# Exploiting Multiprecision Hardware in Solving Linear Systems and Least Squares Problems 

Erin C. Carson,<br>KNM, MFF, Charles University

Current Problems in Numerical Analysis Seminar Institute of Mathematics, Czech Academy of Sciences

December 14, 2018

## Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of lowprecision capabilities in hardware:

- Half precision (FP16) defined as storage format in 2008 IEEE standard
- ARM NEON: SIMD architecture, instructions for $8 \times 16$-bit, $4 \times 32$-bit, $2 \times 64-$ bit
- AMD Radeon Instinct MI25 GPU, 2017:
- single: 12.3 TFLOPS, half: 24.6 TFLOPS
- NVIDIA Tesla P100, 2016: native ISA support for 16 -bit FP arithmetic
- NVIDIA Tesla V100, 2017: tensor cores for half precision;
$4 \times 4$ matrix multiply in one clock cycle
- double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)
- Google's Tensor processing unit (TPU): quantizes 32-bit FP computations into 8-bit integer arithmetic
- Future exascale supercomputers: (~2021) Expected extensive support for reduced-precision arithmetic (32/16/8-bit)

Performance of LU factorization on an NVIDIA V100 GPU

[Haidar, Tomov, Dongarra, Higham, 2018]

## Iterative Refinement for $A x=b$

Iterative refinement: well-established method for improving an approximate solution to $A x=b$
$A$ is $n \times n$ and nonsingular; $u$ is unit roundoff
Solve $A x_{0}=b$ by LU factorization
for $i=0$ : maxit

$$
r_{i}=b-A x_{i}
$$

Solve $A d_{i}=r_{i} \quad$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$
$x_{i+1}=x_{i}+d_{i}$

## Iterative Refinement for $A x=b$

Iterative refinement: well-established method for improving an approximate solution to $A x=b$
$A$ is $n \times n$ and nonsingular; $u$ is unit roundoff
Solve $A x_{0}=b$ by LU factorization
(in precision $u$ )
for $i=0$ : maxit

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \\
\text { Solve } A d_{i}=r_{i} & \text { (in precision } u^{2} \text { ) } \\
x_{i+1}=x_{i}+d_{i} & \\
\text { (in precision } u \text { ) } \\
U^{-1}\left(L^{-1} r_{i}\right) & \text { (in precision } u \text { ) }
\end{array}
$$

$$
\begin{array}{ll}
\text { "Traditional" } & \begin{array}{l}
\text { (high-precision } \\
\text { residual computation) }
\end{array}
\end{array}
$$

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

## Iterative Refinement for $A x=b$

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

- relative forward error is $O(u)$

$$
\begin{aligned}
\kappa_{\infty}(A) & =\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \\
\operatorname{cond}(A, x) & =\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty}
\end{aligned}
$$

- relative normwise and componentwise backward errors are $O(u)$

Solve $A x_{0}=b$ by LU factorization
(in precision $u$ )
for $i=0$ : maxit

$$
r_{i}=b-A x_{i}
$$

(in precision $u^{2}$ )

$$
\begin{array}{ll}
\text { Solve } A d_{i}=r_{i} & \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u) \\
\text { (in precision } u)
\end{array}
$$

$$
\begin{array}{ll}
\text { "Traditional" } & \begin{array}{l}
\text { (high-precision } \\
\text { residual computation) }
\end{array}
\end{array}
$$

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

## Iterative Refinement for $A x=b$

Solve $A x_{0}=b$ by LU factorization
for $i=0$ : maxit

$$
\left.r_{i}=b-A x_{i} \quad \quad \text { (in precision } u\right)
$$

$$
\begin{array}{ll}
\text { Solve } A d_{i}=r_{i} & \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u \text { ) } \\
\text { (in precision } u)
\end{array}
$$

## "Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

## Iterative Refinement for $A x=b$

As long as $\kappa_{\infty}(A) \leq u^{-1}$,

- relative forward error is $O(u) \operatorname{cond}(A, x)$
- relative normwise and componentwise backward errors are $O(u)$

Solve $A x_{0}=b$ by LU factorization
(in precision $u$ )
for $i=0$ : maxit

$$
r_{i}=b-A x_{i} \quad \quad(\text { in precision } u)
$$

$$
\text { Solve } A d_{i}=r_{i} \quad \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \quad(\text { in precision } u)
$$

$$
x_{i+1}=x_{i}+d_{i}
$$

(in precision $u$ )

## "Fixed-Precision"

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

## Iterative Refinement for $A x=b$

Solve $A x_{0}=b$ by LU factorization
(in precision $u^{1 / 2}$ ) for $i=0$ : maxit

$$
\begin{array}{ll}
r_{i}=b-A x_{i} & \\
\text { Solve } A d_{i}=r_{i} & \text { (in precision } u \text { ) } \\
x_{i+1}=d_{i}+d_{i}=U^{-1}\left(L^{-1} r_{i}\right) & \text { (in precision } u \text { ) } \\
& \text { (in precision } u)
\end{array}
$$

"Low-precision factorization"
[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

## Iterative Refinement for $A x=b$

As long as $\kappa_{\infty}(A) \leq u^{-1 / 2}$,

- relative forward error is $O(u) \operatorname{cond}(A, x)$
- relative normwise and componentwise backward errors are $O(u)$

Solve $A x_{0}=b$ by LU factorization
(in precision $u^{1 / 2}$ ) for $i=0$ : maxit

$$
\left.r_{i}=b-A x_{i} \quad \text { (in precision } u\right)
$$

$$
\begin{array}{ll}
\text { Solve } A d_{i}=r_{i} & \text { via } d_{i}=U^{-1}\left(L^{-1} r_{i}\right) \\
x_{i+1}=x_{i}+d_{i} & \text { (in precision } u) \\
\text { (in precision } u)
\end{array}
$$

"Low-precision factorization"
[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

## Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?

## Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?
$\Rightarrow$ 3-precision iterative refinement
$u_{f}=$ factorization precision, $u=$ working precision, $u_{r}=$ residual precision

$$
u_{f} \geq u \geq u_{r}
$$

## Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?
$\Rightarrow$ 3-precision iterative refinement
$u_{f}=$ factorization precision, $u=$ working precision, $u_{r}=$ residual precision

$$
u_{f} \geq u \geq u_{r}
$$

- New analysis generalizes existing types of IR:
[C. and Higham, SIAM SISC 40(2), 2018]

| Traditional | $u_{f}=u, u_{r}=u^{2}$ |
| :---: | :--- |
| Fixed precision | $u_{f}=u=u_{r}$ |
| Lower precision factorization | $u_{f}^{2}=u=u_{r}$ |

(and improves upon existing analyses in some cases)

## Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions
Can we combine the performance benefits of low-precision factorization IR with the accuracy of traditional IR?
$\Rightarrow$ 3-precision iterative refinement
$u_{f}=$ factorization precision, $u=$ working precision, $u_{r}=$ residual precision

$$
u_{f} \geq u \geq u_{r}
$$

- New analysis generalizes existing types of IR:
[C. and Higham, SIAM SISC 40(2), 2018]

| Traditional | $u_{f}=u, u_{r}=u^{2}$ |
| :---: | :--- |
| Fixed precision | $u_{f}=u=u_{r}$ |
| Lower precision factorization | $u_{f}^{2}=u=u_{r}$ |

(and improves upon existing analyses in some cases)

- Enables new types of IR: (half, single, double), (half, single, quad), (half, double, quad), etc.


## Key Analysis Innovations I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

## Key Analysis Innovations I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Define $\mu_{i}: \quad\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty}=\mu_{i}\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

## Key Analysis Innovations I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Define $\mu_{i}: \quad\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty}=\mu_{i}\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

For a stable refinement scheme, in early stages we expect

$$
\frac{\left\|r_{i}\right\|}{\|A\|\left\|\hat{x}_{i}\right\|} \approx u \ll \frac{\left\|x-\hat{x}_{i}\right\|}{\|x\|} \longrightarrow \mu_{i} \ll 1
$$

## Key Analysis Innovations I

Obtain tighter upper bounds:

Typical bounds used in analysis: $\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty} \leq\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

Define $\mu_{i}: \quad\left\|A\left(x-\hat{x}_{i}\right)\right\|_{\infty}=\mu_{i}\|A\|_{\infty}\left\|x-\hat{x}_{i}\right\|_{\infty}$

For a stable refinement scheme, in early stages we expect

$$
\frac{\left\|r_{i}\right\|}{\|A\|\left\|\hat{x}_{i}\right\|} \approx u \ll \frac{\left\|x-\hat{x}_{i}\right\|}{\|x\|} \longrightarrow \mu_{i} \ll 1
$$

But close to convergence,

$$
\left\|r_{i}\right\| \approx\|A\|\left\|x-\hat{x}_{i}\right\| \longrightarrow \mu_{i} \approx 1
$$

## Key Analysis Innovations I

$$
\begin{gathered}
\left\|r_{i}\right\|_{2}=\mu_{i}^{(2)}\|A\|_{2}\left\|x-\hat{x}_{i}\right\|_{2} \\
x-\hat{x}_{i}=V \Sigma^{-1} U^{T} r_{i}=\sum_{j=1}^{n} \frac{\left(u_{j}^{T} r_{i}\right) v_{j}}{\sigma_{j}} \quad\left(A=U \Sigma V^{T}\right)
\end{gathered}
$$

## Key Analysis Innovations I

$$
\begin{gathered}
\left\|r_{i}\right\|_{2}=\mu_{i}^{(2)}\|A\|_{2}\left\|x-\hat{x}_{i}\right\|_{2} \\
x-\hat{x}_{i}=V \Sigma^{-1} U^{T} r_{i}=\sum_{j=1}^{n} \frac{\left(u_{j}^{T} r_{i}\right) v_{j}}{\sigma_{j}} \quad\left(A=U \Sigma V^{T}\right) \\
\left\|x-\hat{x}_{i}\right\|_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{\left(u_{j}^{T} r_{i}\right)^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n}\left(u_{j}^{T} r_{i}\right)^{2}=\frac{\left\|P_{k} r_{i}\right\|_{2}^{2}}{\sigma_{n+1-k}^{2}} \\
\quad \text { where } P_{k}=U_{k} U_{k}^{T}, U_{k}=\left[u_{n+1-k}, \ldots, u_{n}\right]
\end{gathered}
$$

