Communication-Avoiding
 Krylov Subspace Methods in Theory and Practice

Erin Carson, NYU

DMML Workshop
October 23, 2015

Why Avoid "Communication"?

- Algorithms have two costs: computation and communication
- Communication : moving data between levels of memory hierarchy (sequential), between processors (parallel)

- On today's computers, communication is expensive, computation is cheap, in terms of both time and energy!

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops	$10^{18} \mathrm{flops}$	~ 1000
Node Memory Bandwidth	$25 \mathrm{~GB} / \mathrm{s}$	$0.4-4 \mathrm{~TB} / \mathrm{s}$	$\sim 10-100$
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$	$100-400 \mathrm{~GB} / \mathrm{s}$	~ 100
Memory Latency	100 ns	50 ns	~ 1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops	10^{18} flops	~ 1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~ 1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Gaps between communication/computation cost only growing larger in future systems

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops	10^{18} flops	~ 1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Gaps between communication/computation cost only growing larger in future systems
- Avoiding communication will be essential for applications at exascale!

Krylov Subspace Methods

- General class of iterative solvers: used for linear systems, eigenvalue problems, singular value problems, least squares, etc.
- Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.
- Projection process onto the expanding Krylov subspace

$$
\mathcal{K}_{m}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{m-1} r_{0}\right\}
$$

- In each iteration,
- Add a dimension to the Krylov subspace \mathcal{K}_{m}
- Orthogonalize (with respect to some \mathcal{L}_{m})

Krylov Solvers: Limited by Communication

In terms of communication:

Krylov Solvers: Limited by Communication

In terms of communication:
"Add a dimension to \mathcal{K}_{m} "
\rightarrow Sparse Matrix-Vector Multiplication (SpMV)

- Parallel: comm. vector entries w/ neighbors
- Sequential: read $A /$ vectors from slow memory

Krylov Solvers: Limited by Communication

In terms of communication:
"Add a dimension to \mathcal{K}_{m} "
\rightarrow Sparse Matrix-Vector Multiplication (SpMV)

- Parallel: comm. vector entries w/ neighbors
- Sequential: read $A /$ vectors from slow memory
"Orthogonalize (with respect to some \mathcal{L}_{m})"
\rightarrow Inner products
Parallel: global reduction (All-Reduce) Sequential: multiple reads/writes to slow
 memory

Krylov Solvers: Limited by Communication

In terms of communication:
"Add a dimension to \mathcal{K}_{m} "
\rightarrow Sparse Matrix-Vector Multiplication (SpMV)

- Parallel: comm. vector entries w/ neighbors
- Sequential: read $A /$ vectors from slow memory
"Orthogonalize (with respect to some \mathcal{L}_{m})"
\rightarrow Inner products
Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow
 memory

Dependencies between communication-bound kernels in each iteration limit performance!

Example: Classical Conjugate Gradient (CG)

Given: initial approximation x_{0} for solving $A x=b$
Let $p_{0}=r_{0}=b-A x_{0}$
for $m=0,1,2, \ldots$, until convergence do

$$
\begin{aligned}
& \alpha_{m}=\frac{r_{m}^{T} r_{m}}{p_{m}^{T} A p_{m}} \\
& x_{m+1}=x_{m}+\alpha_{m} p_{m} \\
& r_{m+1}=r_{m}-\alpha_{m} A p_{m} \\
& \beta_{m+1}=\frac{r_{m+1}^{T} r_{m+1}}{r_{m}^{T} r_{m}} \\
& p_{m+1}=r_{m+1}+\beta_{m+1} p_{m}
\end{aligned}
$$

end for

Example: Classical Conjugate Gradient (CG)

Given: initial approximation x_{0} for solving $A x=b$
Let $p_{0}=r_{0}=b-A x_{0}$
for $m=0,1,2, \ldots$, until convergence do

$$
\begin{aligned}
& \alpha_{m}=\frac{r_{m}^{T} r_{m}}{p_{m}^{T A p_{m}}} \longleftarrow \\
& x_{m+1}=x_{m}+\alpha_{m} p_{m} \\
& r_{m+1}=r_{m}-\alpha_{m} A p_{m} \\
& \beta_{m+1}=\frac{r_{m+1}^{T} r_{m+1}}{r_{m}^{T} r_{m}} \\
& p_{m+1}=r_{m+1}+\beta_{m+1} p_{m}
\end{aligned}
$$

end for

Example: Classical Conjugate Gradient (CG)

