Communication-Avoiding Krylov Subspace Methods in Theory and Practice

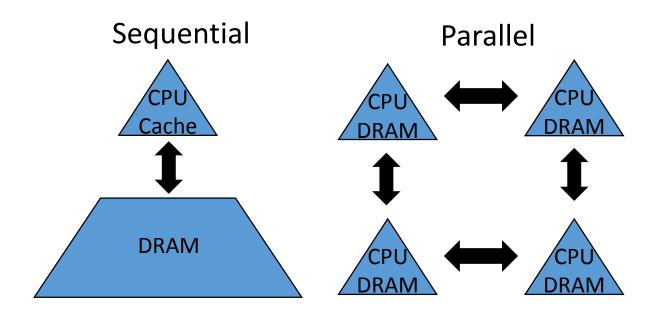
Erin Carson, NYU

DMML Workshop

October 23, 2015

Why Avoid "Communication"?

- Algorithms have two costs: computation and communication
 - Communication: moving data between levels of memory hierarchy (sequential), between processors (parallel)



On today's computers, communication is expensive, computation is cheap, in terms of both time and energy!

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement
System Peak	$2\cdot 10^{15}$ flops	10^{18} flops	~1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~1
Interconnect Latency	1 μ s	0.5 μs	~1

^{*}Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Future Exascale Systems

			Factor Improvement
System Peak	$2\cdot 10^{15}$ flops	10^{18} flops	~1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~1
Interconnect Latency	1 μ s	0.5 μs	~1

^{*}Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Gaps between communication/computation cost only growing larger in future systems

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement	
System Peak	$2\cdot 10^{15}$ flops	10^{18} flops	~1000	
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100	
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100	
Memory Latency	100 ns	50 ns	~1	
Interconnect Latency	1 μ s	0.5 μs	~1	

^{*}Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

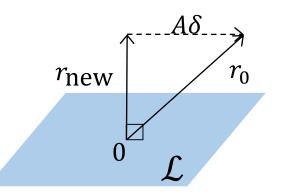
- Gaps between communication/computation cost only growing larger in future systems
- Avoiding communication will be essential for applications at exascale!

Krylov Subspace Methods

- General class of iterative solvers: used for linear systems, eigenvalue problems, singular value problems, least squares, etc.
- Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.
- Projection process onto the expanding Krylov subspace

$$\mathcal{K}_m(A, r_0) = \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\}$$

- In each iteration,
 - Add a dimension to the Krylov subspace \mathcal{K}_m
 - Orthogonalize (with respect to some \mathcal{L}_m)

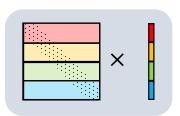


In terms of communication:

In terms of communication:

"Add a dimension to \mathcal{K}_m "

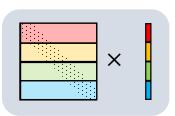
- → Sparse Matrix-Vector Multiplication (SpMV)
 - Parallel: comm. vector entries w/ neighbors
 - Sequential: read A/vectors from slow memory



In terms of communication:

"Add a dimension to \mathcal{K}_m "

- → Sparse Matrix-Vector Multiplication (SpMV)
 - Parallel: comm. vector entries w/ neighbors
 - Sequential: read A/vectors from slow memory



"Orthogonalize (with respect to some \mathcal{L}_m)"

→ Inner products

Parallel: global reduction (All-Reduce)

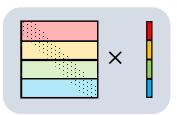
Sequential: multiple reads/writes to slow

memory

In terms of communication:

"Add a dimension to \mathcal{K}_m "

- → Sparse Matrix-Vector Multiplication (SpMV)
 - Parallel: comm. vector entries w/ neighbors
 - Sequential: read A/vectors from slow memory



"Orthogonalize (with respect to some \mathcal{L}_m)"

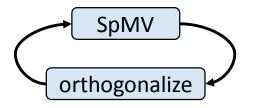
→ Inner products

Parallel: global reduction (All-Reduce)

Sequential: multiple reads/writes to slow

memory





Dependencies between communication-bound kernels in each iteration limit performance!

Example: Classical Conjugate Gradient (CG)

Given: initial approximation x_0 for solving Ax = b

$$Let p_0 = r_0 = b - Ax_0$$

for $m = 0, 1, 2, \dots$, until convergence do

$$\alpha_{m} = \frac{r_{m}^{T} r_{m}}{p_{m}^{T} A p_{m}}$$

$$x_{m+1} = x_{m} + \alpha_{m} p_{m}$$

$$r_{m+1} = r_{m} - \alpha_{m} A p_{m}$$

$$\beta_{m+1} = \frac{r_{m+1}^{T} r_{m+1}}{r_{m}^{T} r_{m}}$$

$$p_{m+1} = r_{m+1} + \beta_{m+1} p_{m}$$

Example: Classical Conjugate Gradient (CG)

Given: initial approximation x_0 for solving Ax = b

$$Let p_0 = r_0 = b - Ax_0$$

for $m = 0, 1, 2, \dots$, until convergence do

$$\alpha_{m} = \frac{r_{m}^{T} r_{m}}{p_{m}^{T} A p_{m}}$$

$$x_{m+1} = x_{m} + \alpha_{m} p_{m}$$

$$r_{m+1} = r_{m} - \alpha_{m} A p_{m}$$

$$\beta_{m+1} = \frac{r_{m+1}^{T} r_{m+1}}{r_{m}^{T} r_{m}}$$

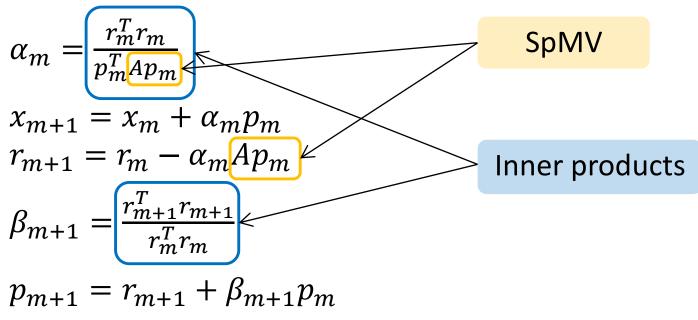
$$p_{m+1} = r_{m+1} + \beta_{m+1} p_{m}$$
SpMV

Example: Classical Conjugate Gradient (CG)

Given: initial approximation x_0 for solving Ax = b

$$Let p_0 = r_0 = b - Ax_0$$

for m = 0, 1, 2, ..., until convergence do



Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
 - Communicate every s iterations instead of every iteration
 - Reduces communication cost by O(s)!
 - (latency in parallel, latency and bandwidth in sequential)

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
 - Communicate every s iterations instead of every iteration
 - Reduces communication cost by O(s)!
 - (latency in parallel, latency and bandwidth in sequential)
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68):
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
 - Goals: increasing parallelism, avoiding I/O, increasing "convergence rate"

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
 - Communicate every s iterations instead of every iteration
 - Reduces communication cost by O(s)!
 - (latency in parallel, latency and bandwidth in sequential)
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68):
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
 - Goals: increasing parallelism, avoiding I/O, increasing "convergence rate"
- Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

- Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer loop and an inner loop
- Key observation: starting at some iteration m,

$$x_{m+j} - x_m, r_{m+j}, p_{m+j} \in \mathcal{K}_{s+1}(A, p_m) + \mathcal{K}_s(A, r_m)$$
 for $j \in \{0, ..., s\}$

- Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer loop and an inner loop
- Key observation: starting at some iteration m_i

$$x_{m+j} - x_m, r_{m+j}, p_{m+j} \in \mathcal{K}_{s+1}(A, p_m) + \mathcal{K}_s(A, r_m)$$
 for $j \in \{0, ..., s\}$

Outer loop k: Communication step

Expand solution space s dimensions at once

• Compute "basis matrix" Y_k with columns spanning

$$\mathcal{K}_{s+1}(A, p_m) + \mathcal{K}_s(A, r_m)$$

- Requires reading A/communicating vectors only once
 - Using "matrix powers kernel"

Orthogonalize all at once

 Compute/store block of inner products between basis vectors in Gram matrix:

$$G_k = Y_k^T Y_k$$

Communication cost of one global reduction

Inner loop:
Computation
steps, no
communication!