## Key Analysis Innovations I

$$
\begin{gathered}
\left\|r_{i}\right\|_{2}=\mu_{i}^{(2)}\|A\|_{2}\left\|x-\hat{x}_{i}\right\|_{2} \\
x-\hat{x}_{i}=V \Sigma^{-1} U^{T} r_{i}=\sum_{j=1}^{n} \frac{\left(u_{j}^{T} r_{i}\right) v_{j}}{\sigma_{j}} \quad\left(A=U \Sigma V^{T}\right) \\
\left\|x-\hat{x}_{i}\right\|_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{\left(u_{j}^{T} r_{i}\right)^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n}\left(u_{j}^{T} r_{i}\right)^{2}=\frac{\left\|P_{k} r_{i}\right\|_{2}^{2}}{\sigma_{n+1-k}^{2}} \\
\text { where } P_{k}=U_{k} U_{k}^{T}, U_{k}=\left[u_{n+1-k}, \ldots, u_{n}\right] \\
\mu_{i}^{(2)} \leq \frac{\left\|r_{i}\right\|_{2}}{\left\|P_{k} r_{i}\right\|_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}
\end{gathered}
$$

## Key Analysis Innovations I

$$
\begin{gathered}
\left\|r_{i}\right\|_{2}=\mu_{i}^{(2)}\|A\|_{2}\left\|x-\hat{x}_{i}\right\|_{2} \\
x-\hat{x}_{i}=V \Sigma^{-1} U^{T} r_{i}=\sum_{j=1}^{n} \frac{\left(u_{j}^{T} r_{i}\right) v_{j}}{\sigma_{j}} \quad\left(A=U \Sigma V^{T}\right) \\
\left\|x-\hat{x}_{i}\right\|_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{\left(u_{j}^{T} r_{i}\right)^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n}\left(u_{j}^{T} r_{i}\right)^{2}=\frac{\left\|P_{k} r_{i}\right\|_{2}^{2}}{\sigma_{n+1-k}^{2}} \\
\text { where } P_{k}=U_{k} U_{k}^{T}, U_{k}=\left[u_{n+1-k}, \ldots, u_{n}\right] \\
\mu_{i}^{(2)} \leq \frac{\left\|r_{i}\right\|_{2}}{\left\|P_{k} r_{i}\right\|_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}
\end{gathered}
$$

- $\mu_{i}^{(2)} \ll 1$ if $r_{i}$ contains significant component in $\operatorname{span}\left(U_{k}\right)$ for any $k$ s.t. $\sigma_{n+1-k} \approx \sigma_{n}$


## Key Analysis Innovations I

$$
\begin{gathered}
\left\|r_{i}\right\|_{2}=\mu_{i}^{(2)}\|A\|_{2}\left\|x-\hat{x}_{i}\right\|_{2} \\
x-\hat{x}_{i}=V \Sigma^{-1} U^{T} r_{i}=\sum_{j=1}^{n} \frac{\left(u_{j}^{T} r_{i}\right) v_{j}}{\sigma_{j}} \quad\left(A=U \Sigma V^{T}\right) \\
\left\|x-\hat{x}_{i}\right\|_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{\left(u_{j}^{T} r_{i}\right)^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n}\left(u_{j}^{T} r_{i}\right)^{2}=\frac{\left\|P_{k} r_{i}\right\|_{2}^{2}}{\sigma_{n+1-k}^{2}} \\
\text { where } P_{k}=U_{k} U_{k}^{T}, U_{k}=\left[u_{n+1-k}, \ldots, u_{n}\right] \\
\mu_{i}^{(2)} \leq \frac{\left\|r_{i}\right\|_{2}}{\left\|P_{k} r_{i}\right\|_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}
\end{gathered}
$$

- $\mu_{i}^{(2)} \ll 1$ if $r_{i}$ contains significant component in $\operatorname{span}\left(U_{k}\right)$ for any $k$ s.t. $\sigma_{n+1-k} \approx \sigma_{n}$
- Expect $\mu_{i}^{(2)} \ll 1$ when $r_{i}$ is "typical", i.e., contains sizeable components in the direction of each left singular vector
- In that case, $x-\hat{x}_{i}$ is not "typical", i.e., it contains large components in right singular vectors corresponding to small singular values of $A$


## Key Analysis Innovations I

$$
\begin{gathered}
\left\|r_{i}\right\|_{2}=\mu_{i}^{(2)}\|A\|_{2}\left\|x-\hat{x}_{i}\right\|_{2} \\
x-\hat{x}_{i}=V \Sigma^{-1} U^{T} r_{i}=\sum_{j=1}^{n} \frac{\left(u_{j}^{T} r_{i}\right) v_{j}}{\sigma_{j}} \quad\left(A=U \Sigma V^{T}\right) \\
\left\|x-\hat{x}_{i}\right\|_{2}^{2} \geq \sum_{j=n+1-k}^{n} \frac{\left(u_{j}^{T} r_{i}\right)^{2}}{\sigma_{j}^{2}} \geq \frac{1}{\sigma_{n+1-k}^{2}} \sum_{j=n+1-k}^{n}\left(u_{j}^{T} r_{i}\right)^{2}=\frac{\left\|P_{k} r_{i}\right\|_{2}^{2}}{\sigma_{n+1-k}^{2}} \\
\text { where } P_{k}=U_{k} U_{k}^{T}, U_{k}=\left[u_{n+1-k}, \ldots, u_{n}\right] \\
\mu_{i}^{(2)} \leq \frac{\left\|r_{i}\right\|_{2}}{\left\|P_{k} r_{i}\right\|_{2}} \frac{\sigma_{n+1-k}}{\sigma_{1}}
\end{gathered}
$$