Given: initial approximation x_{0} for solving $A x=b$
Let $p_{0}=r_{0}=b-A x_{0}$
for $m=0,1,2, \ldots$, until convergence do

$$
\begin{aligned}
& \alpha_{m}=\frac{r_{m}^{T} r_{m}}{p_{m}^{T} A p_{m}} \\
& x_{m+1}=x_{m}+\alpha_{m} p_{m} \\
& r_{m+1}=r_{m}-\alpha_{m} A p_{m} \\
& \beta_{m+1}=r_{m+1}^{T} r_{m+1} \\
& r_{m}^{T} r_{m} \\
& p_{m+1}=r_{m+1}+\beta_{m+1} p_{m}
\end{aligned} \text { SpMV Inner products }
$$

end for

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
- Communicate every s iterations instead of every iteration
- Reduces communication cost by $\mathbf{O}(s)$!
- (latency in parallel, latency and bandwidth in sequential)

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
- Communicate every s iterations instead of every iteration
- Reduces communication cost by $\mathbf{O}(s)$!
- (latency in parallel, latency and bandwidth in sequential)
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent - Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
- Goals: increasing parallelism, avoiding I/O, increasing "convergence rate"

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
- Communicate every s iterations instead of every iteration
- Reduces communication cost by $\mathbf{O}(s)$!
- (latency in parallel, latency and bandwidth in sequential)
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent - Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
- Goals: increasing parallelism, avoiding I/O, increasing "convergence rate"
- Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

Communication-Avoiding KSMs: CA-CG

- Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer loop and an inner loop
- Key observation: starting at some iteration m,

$$
x_{m+j}-x_{m}, r_{m+j}, p_{m+j} \in \mathcal{K}_{s+1}\left(A, p_{m}\right)+\mathcal{K}_{s}\left(A, r_{m}\right) \text { for } j \in\{0, \ldots, s\}
$$

Communication-Avoiding KSMs: CA-CG

- Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer loop and an inner loop
- Key observation: starting at some iteration m,

$$
x_{m+j}-x_{m}, r_{m+j}, p_{m+j} \in \mathcal{K}_{s+1}\left(A, p_{m}\right)+\mathcal{K}_{s}\left(A, r_{m}\right) \text { for } j \in\{0, \ldots, s\}
$$

Outer loop k: Communication step

Expand solution space s dimensions at once

- Compute "basis matrix" Y_{k} with columns spanning

$$
\mathcal{K}_{s+1}\left(A, p_{m}\right)+\mathcal{K}_{s}\left(A, r_{m}\right)
$$

- Requires reading $A /$ communicating vectors only once
- Using "matrix powers kernel"

Orthogonalize all at once

- Compute/store block of inner products between basis vectors in Gram matrix:

$$
G_{k}=Y_{k}^{T} Y_{k}
$$

- Communication cost of one global reduction

Communication-Avoiding KSMs: CA-CG

Inner loop:
Computation steps, no communication!

Perform s iterations of updates

- Using Y_{k} and G_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in Y_{k} :

$$
x_{s k+j}-x_{s k}=Y_{k} x_{j}^{\prime}, \quad r_{s k+j}=Y_{k} r_{j}^{\prime}, \quad p_{s k+j}=Y_{k} p_{j}^{\prime}
$$

Communication-Avoiding KSMs: CA-CG

Inner loop: Perform s iterations of updates

Computation steps, no communication!

- Using Y_{k} and G_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in Y_{k} :

$$
x_{s k+j}-x_{s k}=Y_{k} x_{j}^{\prime}, \quad r_{s k+j}=Y_{k} r_{j}^{\prime}, \quad p_{s k+j}=Y_{k} p_{j}^{\prime}
$$

Communication-Avoiding KSMs: CA-CG

Inner loop: Perform s iterations of updates
Computation steps, no communication!

- Using Y_{k} and G_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in Y_{k} :

$$
x_{s k+j}-x_{s k}=Y_{k} x_{j}^{\prime}, \quad r_{s k+j}=Y_{k} r_{j}^{\prime}, \quad p_{s k+j}=Y_{k} p_{j}^{\prime}
$$

Communication-Avoiding KSMs: CA-CG

Inner loop:
Computation steps, no communication!