- Using Y_k and G_k , this requires **no communication!**
- Represent n-vectors by their O(s) coordinates in Y_k :

$$x_{sk+j} - x_{sk} = Y_k x_j', \quad r_{sk+j} = Y_k r_j', \quad p_{sk+j} = Y_k p_j'$$

Inner loop:
Computation
steps, no
communication!

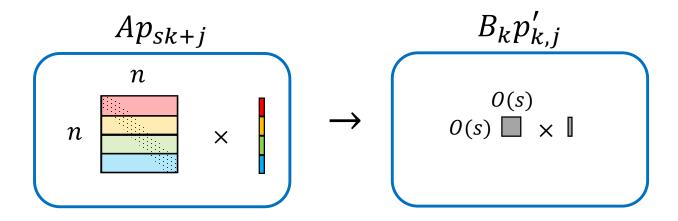
- Using Y_k and G_k , this requires no communication!
- Represent n-vectors by their O(s) coordinates in Y_k : $x_{sk+j} x_{sk} = Y_k x_i'$, $r_{sk+j} = Y_k r_j'$, $p_{sk+j} = Y_k p_j'$

$$\begin{array}{c|c}
Ap_{sk+j} \\
n \\
\end{array}$$

Inner loop:
Computation
steps, no
communication!

- Using Y_k and G_k , this requires no communication!
- Represent n-vectors by their O(s) coordinates in Y_k :

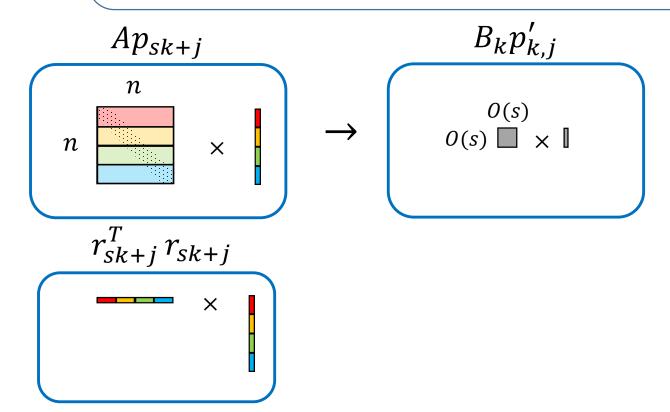
$$x_{sk+j} - x_{sk} = Y_k x_j', \quad r_{sk+j} = Y_k r_j', \quad p_{sk+j} = Y_k p_j'$$



Inner loop:
Computation
steps, no
communication!

- Using Y_k and G_k , this requires no communication!
- Represent n-vectors by their O(s) coordinates in Y_k :

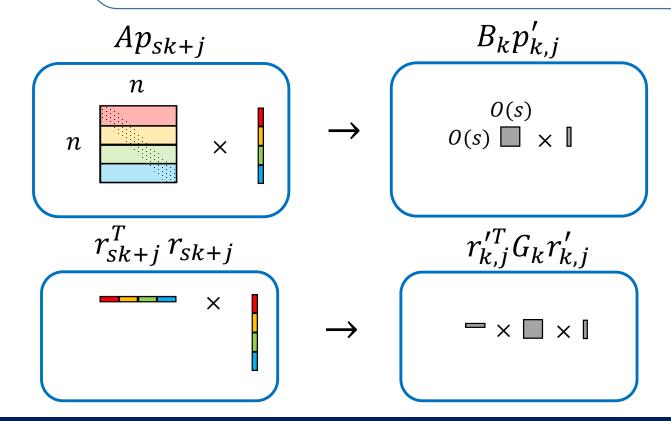
$$x_{sk+j}-x_{sk}=Y_kx_j', \quad r_{sk+j}=Y_kr_j', \quad p_{sk+j}=Y_kp_j'$$



Inner loop:
Computation
steps, no
communication!

- Using Y_k and G_k , this requires no communication!
- Represent n-vectors by their O(s) coordinates in Y_k :

$$x_{sk+j} - x_{sk} = Y_k x_j', \quad r_{sk+j} = Y_k r_j', \quad p_{sk+j} = Y_k p_j'$$



Example: CA-Conjugate Gradient

Given: initial approximation x_0 for solving Ax = bLet $p_0 = r_0 = b - Ax_0$ for k = 0, 1, ..., until convergence do Compute Y_k , compute $G_k = Y_k^T Y_k$ Let $x'_0 = 0_{2s+1}$, $r'_0 = e_{s+2}$, $p'_0 = e_1$ for i = 0, ..., s - 1 do $\alpha_{sk+j} = \frac{\left(r_j'\right)^T G_k r_j'}{\left(p_j'\right)^T G_k B_k p_j'}$ $x'_{i+1} = x'_i + \alpha_{sk+i} p'_i$ $r'_{i+1} = r'_i - \alpha_{sk+i} B_k p'_i$ $\beta_{sk+j+1} = \frac{(r'_{j+1})^T G_k r'_{j+1}}{(r'_i)^T G_k r'_i}$ $p'_{i+1} = r'_{i+1} + \beta_{sk+i+1} p'_i$ end for Compute $x_{sk+s} = Y_k x_s' + x_{sk}, r_{sk+s} = Y_k r_s', p_{sk+s} = Y_k p_s'$ end for

Example: CA-Conjugate Gradient

Given: initial approximation x_0 for solving Ax = b

$$Let p_0 = r_0 = b - Ax_0$$

for k = 0, 1, ..., until convergence do

Compute Y_k , compute $G_k = Y_k^T Y_k$

Let $x'_0 = 0_{2s+1}$, $r'_0 = e_{s+2}$, $p'_0 = e_1$

for j = 0, ..., s - 1 do

$$\alpha_{sk+j} = \frac{(r'_j)^T G_k r'_j}{(p'_j)^T G_k B_k p'_j}$$

$$x'_{j+1} = x'_j + \alpha_{sk+j} p'_j$$

$$r'_{j+1} = r'_j - \alpha_{sk+j} B_k p'_j$$

$$\beta_{sk+j+1} = \frac{(r'_{j+1})^T G_k r'_{j+1}}{(r'_j)^T G_k r'_j}$$

$$p'_{j+1} = r'_{j+1} + \beta_{sk+j+1} p'_j$$

end for

Compute $x_{sk+s} = Y_k x_s' + x_{sk}$, $r_{sk+s} = Y_k r_s'$, $p_{sk+s} = Y_k p_s'$

end for

via CA Matrix Powers Kernel

Global reduction to compute G_k

Example: CA-Conjugate Gradient

Given: initial approximation x_0 for solving Ax = b

$$Let p_0 = r_0 = b - Ax_0$$

for k = 0, 1, ..., until convergence do

Compute Y_k , compute $G_k = Y_k^T Y_k$

Let
$$x'_0 = 0_{2s+1}$$
, $r'_0 = e_{s+2}$, $p'_0 = e_1$

for j = 0, ..., s - 1 do

$$\alpha_{sk+j} = \frac{(r'_j)^T G_k r'_j}{(p'_j)^T G_k B_k p'_j}$$

$$x'_{j+1} = x'_j + \alpha_{sk+j} p'_j$$

$$r'_{j+1} = r'_j - \alpha_{sk+j} B_k p'_j$$

$$\beta_{sk+j+1} = \frac{(r'_{j+1})^T G_k r'_{j+1}}{(r'_j)^T G_k r'_j}$$

$$p'_{j+1} = r'_{j+1} + \beta_{sk+j+1} p'_j$$

via CA Matrix Powers Kernel

Global reduction to compute G_k

Local computations within inner loop require no communication!

end for

Compute
$$x_{sk+s} = Y_k x_s' + x_{sk}$$
, $r_{sk+s} = Y_k r_s'$, $p_{sk+s} = Y_k p_s'$

