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \quad \hat{T}_m = \begin{bmatrix} \hat{\alpha}_1 & \hat{\beta}_2 & & \\ \hat{\beta}_2 & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_m \\ & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix} \end{split}$$
for $i \in \{1, \dots, m\},$

$$\begin{split} \|\delta \hat{v}_{i}\|_{2} &\leq \varepsilon_{1}\sigma \\ \hat{\beta}_{i+1} \left| \hat{v}_{i}^{T} \hat{v}_{i+1} \right| &\leq 2\varepsilon_{0}\sigma \\ \left| \hat{v}_{i+1}^{T} \hat{v}_{i+1} - 1 \right| &\leq \varepsilon_{0}/2 \\ \left| \hat{\beta}_{i+1}^{2} + \hat{\alpha}_{i}^{2} + \hat{\beta}_{i}^{2} - \|A \hat{v}_{i}\|_{2}^{2} \right| &\leq 4i(3\varepsilon_{0} + \varepsilon_{1})\sigma^{2} \end{split}$$

where $\sigma \equiv ||A||_2$, and $\theta \sigma \equiv |||A|||_2$

Lanczos (Paige, 1976): $\varepsilon_0 = O(\varepsilon N)$ $\varepsilon_1 = O(\varepsilon n \theta)$

Roundoff error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is $N \times N$ with at most n nonzeros per row)

$$\begin{split} A\hat{V}_{m} &= \hat{V}_{m}\hat{T}_{m} + \hat{\beta}_{m+1}\hat{v}_{m+1}e_{m}^{T} + \delta\hat{V}_{m} \\ \hat{V}_{m} &= [\hat{v}_{1}, \dots, \hat{v}_{m}], \quad \delta\hat{V}_{m} = [\delta\hat{v}_{1}, \dots, \delta\hat{v}_{m}], \quad \hat{T}_{m} = \begin{bmatrix} \hat{\alpha}_{1} & \hat{\beta}_{2} & & \\ \hat{\beta}_{2} & \ddots & \ddots & \\ & \ddots & \ddots & \hat{\beta}_{m} \\ & & \hat{\beta}_{m} & \hat{\alpha}_{m} \end{bmatrix} \\ \text{for } i \in \{1, \dots, m\}, \\ & \|\delta\hat{v}_{i}\|_{2} \leq \varepsilon_{1}\sigma \\ & \hat{\beta}_{i+1} \|\hat{v}_{i}^{T}\hat{v}_{i+1}\| \leq 2\varepsilon_{0}\sigma \\ & \|\hat{v}_{i+1}^{T}\hat{v}_{i+1} - 1\| \leq \varepsilon_{0}/2 \\ & |\hat{\beta}_{i+1}^{2} + \hat{\alpha}_{i}^{2} + \hat{\beta}_{i}^{2} - \|A\hat{v}_{i}\|_{2}^{2} \| \leq 4i(3\varepsilon_{0} + \varepsilon_{1})\sigma^{2} \end{split} \text{ where } \sigma \equiv \|A\|_{2}, \text{ and } \\ \theta\sigma \equiv \||A|\|_{2} \end{split}$$

Lanczos (Paige, 1976):

$$\varepsilon_0 = O(\varepsilon N)$$

 $\varepsilon_1 = O(\varepsilon n \theta)$

s-step Lanczos (C., Demmel, 2015):

$$\varepsilon_0 = O(\varepsilon N \Gamma^2)$$

$$\varepsilon_1 = O(\varepsilon n \theta \Gamma)$$

$$\Gamma = \max_{\ell \le k} \|\mathcal{Y}_{\ell}^+\|_2 \cdot \||\mathcal{Y}_{\ell}\|\|_2$$

Convergence of Ritz values in s-step Lanczos

 All results of Paige (1980), e.g., loss of orthogonality → eigenvalue convergence, hold for s-step Lanczos as long as

$$\Gamma \le \left(24\epsilon(N+11s+15)\right)^{-1/2} = \frac{O(N)}{\sqrt{\epsilon}}$$

Convergence of Ritz values in s-step Lanczos

 All results of Paige (1980), e.g., loss of orthogonality → eigenvalue convergence, hold for s-step Lanczos as long as

$$\Gamma \le \left(24\epsilon(N+11s+15)\right)^{-1/2} = \frac{O(N)}{\sqrt{\epsilon}}$$

- Bounds on accuracy of Ritz values depend on Γ^2

29

s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)

s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)

s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)

Can also use other, more well-conditioned bases to improve convergence rate and accuracy (see, e.g. Philippe and Reichel, 2012).

A: nos4 from UFSMC, b: equal components in the eigenbasis of A and ||b|| = 1 $N = 100, \kappa(A) \approx 2e3$

If application only requires $\|x-x_i\|_A \le 10^{-10},$ all methods behave comparably to HSCG

• Is it possible to improve maximum attainable accuracy while still retaining synchronization-reducing properties?