Perform s iterations of updates

- Using Y_{k} and G_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in Y_{k} : $x_{s k+j}-x_{s k}=Y_{k} x_{j}^{\prime}, \quad r_{s k+j}=Y_{k} r_{j}^{\prime}, \quad p_{s k+j}=Y_{k} p_{j}^{\prime}$

Communication-Avoiding KSMs: CA-CG

Inner loop:
Computation steps, no communication!

Perform s iterations of updates

- Using Y_{k} and G_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in Y_{k} : $x_{s k+j}-x_{s k}=Y_{k} x_{j}^{\prime}, \quad r_{s k+j}=Y_{k} r_{j}^{\prime}, \quad p_{s k+j}=Y_{k} p_{j}^{\prime}$

Example: CA-Conjugate Gradient

Given: initial approximation x_{0} for solving $A x=b$
Let $p_{0}=r_{0}=b-A x_{0}$ for $\mathrm{k}=0,1, \ldots$, until convergence do

Compute Y_{k}, \quad compute $G_{k}=Y_{k}^{T} Y_{k}$ Let $x_{0}^{\prime}=0_{2 s+1}, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1}$ for $j=0, \ldots, s-1$ do
$\alpha_{s k+j}=\frac{\left(r_{j}^{\prime}\right)^{T} G_{k} r_{j}^{\prime}}{\left(p_{j}^{\prime}\right)^{T} G_{k} B_{k} p_{j}^{\prime}}$
$x_{j+1}^{\prime}=x_{j}^{\prime}+\alpha_{s k+j} p_{j}^{\prime}$
$r_{j+1}^{\prime}=r_{j}^{\prime}-\alpha_{s k+j} B_{k} p_{j}^{\prime}$
$\beta_{s k+j+1}=\frac{\left(r_{j+1}^{\prime}\right)^{T} G_{k} r_{j+1}^{\prime}}{\left(r_{j}^{\prime}\right)^{T} G_{k} r_{j}^{\prime}}$
$p_{j+1}^{\prime}=r_{j+1}^{\prime}+\beta_{s k+j+1} p_{j}^{\prime}$
end for
Compute $x_{s k+s}=Y_{k} x_{s}^{\prime}+x_{s k}, r_{s k+s}=Y_{k} r_{s}^{\prime}, p_{s k+s}=Y_{k} p_{s}^{\prime}$
end for

Example: CA-Conjugate Gradient

Given: initial approximation x_{0} for solving $A x=b$
Let $p_{0}=r_{0}=b-A x_{0}$

via CA Matrix Powers Kernel

Compute Y_{k}, \leftarrow compute $G_{k}=Y_{k}^{T} Y_{k}$ Let $x_{0}^{\prime}=0_{2 s+1}, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1}$ for $j=0, \ldots, s-1$ do

$$
\alpha_{s k+j}=\frac{\left(r_{j}^{\prime}\right)^{T} G_{k} r_{j}^{\prime}}{\left(p_{j}^{\prime}\right)^{T} G_{k} B_{k} p_{j}^{\prime}}
$$

Global reduction to compute G_{k}

$$
x_{j+1}^{\prime}=x_{j}^{\prime}+\alpha_{s k+j} p_{j}^{\prime}
$$

$$
r_{j+1}^{\prime}=r_{j}^{\prime}-\alpha_{s k+j} B_{k} p_{j}^{\prime}
$$

$$
\beta_{s k+j+1}=\frac{\left(r_{j+1}^{\prime}\right)^{T} G_{k} r_{j+1}^{\prime}}{\left(r_{j}^{\prime}\right)^{T} G_{k} r_{j}^{\prime}}
$$

$$
p_{j+1}^{\prime}=r_{j+1}^{\prime}+\beta_{s k+j+1} p_{j}^{\prime}
$$

end for
Compute $x_{s k+s}=Y_{k} x_{s}^{\prime}+x_{s k}, r_{s k+s}=Y_{k} r_{s}^{\prime}, p_{s k+s}=Y_{k} p_{s}^{\prime}$
end for