Complexity Comparison

Example of parallel (per processor) complexity for *s* iterations of CG vs. CA-CG for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and $s \leq \sqrt{n/p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sn}{p}$	$\frac{sn}{p}$	$s\sqrt{n/p}$	$s \log_2 p$	S	$s \log_2 p$
CA-CG	$\frac{sn}{p}$	$\frac{s^2n}{p}$	$s\sqrt{n/p}$	$s^2 \log_2 p$	1	$\log_2 p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Complexity Comparison

Example of parallel (per processor) complexity for *s* iterations of CG vs. CA-CG for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and $s \leq \sqrt{n/p}$)

	Flops		Words M	1oved	Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sn}{p}$	$\frac{sn}{p}$	$s\sqrt{n/p}$	$s \log_2 p$	S	$s \log_2 p$
CA-CG	$\frac{sn}{p}$	$\left\lfloor \frac{s^2n}{p} \right\rfloor$	$s\sqrt{n/p}$	$s^2 \log_2 p$	1	$\log_2 p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Complexity Comparison

Example of parallel (per processor) complexity for *s* iterations of CG vs. CA-CG for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and $s \leq \sqrt{n/p}$)

	Flops		Words M	1oved	Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sn}{p}$	$\frac{\overline{sn}}{p}$	$s\sqrt{n/p}$	$s \log_2 p$	S	$s \log_2 p$
CA-CG	$\frac{sn}{p}$	$\left(\frac{s^2n}{p}\right)$	$s\sqrt{n/p}$	$s^2 \log_2 p$	1	$\log_2 p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
 - That is, find s that gives the fastest speed per iteration

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
 - That is, find s that gives the fastest speed per iteration
- In practice, we don't just care about speed per iteration, but also the number of iterations

Runtime = (time/iteration) x (# iterations)

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
 - That is, find s that gives the fastest speed per iteration
- In practice, we don't just care about speed per iteration, but also the number of iterations

Runtime = (time/iteration) x (# iterations)

 We also need to consider how convergence rate and accuracy are affected by choice of s!

CA-KSMs are mathematically equivalent to classical KSMs

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:
 - 1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: **true residual** b Ax stagnates

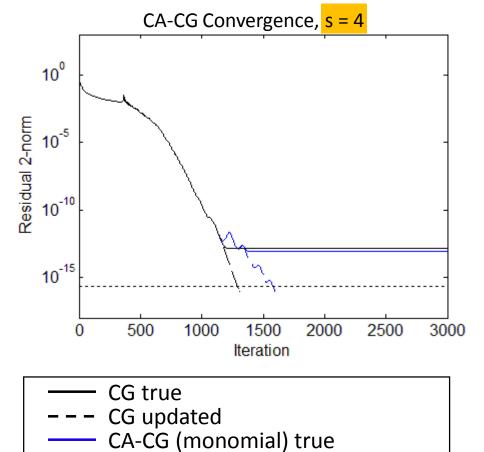
- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:
 - 1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: **true residual** b Ax stagnates
 - 2. Delay of convergence → Tradeoff: increasing blocking factor s past a certain point: no speedup expected

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:
 - 1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: **true residual** b Ax stagnates
 - 2. Delay of convergence → Tradeoff: increasing blocking factor s past a certain point: no speedup expected

Runtime = (time/iteration) x (# iterations)

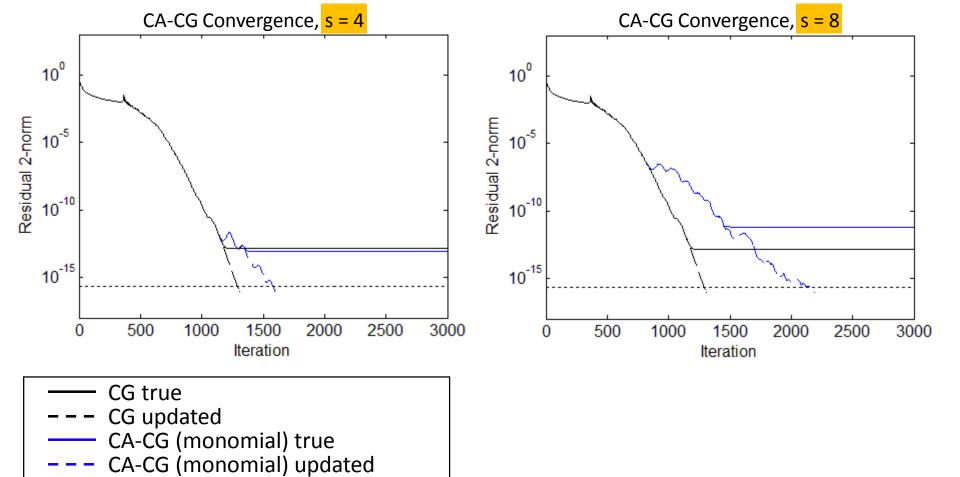
- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:
 - 1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: **true residual** b Ax stagnates
 - 2. Delay of convergence → Tradeoff: increasing blocking factor s past a certain point: no speedup expected

Runtime = (time/iteration) x (# iterations)

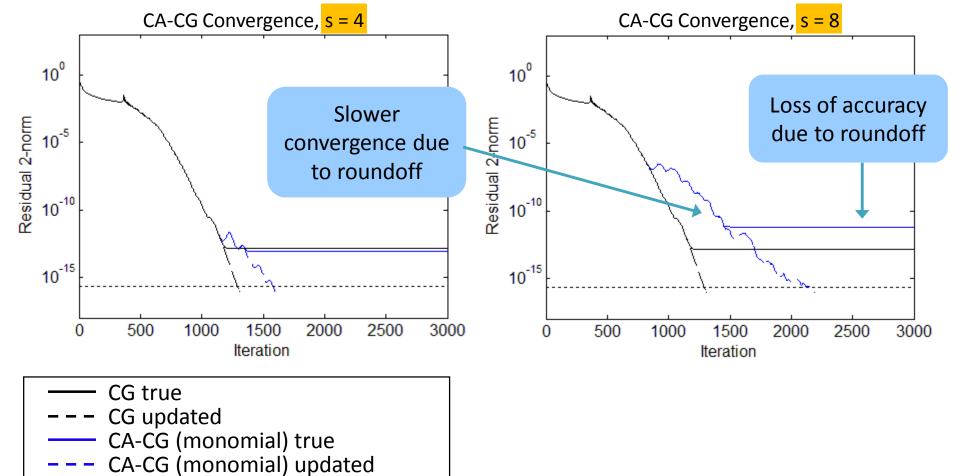


Model Problem: 2D Poisson (5-pt stencil),
$$n=512^2$$
, nnz $\approx 10^6$, $\kappa(A)\approx 10^4$ $b=A(1\sqrt{n}\cdot \mathrm{ones}(n,1))$