- $\mu_{i}^{(2)} \ll 1$ if $r_{i}$ contains significant component in $\operatorname{span}\left(U_{k}\right)$ for any $k$ s.t. $\sigma_{n+1-k} \approx \sigma_{n}$
- Expect $\mu_{i}^{(2)} \ll 1$ when $r_{i}$ is "typical", i.e., contains sizeable components in the direction of each left singular vector
- In that case, $x-\hat{x}_{i}$ is not "typical", i.e., it contains large components in right singular vectors corresponding to small singular values of $A$
- Wilkinson (1977), comment in unpublished manuscript: $\mu_{i}^{(2)}$ increases with $i$


## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$
example: LU solve:

$$
u_{s}=u_{f}
$$

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution $\hat{d}_{i}$ to $A d_{i}=\hat{r}_{i}$ satisfies:
example: LU solve:

$$
u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$\rightarrow$ normwise relative forward error is bounded by multiple of $u_{s}$ and is less than 1

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution $\hat{d}_{i}$ to $A d_{i}=\hat{r}_{i}$ satisfies:
example: LU solve:

$$
u_{s}=u_{f}
$$

1. $\hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$\rightarrow$ normwise relative forward error is bounded by multiple of $u_{s}$ and is less than 1

$$
u_{S}\left\|E_{i}\right\|_{\infty} \leq 3 n u_{f}\left\|\mid A^{-1}\right\| \hat{L}\|\widehat{U}\| \|_{\infty}
$$

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution $\hat{d}_{i}$ to $A d_{i}=\hat{r}_{i}$ satisfies:
example: LU solve:

$$
u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$\rightarrow$ normwise relative forward error is bounded by multiple of $u_{s}$ and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
$\rightarrow$ normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution $\hat{d}_{i}$ to $A d_{i}=\hat{r}_{i}$ satisfies:
example: LU solve:

$$
u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$\rightarrow$ normwise relative forward error is bounded by multiple of $u_{s}$ and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
$\rightarrow$ normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

$$
\max \left(c_{1}, c_{2}\right) u_{s} \leq \frac{3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}}{\|A\|_{\infty}}
$$

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution $\hat{d}_{i}$ to $A d_{i}=\hat{r}_{i}$ satisfies:

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$\rightarrow$ normwise relative forward error is bounded by multiple of $u_{s}$ and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
$\rightarrow$ normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$
3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$
$\rightarrow$ componentwise relative backward error is bounded by a multiple of $u_{s}$
example: LU solve:

$$
u_{s}=u_{f}
$$

$$
u_{s}\left\|E_{i}\right\|_{\infty} \leq 3 n u_{f}\left\|| A ^ { - 1 } | \left|\hat{L}\|\widehat{U} \mid\|_{\infty}\right.\right.
$$

$$
\max \left(c_{1}, c_{2}\right) u_{s} \leq \frac{3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}}{\|A\|_{\infty}}
$$

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution $\hat{d}_{i}$ to $A d_{i}=\hat{r}_{i}$ satisfies:
example: LU solve:

$$
u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$\rightarrow$ normwise relative forward error is bounded by multiple of $u_{s}$ and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
$\rightarrow$ normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

$$
\max \left(c_{1}, c_{2}\right) u_{s} \leq \frac{3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}}{\|A\|_{\infty}}
$$

3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$
$\rightarrow$ componentwise relative backward error is bounded by a multiple of $u_{s}$

$$
u_{s}\left\|G_{i}\right\|_{\infty} \leq 3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}
$$

## Key Analysis Innovations II

Allow for general solver:
Let $u_{s}$ be the effective precision of the solve, with $u \leq u_{s} \leq u_{f}$

Assume computed solution $\hat{d}_{i}$ to $A d_{i}=\hat{r}_{i}$ satisfies:
example: LU solve:

$$
u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$\rightarrow$ normwise relative forward error is bounded by multiple of $u_{s}$ and is less than 1
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
$\rightarrow$ normwise relative backward error is at most $\max \left(c_{1}, c_{2}\right) u_{s}$

$$
\max \left(c_{1}, c_{2}\right) u_{s} \leq \frac{3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}}{\|A\|_{\infty}}
$$

3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$
$\rightarrow$ componentwise relative backward error is bounded by a multiple of $u_{s}$

$$
u_{s}\left\|G_{i}\right\|_{\infty} \leq 3 n u_{f}\|\hat{L}\| \widehat{U} \mid \|_{\infty}
$$