Example: CA-Conjugate Gradient

Given: initial approximation x_{0} for solving $A x=b$
Let $p_{0}=r_{0}=b-A x_{0}$ for $\mathrm{k}=0,1, \ldots$, until convergence do

via CA Matrix Powers Kernel

Compute Y_{k}, \leftarrow compute $G_{k}=Y_{k}^{T} Y_{k} \nwarrow$ Let $x_{0}^{\prime}=0_{2 s+1}, r_{0}^{\prime}=e_{s+2}, p_{0}^{\prime}=e_{1}$ for $j=0, \ldots, s-1$ do

$$
\begin{aligned}
& \alpha_{s k+j}=\frac{\left(r_{j}^{\prime}\right)^{T} G_{k} r_{j}^{\prime}}{\left(p_{j}^{\prime}\right)^{T} G_{k} B_{k} p_{j}^{\prime}} \\
& x_{j+1}^{\prime}=x_{j}^{\prime}+\alpha_{s k+j} p_{j}^{\prime} \\
& r_{j+1}^{\prime}=r_{j}^{\prime}-\alpha_{s k+j} B_{k} p_{j}^{\prime} \\
& \beta_{s k+j+1}=\frac{\left(r_{j+1}^{\prime}\right)^{T} G_{k} r_{j+1}^{\prime}}{\left(r_{j}^{\prime}\right)^{T} G_{k} r_{j}^{\prime}} \\
& p_{j+1}^{\prime}=r_{j+1}^{\prime}+\beta_{s k+j+1} p_{j}^{\prime}
\end{aligned}
$$

Global reduction to compute G_{k}

Local computations

 within inner loop require no communication!end for
Compute $x_{s k+s}=Y_{k} x_{s}^{\prime}+x_{s k}, r_{s k+s}=Y_{k} r_{s}^{\prime}, p_{s k+s}=Y_{k} p_{s}^{\prime}$
end for

Complexity Comparison

Example of parallel (per processor) complexity for s iterations of CG vs. CA-CG for a 2D 9-point stencil:
(Assuming each of p processors owns n / p rows of the matrix and $s \leq \sqrt{n / p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{s n}{p}$	$\frac{s n}{p}$	$s \sqrt{n / p}$	$s \log _{2} p$	s	$s \log _{2} p$
CA-CG	$\frac{s n}{p}$	$\frac{s^{2} n}{p}$	$s \sqrt{n / p}$	$s^{2} \log _{2} p$	1	$\log _{2} p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Complexity Comparison

Example of parallel (per processor) complexity for s iterations of CG vs. CA-CG for a 2D 9-point stencil:
(Assuming each of p processors owns n / p rows of the matrix and $s \leq \sqrt{n / p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{s n}{p}$	$\frac{s n}{p}$	$s \sqrt{n / p}$	$s \log _{2} p$	s	$s \log _{2} p$
CA-CG	$\frac{s n}{p}$	$\frac{s^{2} n}{p}$	$s \sqrt{n / p}$	$s^{2} \log _{2} p$	1	$\log _{2} p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Complexity Comparison

Example of parallel (per processor) complexity for s iterations of CG vs. CA-CG for a 2D 9-point stencil:
(Assuming each of p processors owns n / p rows of the matrix and $s \leq \sqrt{n / p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{s n}{p}$	$\frac{s n}{p}$	$s \sqrt{n / p}$	$s \log _{2} p$	s	$s \log _{2} p$
CA-CG	$\frac{s n}{p}$	$\frac{s^{2} n}{p}$	$s \sqrt{n / p}$	$s^{2} \log _{2} p$	1	$\log _{2} p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

From Theory to Practice

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
- That is, find s that gives the fastest speed per iteration

From Theory to Practice

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
- That is, find s that gives the fastest speed per iteration
- In practice, we don't just care about speed per iteration, but also the number of iterations
Runtime = (time/iteration) x (\# iterations)

From Theory to Practice

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
- That is, find s that gives the fastest speed per iteration
- In practice, we don't just care about speed per iteration, but also the number of iterations
Runtime = (time/iteration) x (\# iterations)
- We also need to consider how convergence rate and accuracy are affected by choice of s !

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: true residual $\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ stagnates

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: true residual $\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ stagnates
2. Delay of convergence \rightarrow Tradeoff: increasing blocking factor s past a certain point: no speedup expected

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: true residual $\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ stagnates
2. Delay of convergence \rightarrow Tradeoff: increasing blocking factor s past a certain point: no speedup expected

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: true residual $\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ stagnates
2. Delay of convergence \rightarrow Tradeoff: increasing blocking factor s past a certain point: no speedup expected

Runtime $=$ (time/iteration) \times (\# iterations)

- CG true
- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil),

$$
n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}
$$

$$
b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))
$$

CA-CG Convergence, $s=8$

- CG true
- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil),

$$
n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}
$$

$$
b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))
$$

CA-CG Convergence, $s=8$

Model Problem: 2D Poisson (5-pt stencil),

$$
\begin{gathered}
n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4} \\
b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))
\end{gathered}
$$