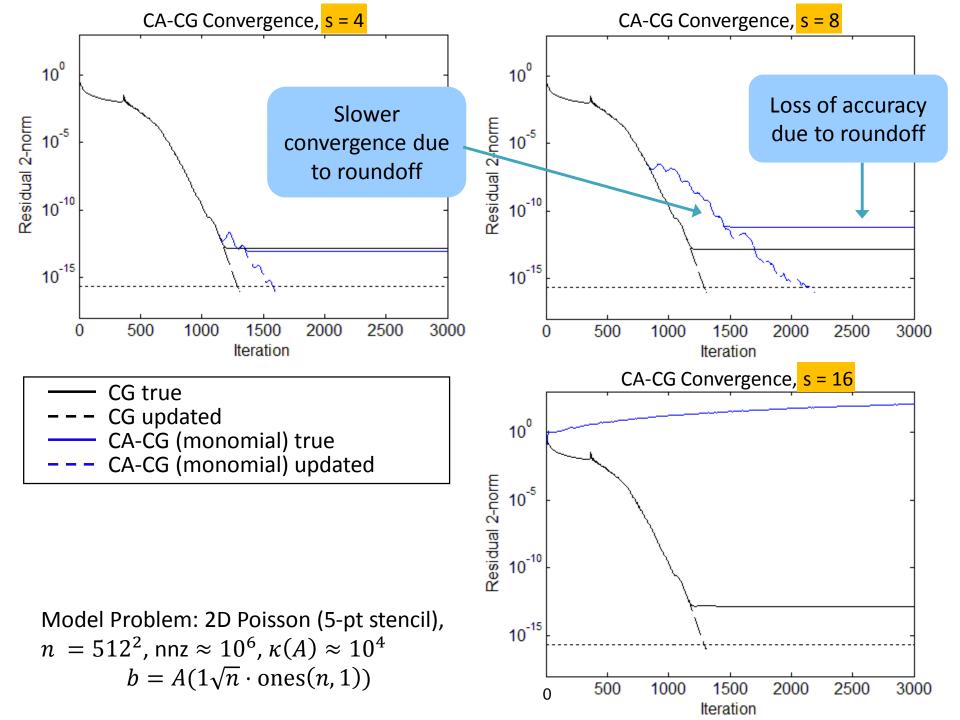
CA-CG (monomial) updated

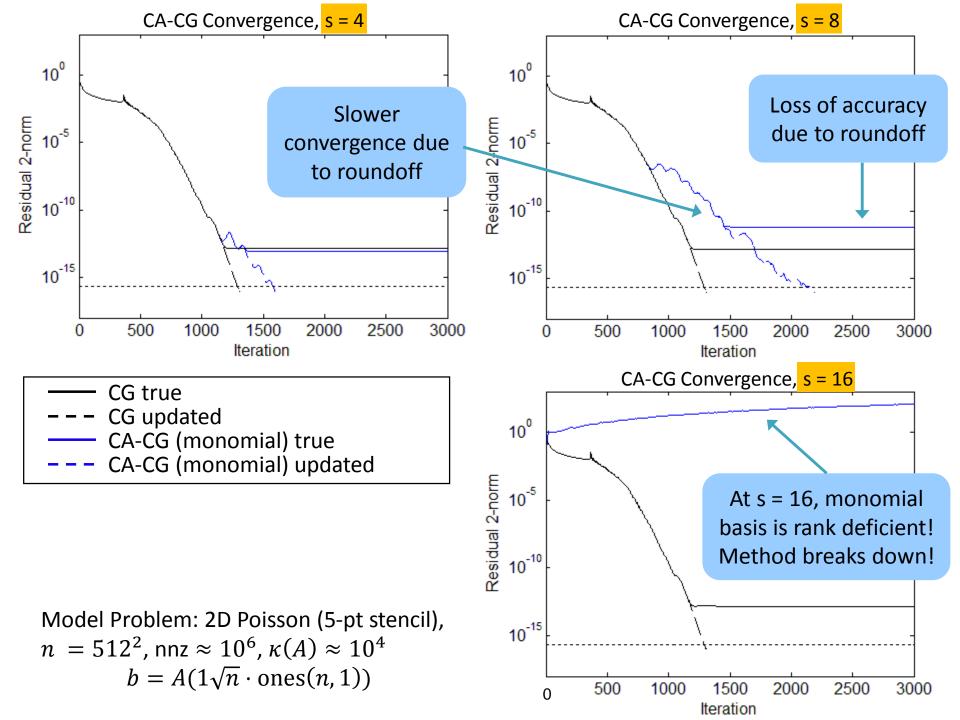


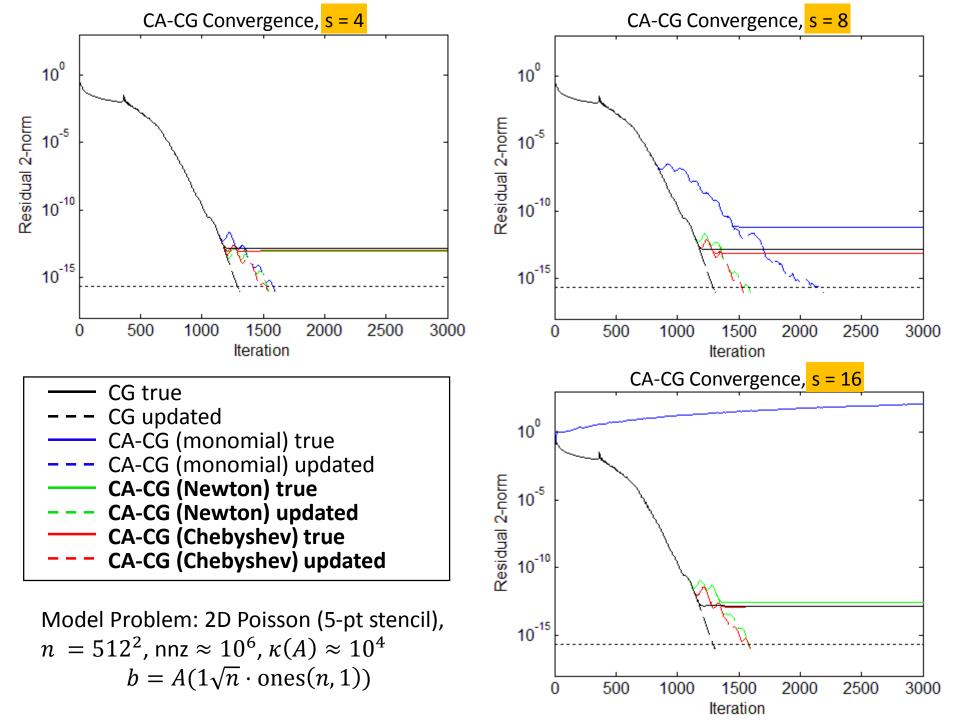
Model Problem: 2D Poisson (5-pt stencil),
$$n=512^2$$
, nnz $\approx 10^6$, $\kappa(A)\approx 10^4$ $b=A(1\sqrt{n}\cdot \mathrm{ones}(n,1))$