- Is it possible to improve maximum attainable accuracy while still retaining synchronization-reducing properties?
- Residual replacement strategies
 - Based on van der Vorst and Ye (2000); replace updated residual r_i with true residual $b Ax_i$ in certain iterations
 - For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools et. al, 2016)

- Is it possible to improve maximum attainable accuracy while still retaining synchronization-reducing properties?
- Residual replacement strategies
 - Based on van der Vorst and Ye (2000); replace updated residual r_i with true residual $b Ax_i$ in certain iterations
 - For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools et. al, 2016)
 - Caveat: selecting replacement iterations is based on heuristics; replacing too often may cause convergence delay

- Is it possible to improve maximum attainable accuracy while still retaining synchronization-reducing properties?
- Residual replacement strategies
 - Based on van der Vorst and Ye (2000); replace updated residual r_i with true residual $b Ax_i$ in certain iterations
 - For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools et. al, 2016)
 - Caveat: selecting replacement iterations is based on heuristics; replacing too often may cause convergence delay
- Variable s-step approaches
 - "adaptive s-step CG": Basis condition number can be allowed to grow at a rate inversely proportional to the norm of the updated residual without affecting maximum attainable accuracy
 - Similar to derivation of inexact Krylov subspace methods (e.g., Simoncini and Szyld, 2007)
 - s-step GMRES (Imberti and Erhel, 2016): used a fixed sequence of s_i 's

Future directions for analysis

- Applying analysis of Paige (1980) to pipelined Lanczos
 - Under what constraints does loss of orthogonality → eigenvalue convergence in pipelined Lanczos?

Future directions for analysis

- Applying analysis of Paige (1980) to pipelined Lanczos
 - Under what constraints does loss of orthogonality → eigenvalue convergence in pipelined Lanczos?
- Applying analysis of Greenbaum (1989) to pipelined and s-step CG
 "Eigenvalue approximations generated at each step by a perturbed
 Lanczos recurrence for A are equal to those generated by exact Lanczos
 applied a larger matrix whose eigenvalues lie within intervals about the
 eigenvalues of A."

Future directions for analysis

- Applying analysis of Paige (1980) to pipelined Lanczos
 - Under what constraints does loss of orthogonality → eigenvalue convergence in pipelined Lanczos?
- Applying analysis of Greenbaum (1989) to pipelined and s-step CG
 "Eigenvalue approximations generated at each step by a perturbed
 Lanczos recurrence for A are equal to those generated by exact Lanczos
 applied a larger matrix whose eigenvalues lie within intervals about the
 eigenvalues of A."

• Application of Paige's augmented stability results (2010, 2014, 2017) to synchronization-reducing variants

Conclusions and takeaways

- Think of the whole picture
 - Much focus on modifying methods to speed up iterations

Conclusions and takeaways

- Think of the whole picture
 - Much focus on modifying methods to speed up iterations
 - But keep in mind how such changes may affect numerical behavior

Conclusions and takeaways

- Think of the whole picture
 - Much focus on modifying methods to speed up iterations
 - But keep in mind how such changes may affect numerical behavior
 - The speed of an iteration only part of the runtime
- Think of the whole picture
 - Much focus on modifying methods to speed up iterations
 - But keep in mind how such changes may affect numerical behavior
 - The speed of an iteration only part of the runtime
 - A solver that can't attain required accuracy is useless

- Think of the whole picture
 - Much focus on modifying methods to speed up iterations
 - But keep in mind how such changes may affect numerical behavior
 - The speed of an iteration only part of the runtime
 - A solver that can't attain required accuracy is useless
- Design and implementation of iterative solvers requires a *holistic* approach
 - Selecting the right method, parameters, stopping criteria
 - Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)

- Think of the whole picture
 - Much focus on modifying methods to speed up iterations
 - But keep in mind how such changes may affect numerical behavior
 - The speed of an iteration only part of the runtime
 - A solver that can't attain required accuracy is useless
- Design and implementation of iterative solvers requires a *holistic* approach
 - Selecting the right method, parameters, stopping criteria
 - Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)
- Key goals:
 - Develop new techniques for improving numerical properties without increasing synchronization

- Think of the whole picture
 - Much focus on modifying methods to speed up iterations
 - But keep in mind how such changes may affect numerical behavior
 - The speed of an iteration only part of the runtime
 - A solver that can't attain required accuracy is useless
- Design and implementation of iterative solvers requires a *holistic* approach
 - Selecting the right method, parameters, stopping criteria
 - Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)
- Key goals:
 - Develop new techniques for improving numerical properties without increasing synchronization
 - Identify problems (or classes of problems) for which synchronizationreducing Krylov subspace methods can obtain practical speedups

- Think of the whole picture
 - Much focus on modifying methods to speed up iterations
 - But keep in mind how such changes may affect numerical behavior
 - The speed of an iteration only part of the runtime
 - A solver that can't attain required accuracy is useless
- Design and implementation of iterative solvers requires a *holistic* approach
 - Selecting the right method, parameters, stopping criteria
 - Selecting the right preconditioner (closely linked with the discretization! see Málek and Strakoš, 2015)
- Key goals:
 - Develop new techniques for improving numerical properties without increasing synchronization
 - Identify problems (or classes of problems) for which synchronizationreducing Krylov subspace methods can obtain practical speedups

⇒ Require analyzing the effects of finite precision computations on convergence rate and accuracy

Thank You!

erinc@cims.nyu.edu math.nyu.edu/~erinc