CA-CG Convergence, $s=4$

- CG true
- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $s=8$

CA-CG Convergence, $s=16$

CA-CG Convergence, $s=4$

- CG true
- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $s=8$

CA-CG Convergence, $s=16$

CA-CG Convergence, $s=8$

- CG true
- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated
- CA-CG (Newton) true
- - - CA-CG (Newton) updated
- CA-CG (Chebyshev) true
- - - CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $\mathrm{s}=16$

CA-CG Convergence, $s=8$

- CG true
- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated
- CA-CG (Newton) true
- - - CA-CG (Newton) updated
- CA-CG (Chebyshev) true
- - - CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

- CG true

- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated
- CA-CG (Newton) true
- - - CA-CG (Newton) updated
- CA-CG (Chebyshev) true
- - - CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $s=8$

CA-CG Convergence, $s=16$

Maximum attainable accuracy of CG

- In classical CG, iterates are updated by

$$
x_{m+1}=x_{m}+\alpha_{m} p_{m} \quad \text { and } \quad r_{m+1}=r_{m}-\alpha_{m} A p_{m}
$$

- Formulas for x_{m+1} and r_{m+1} do not depend on each other - rounding errors cause the true residual, $b-A x_{m+1}$, and the updated residual, r_{m+1}, to deviate

Maximum attainable accuracy of CG

- In classical CG, iterates are updated by

$$
x_{m+1}=x_{m}+\alpha_{m} p_{m} \quad \text { and } \quad r_{m+1}=r_{m}-\alpha_{m} A p_{m}
$$

- Formulas for x_{m+1} and r_{m+1} do not depend on each other - rounding errors cause the true residual, $b-A x_{m+1}$, and the updated residual, r_{m+1}, to deviate
- The size of the true residual is bounded by

$$
\left\|b-A x_{m+1}\right\| \leq\left\|r_{m+1}\right\|+\left\|b-A x_{m+1}-r_{m+1}\right\|
$$

- When $\left\|r_{m+1}\right\| \gg\left\|b-A x_{m+1}-r_{m+1}\right\|,\left\|r_{m+1}\right\|$ and $\left\|b-A x_{m+1}\right\|$ have similar magnitude
- When $\left\|r_{m+1}\right\| \rightarrow 0,\left\|b-A x_{m+1}\right\|$ depends on $\left\|b-A x_{m+1}-r_{m+1}\right\|$

Maximum attainable accuracy of CG

- In classical CG, iterates are updated by

$$
x_{m+1}=x_{m}+\alpha_{m} p_{m} \quad \text { and } \quad r_{m+1}=r_{m}-\alpha_{m} A p_{m}
$$

- Formulas for x_{m+1} and r_{m+1} do not depend on each other - rounding errors cause the true residual, $b-A x_{m+1}$, and the updated residual, r_{m+1}, to deviate
- The size of the true residual is bounded by

$$
\left\|b-A x_{m+1}\right\| \leq\left\|r_{m+1}\right\|+\left\|b-A x_{m+1}-r_{m+1}\right\|
$$

- When $\left\|r_{m+1}\right\| \gg\left\|b-A x_{m+1}-r_{m+1}\right\|,\left\|r_{m+1}\right\|$ and $\left\|b-A x_{m+1}\right\|$ have similar magnitude
- When $\left\|r_{m+1}\right\| \rightarrow 0,\left\|b-A x_{m+1}\right\|$ depends on $\left\|b-A x_{m+1}-r_{m+1}\right\|$
- Many results on attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht and Strakoš (2000).
- We have applied a similar analysis to upper bound the maximum attainable accuracy in finite precision CA-KSMs

Residual Replacement Strategy for CG

- van der Vorst and Ye (1999): Improve accuracy by replacing updated residual r_{m+1} by the true residual $b-A x_{m+1}$ in certain iterations, combined with group update.