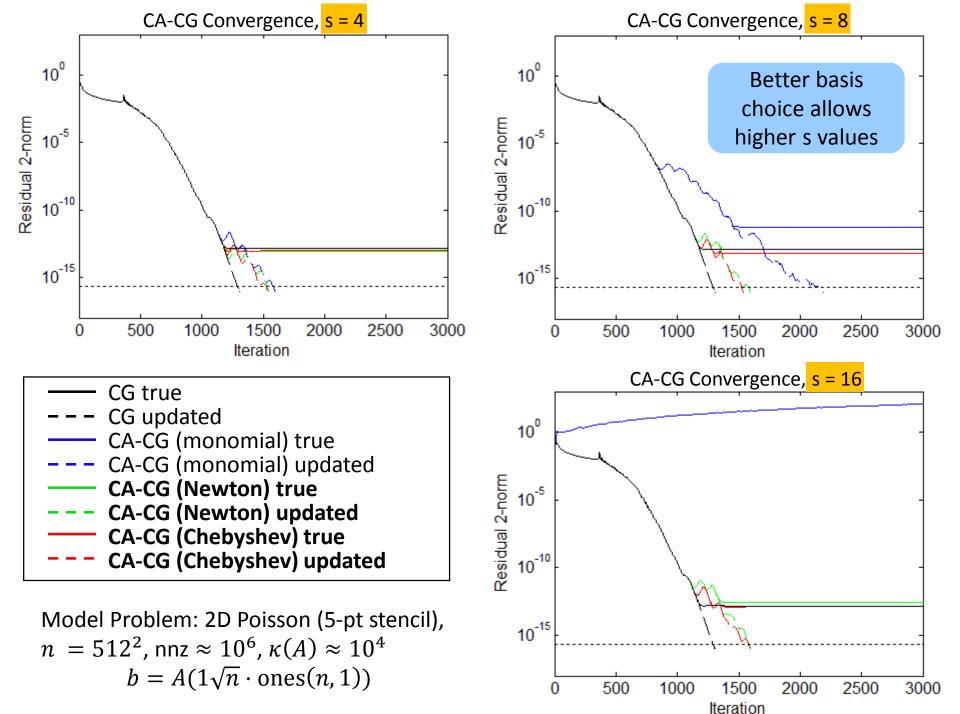


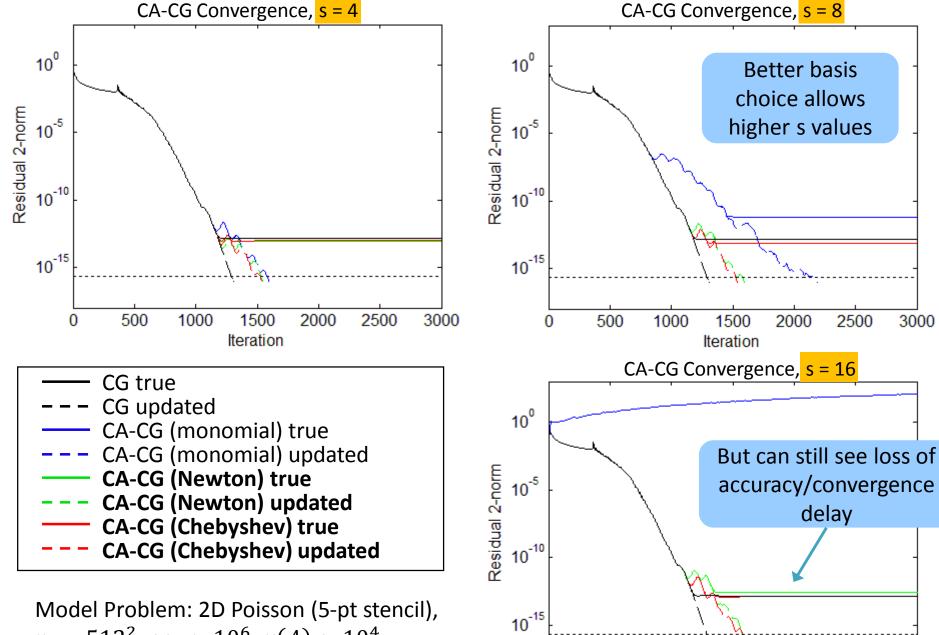
Model Problem: 2D Poisson (5-pt stencil),
$$n=512^2$$
, nnz $\approx 10^6$, $\kappa(A)\approx 10^4$ $b=A(1\sqrt{n}\cdot {\rm ones}(n,1))$











500

1000

1500

Iteration

2000

2500

3000

Model Problem: 2D Poisson (5-pt stencil), $n = 512^2$, nnz $\approx 10^6$, $\kappa(A) \approx 10^4$ $b = A(1\sqrt{n} \cdot \text{ones}(n, 1))$

Maximum attainable accuracy of CG

In classical CG, iterates are updated by

$$x_{m+1} = x_m + \alpha_m p_m$$
 and $r_{m+1} = r_m - \alpha_m A p_m$

• Formulas for x_{m+1} and r_{m+1} do not depend on each other - rounding errors cause the true residual, $b-Ax_{m+1}$, and the updated residual, r_{m+1} , to deviate

Maximum attainable accuracy of CG

In classical CG, iterates are updated by

$$x_{m+1} = x_m + \alpha_m p_m$$
 and $r_{m+1} = r_m - \alpha_m A p_m$

- Formulas for x_{m+1} and r_{m+1} do not depend on each other rounding errors cause the true residual, $b-Ax_{m+1}$, and the updated residual, r_{m+1} , to deviate
- The size of the true residual is bounded by

$$||b - Ax_{m+1}|| \le ||r_{m+1}|| + ||b - Ax_{m+1} - r_{m+1}||$$

- When $||r_{m+1}|| \gg ||b-Ax_{m+1}-r_{m+1}||$, $||r_{m+1}||$ and $||b-Ax_{m+1}||$ have similar magnitude
- When $||r_{m+1}|| \to 0$, $||b Ax_{m+1}||$ depends on $||b Ax_{m+1} r_{m+1}||$

Maximum attainable accuracy of CG

In classical CG, iterates are updated by

$$x_{m+1} = x_m + \alpha_m p_m$$
 and $r_{m+1} = r_m - \alpha_m A p_m$

- Formulas for x_{m+1} and r_{m+1} do not depend on each other rounding errors cause the true residual, $b-Ax_{m+1}$, and the updated residual, r_{m+1} , to deviate
- The size of the true residual is bounded by

$$||b - Ax_{m+1}|| \le ||r_{m+1}|| + ||b - Ax_{m+1} - r_{m+1}||$$

- When $||r_{m+1}|| \gg ||b-Ax_{m+1}-r_{m+1}||$, $||r_{m+1}||$ and $||b-Ax_{m+1}||$ have similar magnitude
- When $||r_{m+1}|| \to 0$, $||b Ax_{m+1}||$ depends on $||b Ax_{m+1} r_{m+1}||$
- Many results on attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).
- We have applied a similar analysis to upper bound the maximum attainable accuracy in finite precision CA-KSMs

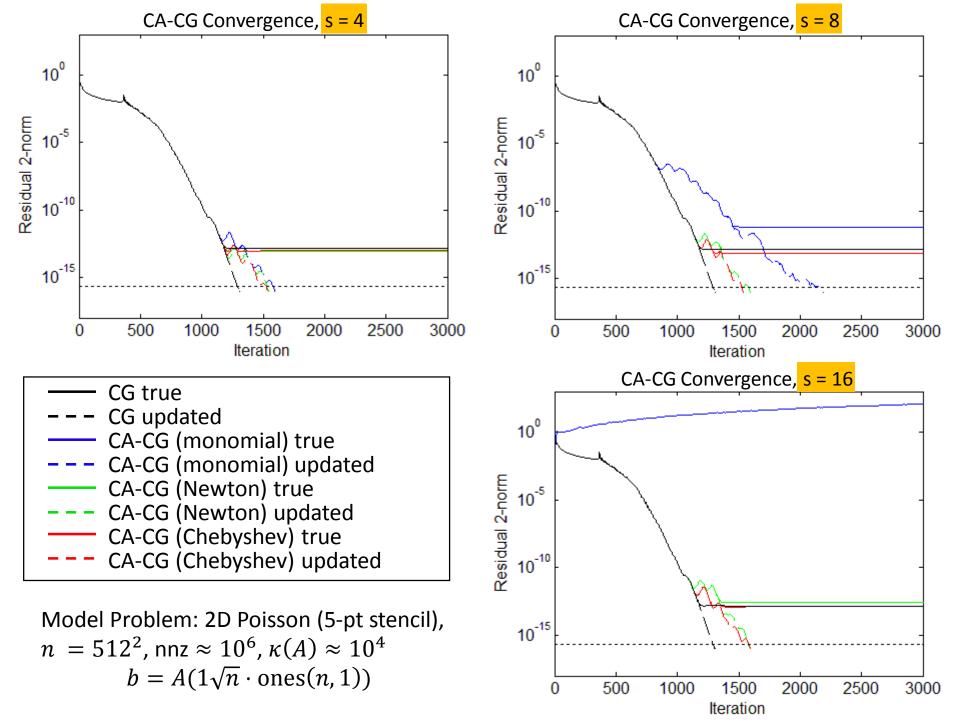
• van der Vorst and Ye (1999): Improve accuracy by replacing **updated residual** r_{m+1} by the **true residual** $b-Ax_{m+1}$ in certain iterations, combined with group update.