$E_{i}, c_{1}, c_{2}$, and $G_{i}$ depend on $A, \hat{r}_{i}, n$, and $u_{s}$

## Forward Error for IR3

- Three precisions:
- $u_{f}$ : factorization precision
- $u$ : working precision
- $u_{r}$ : residual computation precision

$$
\begin{aligned}
\kappa_{\infty}(A) & =\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \\
\operatorname{cond}(A) & =\left\|\left|A^{-1}\|A \mid\|_{\infty}\right.\right. \\
\operatorname{cond}(A, x) & =\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty}
\end{aligned}
$$

## Forward Error for IR3

- Three precisions:
- $u_{f}$ : factorization precision
- u: working precision
- $u_{r}$ : residual computation precision

$$
\begin{aligned}
\kappa_{\infty}(A) & =\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \\
\operatorname{cond}(A) & =\left\|\left|A^{-1}\|A \mid\|_{\infty}\right.\right. \\
\operatorname{cond}(A, x) & =\left\|\left|A^{-1}\right||A|\right\| x \mid\left\|_{\infty} /\right\| x \|_{\infty}
\end{aligned}
$$

## Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_{f} \geq u \geq u_{r}$ and effective solve precision $u_{s}$, if

$$
\phi_{i} \equiv 2 u_{s} \min \left(\operatorname{cond}(A), \kappa_{\infty}(A) \mu_{i}\right)+u_{s}\left\|E_{i}\right\|_{\infty}
$$

is sufficiently less than 1 , then the forward error is reduced on the $i$ th iteration by a factor $\approx \phi_{i}$ until an iterate $\hat{x}_{i}$ is produced for which

$$
\frac{\left\|x-\hat{x}_{i}\right\|_{\infty}}{\|x\|_{\infty}} \lesssim 4 N u_{r} \operatorname{cond}(A, x)+u,
$$

where $N$ is the maximum number of nonzeros per row in $A$.

## Forward Error for IR3

- Three precisions:
- $u_{f}$ : factorization precision
- $u$ : working precision
- $u_{r}$ : residual computation precision

$$
\begin{aligned}
\kappa_{\infty}(A) & =\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \\
\operatorname{cond}(A) & =\left\|\left|A^{-1}\right||A|\right\|_{\infty} \\
\operatorname{cond}(A, x) & =\left\|\left|A ^ { - 1 } \left\|A \left|\|x \mid\|_{\infty} /\|x\|_{\infty}\right.\right.\right.\right.
\end{aligned}
$$

## Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_{f} \geq u \geq u_{r}$ and effective solve precision $u_{s}$, if

$$
\phi_{i} \equiv 2 u_{s} \min \left(\operatorname{cond}(A), \kappa_{\infty}(A) \mu_{i}\right)+u_{s}\left\|E_{i}\right\|_{\infty}
$$

is sufficiently less than 1 , then the forward error is reduced on the $i$ th iteration by a factor $\approx \phi_{i}$ until an iterate $\hat{x}_{i}$ is produced for which

$$
\frac{\left\|x-\hat{x}_{i}\right\|_{\infty}}{\|x\|_{\infty}} \lesssim 4 N u_{r} \operatorname{cond}(A, x)+u
$$

where $N$ is the maximum number of nonzeros per row in $A$.
Analogous traditional bounds: $\phi_{i} \equiv 3 n u_{f} \kappa_{\infty}(A)$

## Normwise Backward Error for IR3

## Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions $u_{f} \geq u \geq u_{r}$ and effective solve precision $u_{s}$, if

$$
\phi_{i} \equiv\left(c_{1} \kappa_{\infty}(A)+c_{2}\right) u_{s}
$$

is sufficiently less than 1 , then the residual is reduced on the $i$ th iteration by a factor $\approx \phi_{i}$ until an iterate $\hat{x}_{i}$ is produced for which

$$
\left\|b-A \hat{x}_{i}\right\|_{\infty} \lesssim N u\left(\|b\|_{\infty}+\|A\|_{\infty}\left\|\hat{x}_{i}\right\|_{\infty}\right),
$$

where $N$ is the maximum number of nonzeros per row in $A$.

## IR3: Summary

Standard (LU-based) IR in three precisions $\left(u_{s}=u_{f}\right)$
Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

|  |  |  |  |  | Backward error |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | $\operatorname{comp}$ | Forward error |
| H | S | S | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| H | D | D | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| S | S | S | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| S | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| S | D | D | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

## IR3: Summary

Standard (LU-based) IR in three precisions ( $u_{s}=u_{f}$ )
Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

|  |  |  |  |  | Backward error |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | $\operatorname{comp}$ | Forward error |
|  | LP fact. | H | S | S | $10^{4}$ | $10^{-8}$ | $10^{-8}$ |
| $\operatorname{cond}(A, x) \cdot 10^{-8}$ |  |  |  |  |  |  |  |
| LP fact. | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
|  | H | D | D | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
|  | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
|  | S | S | S | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
|  | S | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | S | D | D | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
|  | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

## IR3: Summary

Standard (LU-based) IR in three precisions ( $u_{s}=u_{f}$ )
Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | Backward error |  | Forward error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | norm | comp |  |
| LP fact. | H | S | S | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
|  | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | H | D | D | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
|  | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| Fixed | S | S | S | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
|  | S | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | S | D | D | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
|  | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