Residual Replacement Strategy for CG

- van der Vorst and Ye (1999): Improve accuracy by replacing updated residual r_{m+1} by the true residual $b-A x_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b-A x_{m+1}$ to meet two constraints:

Residual Replacement Strategy for CG

- van der Vorst and Ye (1999): Improve accuracy by replacing updated residual r_{m+1} by the true residual $b-A x_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b-A x_{m+1}$ to meet two constraints:

1. Replace often enough so that at termination, $\left\|b-A x_{m+1}-r_{m+1}\right\|$ is small relative to $\varepsilon N\|A\|\left\|\left\|x_{m+1}\right\|\right.$

Residual Replacement Strategy for CG

- van der Vorst and Ye (1999): Improve accuracy by replacing updated residual r_{m+1} by the true residual $b-A x_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b-A x_{m+1}$ to meet two constraints:

1. Replace often enough so that at termination, $\left\|b-A x_{m+1}-r_{m+1}\right\|$ is small relative to $\varepsilon N\|A\|\left\|x_{m+1}\right\|$
2. Don't replace so often that original convergence mechanism of updated residuals is destroyed (avoid large perturbations to finite precision CG recurrence)

Residual Replacement Strategy for CG

- van der Vorst and Ye (1999): Improve accuracy by replacing updated residual r_{m+1} by the true residual $b-A x_{m+1}$ in certain iterations, combined with group update.
- Choose when to replace r_{m+1} with $b-A x_{m+1}$ to meet two constraints:

1. Replace often enough so that at termination, $\left\|b-A x_{m+1}-r_{m+1}\right\|$ is small relative to $\varepsilon N\|A\|\left\|\left\|x_{m+1}\right\|\right.$
2. Don't replace so often that original convergence mechanism of updated residuals is destroyed (avoid large perturbations to finite precision CG recurrence)

- We can implement an analogous strategy for CA-CG and CA-BICG based on derived bound on deviation of residuals
- Estimating quantities in bound has negligible cost \rightarrow residual replacement strategy does not asymptotically increase communication or computation!

CA-CG Convergence, $s=4$

- CG true
- - - CG updated
- CA-CG (monomial) true
- - - CA-CG (monomial) updated
- CA-CG (Newton) true
- - - CA-CG (Newton) updated
- CA-CG (Chebyshev) true
- - - CA-CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $s=8$

CA-CG Convergence, $s=16$

CA-CG Convergence, $s=4$

- CG-RR true
- - - CG-RR updated
- CA-CG-RR (monomial) true
- - - CA-CG-RR (monomial) updated
- CA-CG-RR (Newton) true
- - - CA-CG-RR (Newton) updated
- CA-CG-RR (Chebyshev) true
- - - CA-CG-RR (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $s=8$

CA-CG Convergence, $s=16$

CA-CG Convergence, $s=4$

- CG-RR true
- - - CG-RR updated
- CA-CG-RR (monomial) true
- - - CA-CG-RR (monomial) updated
- CA-CG-RR (Newton) true
- - - CA-CG-RR (Newton) updated
- CA-CG-RR (Chebyshev) true
-- - CA-CG-RR (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $s=8$

CA-CG Convergence, $s=16$

CA-CG Convergence, $s=8$

- CG-RR true

- - - CG-RR updated
- CA-CG-RR (monomial) true
- - - CA-CG-RR (monomial) updated
- CA-CG-RR (Newton) true
- - - CA-CG-RR (Newton) updated
- CA-CG-RR (Chebyshev) true
-- - CA-CG-RR (Chebyshev) updated
Model Problem: 2D Poisson (5-pt stencil), $n=512^{2}, \mathrm{nnz} \approx 10^{6}, \kappa(A) \approx 10^{4}$ $b=A(1 \sqrt{n} \cdot \operatorname{ones}(n, 1))$

CA-CG Convergence, $s=16$

Paige's Results for Classical Lanczos

- Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme eigenvalues of A to within a small multiple of machine precision.
2. At least one small interval containing an eigenvalue of A is found by the nth iteration.
3. The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some Ritz values have converged.

Paige's Results for Classical Lanczos

- Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme eigenvalues of A to within a small multiple of machine precision.
2. At least one small interval containing an eigenvalue of A is found by the nth iteration.
3. The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some Ritz values have converged.

Do the same statements hold for CA-Lanczos?