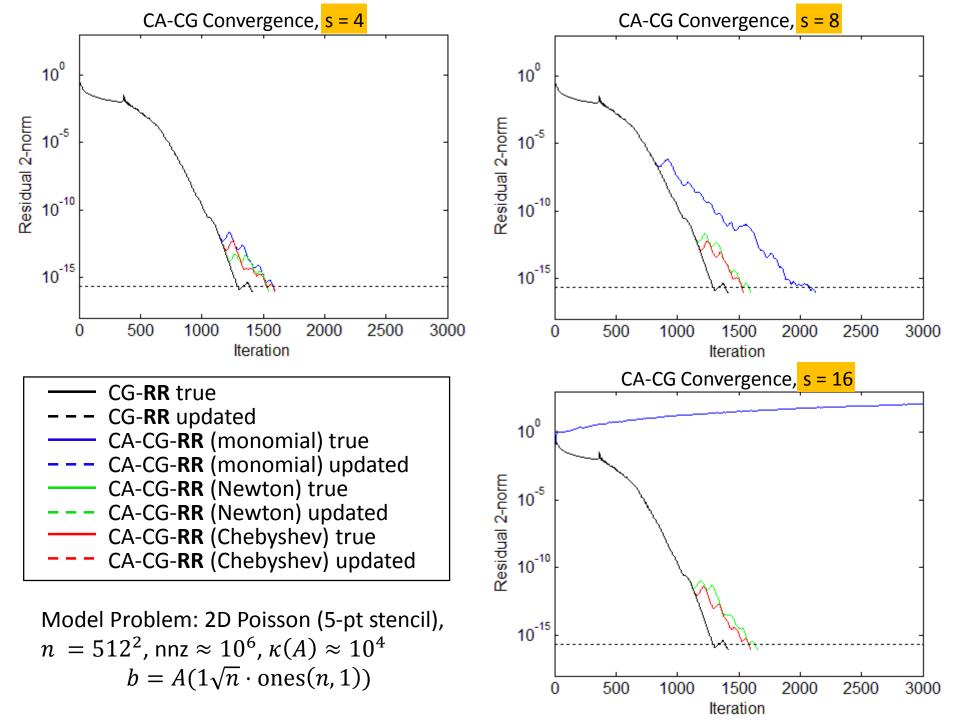
- van der Vorst and Ye (1999): Improve accuracy by replacing **updated residual** r_{m+1} by the **true residual** $b-Ax_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b Ax_{m+1}$ to meet two constraints:

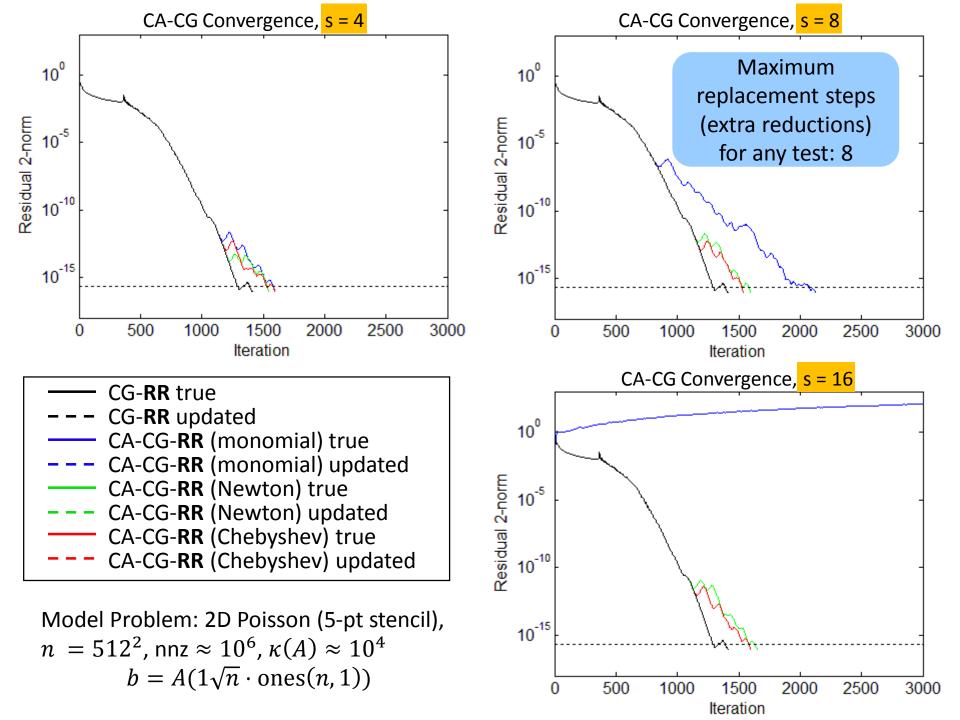
- van der Vorst and Ye (1999): Improve accuracy by replacing **updated residual** r_{m+1} by the **true residual** $b-Ax_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b Ax_{m+1}$ to meet two constraints:
 - 1. Replace often enough so that at termination, $||b Ax_{m+1} r_{m+1}||$ is small relative to $\varepsilon N ||A|| ||x_{m+1}||$

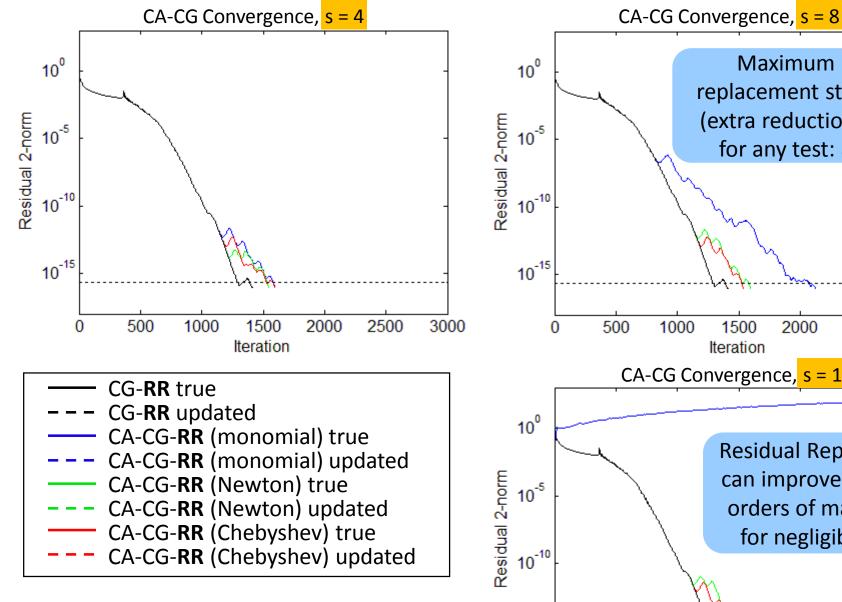
- van der Vorst and Ye (1999): Improve accuracy by replacing **updated residual** r_{m+1} by the **true residual** $b-Ax_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b Ax_{m+1}$ to meet two constraints:
 - 1. Replace often enough so that at termination, $||b Ax_{m+1} r_{m+1}||$ is small relative to $\varepsilon N ||A|| ||x_{m+1}||$
 - Don't replace so often that original convergence mechanism of updated residuals is destroyed (avoid large perturbations to finite precision CG recurrence)

- van der Vorst and Ye (1999): Improve accuracy by replacing **updated residual** r_{m+1} by the **true residual** $b-Ax_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b Ax_{m+1}$ to meet two constraints:
 - 1. Replace often enough so that at termination, $||b Ax_{m+1} r_{m+1}||$ is small relative to $\varepsilon N ||A|| ||x_{m+1}||$
 - 2. Don't replace so often that original convergence mechanism of updated residuals is destroyed (avoid large perturbations to finite precision CG recurrence)
- We can implement an analogous strategy for CA-CG and CA-BICG based on derived bound on deviation of residuals
 - Estimating quantities in bound has negligible cost → residual replacement strategy does not asymptotically increase communication or computation!