## IR3: Summary

Standard (LU-based) IR in three precisions ( $u_{s}=u_{f}$ )
Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

|  |  |  |  |  | Backward error |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | $\operatorname{comp}$ | Forward error |
| LP fact. | H | S | S | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
|  | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | H | D | D | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
|  | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| Fixed | S | S | S | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| Trad. | S | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | S | D | D | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
|  | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

## IR3: Summary

Standard (LU-based) IR in three precisions ( $u_{s}=u_{f}$ )
Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

|  |  |  |  |  | Backward error |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | $\operatorname{comp}$ | Forward error |
| LP fact. | H | S | S | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| New | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | H | D | D | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| New | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| Fixed | S | S | S | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| Trad. | S | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | S | D | D | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| New | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

## IR3: Summary

Standard (LU-based) IR in three precisions ( $u_{s}=u_{f}$ )
Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

|  |  |  |  |  | Backward error |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | comp | Forward error |
| LP fact. | H | S | S | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| New | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | H | D | D | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| New | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| Fixed | S | S | S | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| Trad. | S | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | S | D | D | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| New | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

$\Rightarrow$ Benefit of IR3 vs. "LP fact.": no cond $(A, x)$ term in forward error

## IR3: Summary

Standard (LU-based) IR in three precisions ( $u_{s}=u_{f}$ )
Half $\approx 10^{-4}$, Single $\approx 10^{-8}$, Double $\approx 10^{-16}$, Quad $\approx 10^{-34}$

|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | Backward error |  | Forward error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | norm | comp |  |
| LP fact. | H | S | S | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| New | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | H | D | D | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| New | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| Fixed | S | S | S | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $\operatorname{cond}(A, x) \cdot 10^{-8}$ |
| Trad. | S | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LP fact. | S | D | D | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $\operatorname{cond}(A, x) \cdot 10^{-16}$ |
| New | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

$\Rightarrow$ Benefit of IR3 vs. traditional IR: As long as $\kappa_{\infty}(A) \leq 10^{4}$, can use lower precision factorization w/no loss of accuracy!

```
A = gallery('randsvd', 100, 1e9, 2)
b = randn (100,1)
\kappa
```

Standard (LU-based) IR with $u_{f}$ : single, $u$ : double, $u_{r}$ : double



```
A = gallery('randsvd', 100, 1e9, 2)
b = randn (100,1)
\kappa
```

Standard (LU-based) IR with $u_{f}$ : single, $u$ : double, $u_{r}$ : quad



```
A = gallery('randsvd', 100, 1e9, 2)
b = randn (100,1)
\mp@subsup{\kappa}{\infty}{}(A)\approx2e10,}\operatorname{cond}(A,x)\approx5\textrm{e}
```

Standard (LU-based) IR with $u_{f}$ : single, $u$ : double, $u_{r}$ : quad



```
A = gallery('randsvd', 100, 1e9, 2)
b = randn(100,1)
\kappa\infty}(A)\approx2e10, cond (A,x)\approx5e
```

Standard (LU-based) IR with $u_{f}$ : double, $u$ : double, $u_{r}$ : quad



## GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if $\hat{L}$ and $\widehat{U}$ are computed LU factors of $A$ in precision $u_{f}$, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f},
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

## GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if $\hat{L}$ and $\widehat{U}$ are computed LU factors of $A$ in precision $u_{f}$, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f}
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

- To compute the updates $d_{i}$, apply GMRES to $\widehat{U}^{-1} \hat{L}^{-1} A d_{i}=\widehat{U}^{-1} \hat{L}^{-1} r_{i}$


## GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if $\hat{L}$ and $\widehat{U}$ are computed LU factors of $A$ in precision $u_{f}$, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f}
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

- To compute the updates $d_{i}$, apply GMRES to $\widehat{U}^{-1} \hat{L}^{-1} A d_{i}=\widehat{U}^{-1} \widehat{L}^{-1} r_{i}$

Solve $A x_{0}=b$ by LU factorization
for $i=0$ : maxit

$$
\begin{aligned}
& r_{i}=b-A x_{i} \\
& \text { Solve } A d_{i}=r_{i} \quad \text { via GMRES on } \tilde{A} d_{i}=\tilde{r}_{i} \\
& x_{i+1}=x_{i}+d_{i}
\end{aligned}
$$

## GMRES-Based Iterative Refinement

- Observation [Rump, 1990]: if $\hat{L}$ and $\widehat{U}$ are computed LU factors of $A$ in precision $u_{f}$, then

$$
\kappa_{\infty}\left(\widehat{U}^{-1} \hat{L}^{-1} A\right) \approx 1+\kappa_{\infty}(A) u_{f}
$$

even if $\kappa_{\infty}(A) \gg u_{f}^{-1}$.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

- To compute the updates $d_{i}$, apply GMRES to $\widehat{U}^{-1} \hat{L}^{-1} A d_{i}=\widehat{U}^{-1} \hat{L}^{-1} r_{i}$

Solve $A x_{0}=b$ by LU factorization for $i=0$ : maxit

$$
r_{i}=b-A x_{i}
$$

$$
\longrightarrow u_{s}=u
$$

$$
\text { Solve } A d_{i}=r_{i} \text { via GMRES on } \tilde{A} d_{i}=\tilde{r}_{i}
$$

$$
x_{i+1}=x_{i}+d_{i}
$$

```
A = gallery('randsvd', 100, 1e9, 2)
b = randn (100,1)
\kappa\infty
```