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \widehat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{ccccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & & \\
\hat{\hat{\beta}}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \widehat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\hat{\alpha}}_{1} & \hat{\beta}_{2} & & \\
\hat{\hat{\beta}}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

Classic Lanczos rounding error result of Paige (1976):

$$
\begin{aligned}
& \text { for } i \in\{1, \ldots, m\}, \\
&\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma \\
& \hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma \\
&\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
&\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2} \\
& \hline
\end{aligned}
$$

where $\sigma \equiv\|A\|_{2}, \quad \theta \sigma \equiv\||A|\|_{2}, \varepsilon_{0} \equiv 2 \varepsilon(n+4)$, and $\varepsilon_{1} \equiv 2 \varepsilon(N \theta+7)$

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \widehat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\hat{\alpha}}_{1} & \hat{\beta}_{2} & & \\
\hat{\hat{\beta}}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

Classic Lanczos rounding error result of Paige (1976):

$$
\begin{aligned}
& \text { for } i \in\{1, \ldots, m\}, \\
&\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma \\
& \hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma \\
&\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
&\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2} \\
& \hline
\end{aligned}
$$

where $\sigma \equiv\|A\|_{2}, \quad \theta \sigma \equiv\||A|\|_{2}, \varepsilon_{0} \equiv 2 \varepsilon(n+4)$, and $\varepsilon_{1} \equiv 2 \varepsilon(N \theta+7)$

$$
\varepsilon_{0}=O(\varepsilon n) \quad \varepsilon_{1}=O(\varepsilon N \theta)
$$

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

Classic Lanczos rounding error result of Paige (1976):

$$
\begin{aligned}
& \text { for } i \in\{1, \ldots, m\}, \\
&\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma \\
& \hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma \\
&\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
&\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2} \\
& \hline
\end{aligned}
$$

where $\sigma \equiv\|A\|_{2}, \quad \theta \sigma \equiv\||A|\|_{2}, \varepsilon_{0} \equiv 2 \varepsilon(n+4)$, and $\varepsilon_{1} \equiv 2 \varepsilon(N \theta+7)$

$$
\varepsilon_{0}=O(\varepsilon n) \quad \varepsilon_{1}=O(\varepsilon N \theta)
$$

\rightarrow These results form the basis for Paige's influential results in (Paige, 1980).

CA-Lanczos Convergence Analysis

For CA-Lanczos,

$$
\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma
$$ we have:

$$
\text { for } i \in\{1, \ldots, m=s k+j\} \text {, }
$$

$$
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma
$$

$$
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2
$$

$$
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
$$

$\varepsilon_{0} \equiv 2 \varepsilon(n+11 s+15) \Gamma^{2}=O\left(\varepsilon n \Gamma^{2}\right)$,
$\varepsilon_{1} \equiv 2 \varepsilon((\mathrm{~N}+2 s+5) \theta+(4 s+9) \tau+10 s+16) \Gamma=O(\varepsilon N \theta \Gamma)$,
where $\sigma \equiv\|A\|_{2}, \quad \theta \sigma \equiv\||A|\|_{2}, \quad \tau \sigma \equiv \max _{\ell \leq k}\left\|\left|B_{\ell}\right|\right\|_{2}$, and

$$
\Gamma \leq \max _{\ell \leq k}\left\|Y_{\ell}^{+}\right\|_{2} \cdot\left\|| | Y_{\ell} \mid\right\|_{2} \leq(2 s+1) \cdot \max _{\ell \leq k} \kappa\left(Y_{\ell}\right)
$$

CA-Lanczos Convergence Analysis

For CA-Lanczos,

$$
\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma
$$ we have:

$$
\text { for } i \in\{1, \ldots, m=s k+j\} \text {, }
$$

$$
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma
$$

$$
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2
$$

$$
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
$$

$\varepsilon_{0} \equiv 2 \varepsilon(n+11 s+15) \Gamma^{2}=O\left(\varepsilon n \Gamma^{2}\right), \longleftarrow(v s . O(\varepsilon n)$ for Lanczos)
$\varepsilon_{1} \equiv 2 \varepsilon((\mathrm{~N}+2 s+5) \theta+(4 s+9) \tau+10 s+16) \Gamma=O(\varepsilon N \theta \Gamma), \leftarrow($ vs. $O(\varepsilon N \theta)$ for Lanczos $)$
where $\sigma \equiv\|A\|_{2}, \quad \theta \sigma \equiv\||A|\|_{2}, \quad \tau \sigma \equiv \max _{\ell \leq k}\left\|\left|B_{\ell}\right|\right\|_{2}$, and

$$
\Gamma \leq \max _{\ell \leq k}\left\|Y_{\ell}^{+}\right\|_{2} \cdot\| \| Y_{\ell} \mid \|_{2} \leq(2 s+1) \cdot \max _{\ell \leq k} \kappa\left(Y_{\ell}\right) .
$$