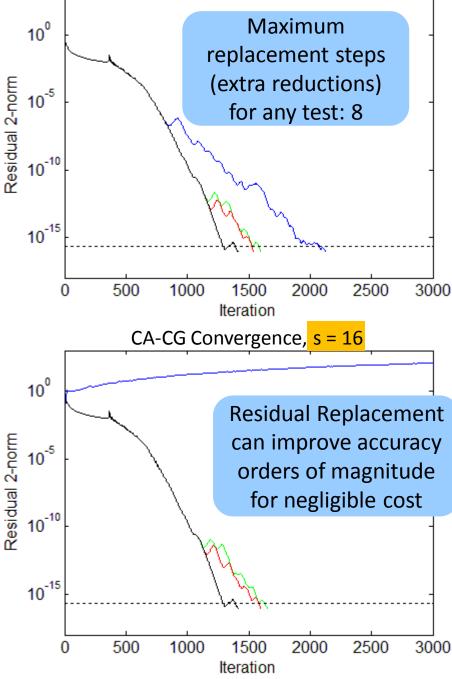








Model Problem: 2D Poisson (5-pt stencil), $n = 512^2$, nnz $\approx 10^6$, $\kappa(A) \approx 10^4$ $b = A(1\sqrt{n} \cdot \text{ones}(n, 1))$



Paige's Results for Classical Lanczos

- Using bounds on local rounding errors in Lanczos, Paige showed that
 - 1. The computed Ritz values always lie between the extreme eigenvalues of A to within a small multiple of machine precision.
 - 2. At least one small interval containing an eigenvalue of A is found by the nth iteration.
 - The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
 - 4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some Ritz values have converged.

Paige's Results for Classical Lanczos

- Using bounds on local rounding errors in Lanczos, Paige showed that
 - 1. The computed Ritz values always lie between the extreme eigenvalues of A to within a small multiple of machine precision.
 - 2. At least one small interval containing an eigenvalue of A is found by the nth iteration.
 - The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
 - 4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some Ritz values have converged.

Do the same statements hold for CA-Lanczos?

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$A\hat{V}_m = \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m$$

$$\hat{V}_m = [\hat{v}_1, \dots, \hat{v}_m], \quad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \quad \hat{\tau}_m = \begin{bmatrix} \alpha_1 & \beta_2 \\ \hat{\beta}_2 & \ddots & \ddots \\ & \ddots & \ddots & \hat{\beta}_m \\ & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix}$$

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$A\hat{V}_m = \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m$$

$$\hat{V}_m = [\hat{v}_1, \dots, \hat{v}_m], \qquad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \qquad \hat{\tau}_m = \begin{bmatrix} \alpha_1 & \beta_2 \\ \hat{\beta}_2 & \ddots & \ddots \\ & \ddots & \ddots & \hat{\beta}_m \\ & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix}$$

Classic Lanczos rounding error result of Paige (1976):

for
$$i \in \{1, ..., m\}$$
,
$$\|\delta \hat{v}_i\|_2 \le \varepsilon_1 \sigma$$

$$\hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| \le 2\varepsilon_0 \sigma$$

$$|\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| \le \varepsilon_0 / 2$$

$$|\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2 |\le 4i(3\varepsilon_0 + \varepsilon_1) \sigma^2$$

where
$$\sigma \equiv ||A||_2$$
, $\theta \sigma \equiv ||A||_2$, $\varepsilon_0 \equiv 2\varepsilon(n+4)$, and $\varepsilon_1 \equiv 2\varepsilon(N\theta+7)$

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$A\hat{V}_m = \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m$$

$$\hat{V}_m = [\hat{v}_1, \dots, \hat{v}_m], \qquad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \qquad \hat{\tau}_m = \begin{bmatrix} \alpha_1 & \beta_2 \\ \hat{\beta}_2 & \ddots & \ddots \\ & \ddots & \ddots & \hat{\beta}_m \\ & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix}$$

Classic Lanczos rounding error result of Paige (1976):

for
$$i \in \{1, ..., m\}$$
,
$$\|\delta \hat{v}_i\|_2 \le \varepsilon_1 \sigma$$

$$\hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| \le 2\varepsilon_0 \sigma$$

$$|\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| \le \varepsilon_0 / 2$$

$$|\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2 |\le 4i(3\varepsilon_0 + \varepsilon_1) \sigma^2$$

where
$$\sigma \equiv \|A\|_2$$
, $\theta \sigma \equiv \||A|\|_2$, $\varepsilon_0 \equiv 2\varepsilon(n+4)$, and $\varepsilon_1 \equiv 2\varepsilon(N\theta+7)$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$A\hat{V}_m = \hat{V}_m \hat{T}_m + \hat{\beta}_{m+1} \hat{v}_{m+1} e_m^T + \delta \hat{V}_m$$

$$\hat{V}_m = [\hat{v}_1, \dots, \hat{v}_m], \qquad \delta \hat{V}_m = [\delta \hat{v}_1, \dots, \delta \hat{v}_m], \qquad \hat{\tau}_m = \begin{bmatrix} \alpha_1 & \rho_2 \\ \hat{\beta}_2 & \ddots & \ddots \\ & \ddots & \ddots & \hat{\beta}_m \\ & & \hat{\beta}_m & \hat{\alpha}_m \end{bmatrix}$$

Classic Lanczos rounding error result of Paige (1976):

for
$$i \in \{1, ..., m\}$$
,
$$\|\delta \hat{v}_i\|_2 \le \varepsilon_1 \sigma$$

$$\hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| \le 2\varepsilon_0 \sigma$$

$$|\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| \le \varepsilon_0 / 2$$

$$|\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2 |\le 4i(3\varepsilon_0 + \varepsilon_1) \sigma^2$$

 \rightarrow These results form the basis for Paige's influential results in (Paige, 1980).

CA-Lanczos Convergence Analysis

For CA-Lanczos, we have:

for
$$i \in \{1, ..., m = sk + j\}$$
,
$$\|\delta \hat{v}_i\|_2 \le \varepsilon_1 \sigma$$

$$\hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| \le 2\varepsilon_0 \sigma$$

$$|\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| \le \varepsilon_0 / 2$$

$$|\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A\hat{v}_i\|_2^2| \le 4i(3\varepsilon_0 + \varepsilon_1)\sigma^2$$

$$\begin{split} \varepsilon_0 &\equiv 2\varepsilon (n+11s+15) \; \Gamma^2 = \mathcal{O}(\varepsilon n \Gamma^2), \\ \varepsilon_1 &\equiv 2\varepsilon \big((\mathsf{N}+2s+5)\theta + (4s+9)\tau + 10s+16 \big) \Gamma = \mathcal{O}(\varepsilon N\theta \Gamma), \\ \text{where } \sigma &\equiv \|A\|_2, \quad \theta \sigma \equiv \||A|\|_2, \quad \tau \sigma \equiv \max_{\ell \leq k} \||B_\ell|\|_2, \quad \text{and} \\ &\Gamma \leq \max_{\ell \leq k} \|Y_\ell^+\|_2 \cdot \||Y_\ell|\|_2 \leq (2s+1) \cdot \max_{\ell \leq k} \kappa(Y_\ell). \end{split}$$

CA-Lanczos Convergence Analysis

For CA-Lanczos, we have:

for
$$i \in \{1, ..., m = sk + j\}$$
,
$$\|\delta \hat{v}_i\|_2 \le \varepsilon_1 \sigma$$

$$\hat{\beta}_{i+1} |\hat{v}_i^T \hat{v}_{i+1}| \le 2\varepsilon_0 \sigma$$

$$|\hat{v}_{i+1}^T \hat{v}_{i+1} - 1| \le \varepsilon_0 / 2$$

$$|\hat{\beta}_{i+1}^2 + \hat{\alpha}_i^2 + \hat{\beta}_i^2 - \|A \hat{v}_i\|_2^2 |\le 4i(3\varepsilon_0 + \varepsilon_1) \sigma^2$$

$$\varepsilon_0 \equiv 2\varepsilon (n+11s+15) \ \Gamma^2 = \mathcal{O}(\varepsilon n \Gamma^2), \qquad \text{(vs. } \mathcal{O}(\varepsilon n) \text{ for Lanczos)}$$

$$\varepsilon_1 \equiv 2\varepsilon \big((N+2s+5)\theta + (4s+9)\tau + 10s+16 \big) \Gamma = \mathcal{O}(\varepsilon N\theta \Gamma), \qquad \text{(vs. } \mathcal{O}(\varepsilon N\theta) \text{ for Lanczos)}$$

$$\text{where } \sigma \equiv \|A\|_2, \quad \theta \sigma \equiv \||A|\|_2, \quad \tau \sigma \equiv \max_{\ell \leq k} \||B_\ell|\|_2, \quad \text{and}$$

$$\Gamma \leq \max_{\ell \leq k} \||Y_\ell^+||_2 \cdot \||Y_\ell|\|_2 \leq (2s+1) \cdot \max_{\ell \leq k} \kappa(Y_\ell).$$