Standard (LU-based) IR with $u_{f}$ : single, $u$ : double, $u_{r}$ : quad



```
A = gallery('randsvd', 100, 1e9, 2)
b = randn(100,1)
```

$$
\kappa_{\infty}(A) \approx 2 \mathrm{e} 10, \operatorname{cond}(A, x) \approx 5 \mathrm{e} 9, \kappa_{\infty}(\tilde{A}) \approx 2 \mathrm{e} 4
$$



## GMRES-IR: Summary

Benefits of GMRES-IR:

|  |  |  |  |  | Backward error |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | comp | Forward error |
| LU-IR | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| GMRES-IR | H | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LU-IR | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | S | D | Q | $10^{16}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| LU-IR | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | H | D | Q | $10^{12}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

## GMRES-IR: Summary

Benefits of GMRES-IR:

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | Backward error |  | norm |
| comp | Forward error |  |  |  |  |  |  |
| LU-IR | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| GMRES-IR | H | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LU-IR | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | S | D | Q | $10^{16}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| LU-IR | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | H | D | Q | $10^{12}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

$\Rightarrow$ With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$

## GMRES-IR: Summary

Benefits of GMRES-IR:

|  |  |  |  |  | Backward error |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | comp | Forward error |
| LU-IR | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| GMRES-IR | H | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LU-IR | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | S | D | Q | $10^{16}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| LU-IR | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | H | D | Q | $10^{12}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

$\Rightarrow$ With GMRES-IR, lower precision factorization will work for higher $\kappa_{\infty}(A)$

$$
\kappa_{\infty}(A) \leq u^{-1 / 2} u_{f}^{-1}
$$

## GMRES-IR: Summary

Benefits of GMRES-IR:

|  |  |  |  |  |  | Backward error |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | comp | Forward error |
| LU-IR | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| GMRES-IR | H | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LU-IR | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | S | D | Q | $10^{16}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| LU-IR | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | H | D | Q | $10^{12}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

$\Rightarrow$ If $\kappa_{\infty}(A) \leq 10^{12}$, can use lower precision factorization $\mathrm{w} /$ no loss of accuracy!

## GMRES-IR: Summary

Benefits of GMRES-IR:

|  |  |  |  |  |  | Backward error |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u_{f}$ | $u$ | $u_{r}$ | $\max \kappa_{\infty}(A)$ | norm | comp | Forward error |
| LU-IR | H | S | D | $10^{4}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| GMRES-IR | H | S | D | $10^{8}$ | $10^{-8}$ | $10^{-8}$ | $10^{-8}$ |
| LU-IR | S | D | Q | $10^{8}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | S | D | Q | $10^{16}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| LU-IR | H | D | Q | $10^{4}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |
| GMRES-IR | H | D | Q | $10^{12}$ | $10^{-16}$ | $10^{-16}$ | $10^{-16}$ |

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3

## Comments and Caveats

- Convergence tolerance $\tau$ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps


## Comments and Caveats

- Convergence tolerance $\tau$ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?


## Comments and Caveats

- Convergence tolerance $\tau$ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
- If $A$ is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
- e.g., if $\tilde{A}$ still has cluster of eigenvalues near origin, GMRES can stagnate until $n^{\text {th }}$ iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]


## Comments and Caveats

- Convergence tolerance $\tau$ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
- If $A$ is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
- e.g., if $\tilde{A}$ still has cluster of eigenvalues near origin, GMRES can stagnate until $n^{\text {th }}$ iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
- Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner


## Comments and Caveats

- Convergence tolerance $\tau$ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
- If $A$ is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
- e.g., if $\tilde{A}$ still has cluster of eigenvalues near origin, GMRES can stagnate until $n^{\text {th }}$ iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
- Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A , applying $\tilde{A}$ to a vector must be done accurately (precision $u^{2}$ ) in each GMRES iteration


## Comments and Caveats

- Convergence tolerance $\tau$ for GMRES?
- Smaller $\tau \rightarrow$ more GMRES iterations, potentially fewer refinement steps
- Larger $\tau \rightarrow$ fewer GMRES iterations, potentially more refinement steps
- Convergence rate of GMRES?
- If $A$ is ill conditioned and LU factorization is performed in very low precision, it can be a poor preconditioner
- e.g., if $\tilde{A}$ still has cluster of eigenvalues near origin, GMRES can stagnate until $n^{\text {th }}$ iteration, regardless of $\kappa_{\infty}(A)$ [Liesen and Tichý, 2004]
- Potential remedies: deflation, Krylov subspace recycling, using additional preconditioner
- Depending on conditioning of A, applying $\tilde{A}$ to a vector must be done accurately (precision $u^{2}$ ) in each GMRES iteration
- Why GMRES?
- Theoretical purposes: existing analysis and proof of backward stability [Paige, Rozložník, Strakoš, 2006]
- In practice, use any solver you want!