The Amplification Term Γ

- Roundoff errors in CA variant follow same pattern as classical variant, but amplified by factor of Γ or Γ^{2}
- Theoretically confirms empirical observations on importance of basis conditioning (dating back to late '80s)
- A loose bound for the amplification term:

$$
\Gamma \leq \max _{\ell \leq k}\left\|\mathcal{Y}_{\ell}^{+}\right\|_{2} \cdot\left\|\left|\mathcal{Y}_{\ell}\right|\right\|_{2} \leq(2 s+1) \cdot \max _{\ell \leq k} \kappa\left(\mathcal{Y}_{\ell}\right)
$$

- What we really need: $\left\|\left|\mathcal{Y}\left\|y^{\prime} \mid\right\|_{2} \leq \Gamma\left\|Y y^{\prime}\right\|_{2}\right.\right.$ to hold for the computed basis \mathcal{Y} and coordinate vector y^{\prime} in every bound.
- Tighter bound on Γ possible; requires some light bookkeeping
- Example: for bounds on $\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right|$ and $\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right|$, we can use the definition

$$
\Gamma_{k, j} \equiv \max _{x \in\left\{\left\{_{k, j}^{\prime} \hat{u}_{k, j}^{\prime} \hat{v}_{k, j}^{\prime}, \hat{v}_{k, j-1}^{\prime}\right\}\right.} \frac{\left\|\hat{y}_{k}\right\| x \mid \|_{2}}{\left\|\hat{y}_{k} x\right\|_{2}}
$$

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but
- Only if:
- $\varepsilon_{0} \equiv 2 \varepsilon(n+11 s+15) \Gamma^{2} \leq \frac{1}{12}$
- i.e., $\Gamma \leq(24 \epsilon(n+11 s+15))^{-1 / 2}=O(n \epsilon)^{-1 / 2}$
- Otherwise, e.g., can lose orthogonality due to computation with (numerically) rank-deficient basis

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but
- Only if:
- $\varepsilon_{0} \equiv 2 \varepsilon(n+11 s+15) \Gamma^{2} \leq \frac{1}{12}$
- i.e., $\Gamma \leq(24 \epsilon(n+11 s+15))^{-1 / 2}=O(n \epsilon)^{-1 / 2}$
- Otherwise, e.g., can lose orthogonality due to computation with (numerically) rank-deficient basis
- Take-away: we can use this bound on Γ to design a better algorithm!
- Mixed precision, selective reorthogonalization, dynamic basis size, etc.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied to a matrices whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied to a matrices whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied to a matrices whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied to a matrices whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied to a matrices whose eigenvalues lie within intervals about the eigenvalues of A.

Ongoing work...

- Timing for coarse grid solves in geometric multigrid method
- 3D Helmholtz equation with $n=1.6 \cdot 10^{6}$
- 24 K cores on NERSC's Hopper (Cray XE6)

Problem specifics:
$L u=(a \alpha-b \nabla \cdot \beta \nabla) u=f$ $\alpha=\beta=1.0, a=b=0.9$

- Periodic boundary conds.
- RHS: 3D triangle wave w/period spanning entire domain
- Timing for coarse grid solves in geometric multigrid method
- 3D Helmholtz equation with $n=1.6 \cdot 10^{6}$
- 24 K cores on NERSC's Hopper (Cray XE6)

Problem specifics:
$L u=(a \alpha-b \nabla \cdot \beta \nabla) u=f$ $\alpha=\beta=1.0, a=b=0.9$

- Periodic boundary conds.
- RHS: 3D triangle wave w/period spanning entire domain

4.2x speedup in Krylov solve!

Future Directions

Broad research agenda: Design methods for large-scale problems that optimize performance subject to application-specific numerical constraints

- New Algorithms/Applications
- Application of communication-avoiding ideas and solvers to new computational science domains
- Design of new high-performance preconditioners
- Finite-Precision Analysis
- Bounds on stability and convergence for other Krylov methods (particularly in the nonsymmetric case)
- Extension of "Backwards-like" error analyses
- Improving Usability
- Automating parameter selection via "numerical auto-tuning"
- Integration into high-performance libraries

Thank you!

Happy Birthday, Jim!

contact: erinc@cims.nyu.edu http://www.cims.nyu.edu/~erinc/