The Amplification Term Γ

- Roundoff errors in CA variant follow same pattern as classical variant, but amplified by factor of Γ or Γ^2
 - Theoretically confirms empirical observations on importance of basis conditioning (dating back to late '80s)
- A loose bound for the amplification term:

$$\Gamma \leq \max_{\ell \leq k} \|\mathcal{Y}_{\ell}^{+}\|_{2} \cdot \||\mathcal{Y}_{\ell}|\|_{2} \leq (2s+1) \cdot \max_{\ell \leq k} \kappa(\mathcal{Y}_{\ell})$$

- What we really need: $||y||y'||_2 \le \Gamma ||yy'||_2$ to hold for the computed basis y and coordinate vector y' in every bound.
- Tighter bound on Γ possible; requires some light bookkeeping
- Example: for bounds on $\hat{\beta}_{i+1} | \hat{v}_i^T \hat{v}_{i+1} |$ and $| \hat{v}_{i+1}^T \hat{v}_{i+1} 1 |$, we can use the definition

$$\Gamma_{k,j} \equiv \max_{x \in \{\widehat{w}'_{k,j}, \widehat{u}'_{k,j}, \widehat{v}'_{k,j}, \widehat{v}'_{k,j-1}\}} \frac{\||\widehat{y}_k||_{x}\||_{2}}{\|\widehat{y}_k x\||_{2}}$$

 Back to our question: Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for CA-Lanczos?

- Back to our question: Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but

- Back to our question: Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but
- Only if:

•
$$\varepsilon_0 \equiv 2\varepsilon(n+11s+15) \Gamma^2 \le \frac{1}{12}$$

• i.e.,
$$\Gamma \le (24\epsilon(n+11s+15))^{-1/2} = O(n\epsilon)^{-1/2}$$

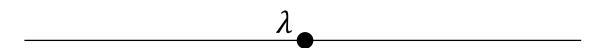
 Otherwise, e.g., can lose orthogonality due to computation with (numerically) rank-deficient basis

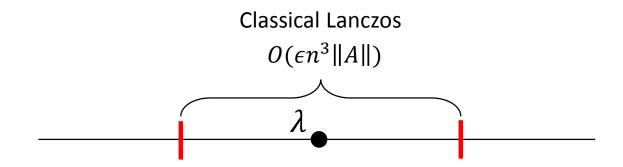
- Back to our question: Do Paige's results, e.g., loss of orthogonality → eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but
- Only if:

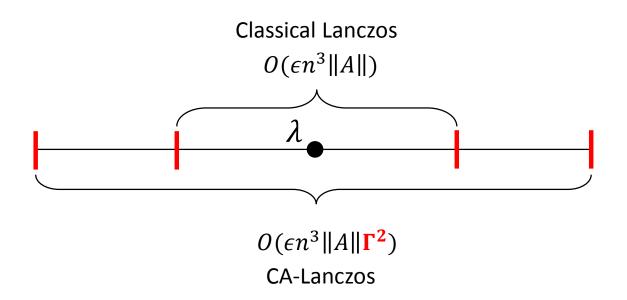
•
$$\varepsilon_0 \equiv 2\varepsilon(n+11s+15) \Gamma^2 \le \frac{1}{12}$$

• i.e.,
$$\Gamma \le (24\epsilon(n+11s+15))^{-1/2} = O(n\epsilon)^{-1/2}$$

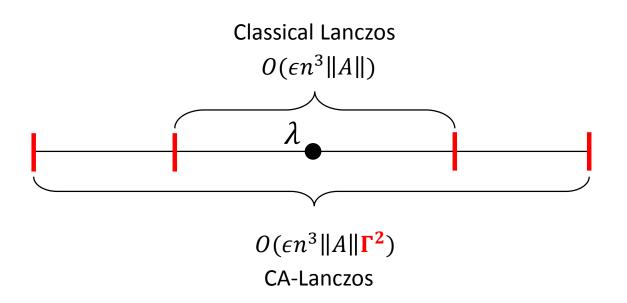
- Otherwise, e.g., can lose orthogonality due to computation with (numerically) rank-deficient basis
- Take-away: we can use this bound on Γ to design a better algorithm!
 - Mixed precision, selective reorthogonalization, dynamic basis size, etc.





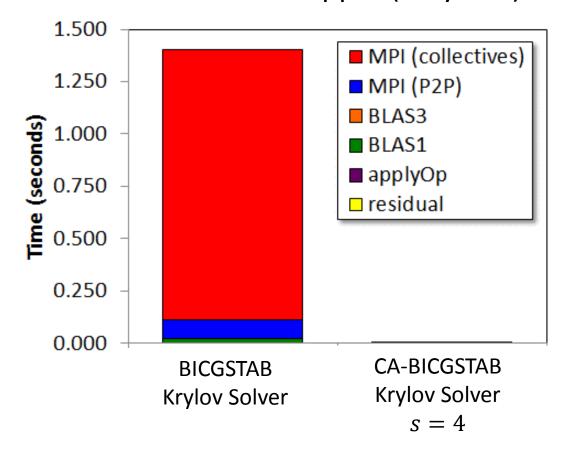


Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied to a matrices whose eigenvalues lie within intervals about the eigenvalues of A.



Ongoing work...

- Timing for coarse grid solves in geometric multigrid method
- 3D Helmholtz equation with $n=1.6\cdot 10^6$
- 24K cores on NERSC's Hopper (Cray XE6)



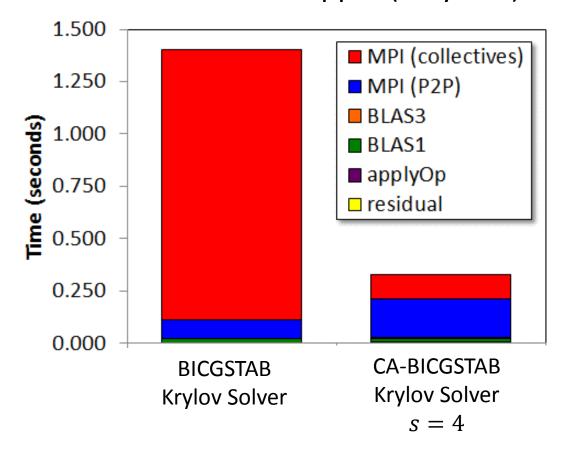
Problem specifics:

$$Lu = (a\alpha - b\nabla \cdot \beta \nabla)u = f$$

 $\alpha = \beta = 1.0, a = b = 0.9$

- Periodic boundary conds.
- RHS: 3D triangle wave w/period spanning entire domain

- Timing for coarse grid solves in geometric multigrid method
- 3D Helmholtz equation with $n=1.6\cdot 10^6$
- 24K cores on NERSC's Hopper (Cray XE6)



Problem specifics:

$$Lu = (a\alpha - b\nabla \cdot \beta \nabla)u = f$$

 $\alpha = \beta = 1.0, a = b = 0.9$

- Periodic boundary conds.
- RHS: 3D triangle wave w/period spanning entire domain

4.2x speedup in Krylov solve!

Future Directions

Broad research agenda: Design methods for large-scale problems that optimize performance subject to application-specific numerical constraints

New Algorithms/Applications

- Application of communication-avoiding ideas and solvers to new computational science domains
- Design of new high-performance preconditioners

Finite-Precision Analysis

- Bounds on stability and convergence for other Krylov methods (particularly in the nonsymmetric case)
- Extension of "Backwards-like" error analyses

Improving Usability

- Automating parameter selection via "numerical auto-tuning"
- Integration into high-performance libraries

Thank you!

Happy Birthday, Jim!

contact: erinc@cims.nyu.edu http://www.cims.nyu.edu/~erinc/