## Extension to Least Squares Problems

- Want to solve

$$
\min _{x}\|b-A x\|_{2}
$$

where $A \in \mathbb{R}^{m \times n}(m>n)$ has rank $n$

## Extension to Least Squares Problems

- Want to solve

$$
\min _{x}\|b-A x\|_{2}
$$

where $A \in \mathbb{R}^{m \times n}(m>n)$ has rank $n$

- Commonly solved using QR factorization:

$$
A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}
U \\
0
\end{array}\right]
$$

where $Q$ is an $m \times m$ orthogonal matrix and $U$ is upper triangular.

$$
x=U^{-1} Q_{1}^{T} b, \quad\|b-A x\|_{2}=\left\|Q_{2}^{T} b\right\|_{2}
$$

## Extension to Least Squares Problems

- Want to solve

$$
\min _{x}\|b-A x\|_{2}
$$

where $A \in \mathbb{R}^{m \times n}(m>n)$ has rank $n$

- Commonly solved using QR factorization:

$$
A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}
U \\
0
\end{array}\right]
$$

where $Q$ is an $m \times m$ orthogonal matrix and $U$ is upper triangular.

$$
x=U^{-1} Q_{1}^{T} b, \quad\|b-A x\|_{2}=\left\|Q_{2}^{T} b\right\|_{2}
$$

- As in linear system case, for ill-conditioned problems, iterative refinement often needed to improve accuracy and stability


## Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$ :

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

## Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$ :

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

## Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$ :

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{c}
b \\
0
\end{array}\right] \quad \tilde{A} \tilde{x}=\tilde{b}
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

## Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$ :

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{c}
b \\
0
\end{array}\right] \quad \tilde{A} \tilde{x}=\tilde{b}
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{c}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right] \quad \tilde{r}_{i}=\tilde{b}-\tilde{A} \tilde{x}_{i}
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

$$
\tilde{A} d_{i}=\tilde{r}_{i}
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

$$
\tilde{x}_{i+1}=\tilde{x}_{i}+d_{i}
$$

## Least Squares Iterative Refinement

- For inconsistent systems, must simultaneously refine both solution and residual
- (Björck,1967): Least squares problem can be written as a linear system with square matrix of size $(m+n)$ :

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{c}
b \\
0
\end{array}\right] \quad \tilde{A} \tilde{x}=\tilde{b}
$$

- Refinement proceeds as follows:

1. Compute "residuals"

$$
\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]=\left[\begin{array}{c}
b-r_{i}-A x_{i} \\
-A^{T} r_{i}
\end{array}\right]
$$

$$
\tilde{r}_{i}=\tilde{b}-\tilde{A} \tilde{x}_{i}
$$

2. Solve for corrections

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]=\left[\begin{array}{l}
f_{i} \\
g_{i}
\end{array}\right]
$$

$$
\tilde{A} d_{i}=\tilde{r}_{i}
$$

3. Update "solution":

$$
\left[\begin{array}{l}
r_{i+1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
\Delta r_{i} \\
\Delta x_{i}
\end{array}\right]
$$

Results for 3-precision IR for linear systems also applies to least squares problems

$$
\tilde{x}_{i+1}=\tilde{x}_{i}+d_{i}
$$

## Least Squares Iterative Refinement

- To apply the existing analysis, we must consider:

1. How is the condition number of $\tilde{A}$ related to the condition number of $A$ ?
2. What are bounds on the forward and backward error in solving the correction equation $\tilde{A} d_{i}=\tilde{r}_{i}$ ?

- We now have a QR factorization rather than an LU factorization, and the augmented system has structure which can be exploited


## Augmented System Condition Number

- Result of Björck (1967):

The matrix

$$
\tilde{A}_{\alpha}=\left[\begin{array}{cc}
\alpha I & A \\
A^{T} & 0
\end{array}\right]
$$

has condition number bounded by
$\sqrt{2} \kappa_{2}(A) \leq \min _{\alpha} \kappa_{2}\left(\tilde{A}_{\alpha}\right) \leq 2 \kappa_{2}(A), \quad \max _{\alpha} \kappa_{2}\left(\tilde{A}_{\alpha}\right)>\kappa_{2}(A)^{2}$
and $\min _{\alpha} \kappa_{2}\left(\tilde{A}_{\alpha}\right)$ is attained for $\alpha=2^{-\frac{1}{2}} \sigma_{\text {min }}(A)$.

## Augmented System Condition Number

- Result of Björck (1967):

The matrix

$$
\tilde{A}_{\alpha}=\left[\begin{array}{cc}
\alpha I & A \\
A^{T} & 0
\end{array}\right]
$$

has condition number bounded by
$\sqrt{2} \kappa_{2}(A) \leq \min _{\alpha} \kappa_{2}\left(\tilde{A}_{\alpha}\right) \leq 2 \kappa_{2}(A), \quad \max _{\alpha} \kappa_{2}\left(\tilde{A}_{\alpha}\right)>\kappa_{2}(A)^{2}$
and $\min _{\alpha} \kappa_{2}\left(\tilde{A}_{\alpha}\right)$ is attained for $\alpha=2^{-\frac{1}{2}} \sigma_{\min }(A)$.

- Scaling does not change the solution to least squares problem; further, if $\alpha$ is a power of the machine base, it doesn't affect rounding errors
$\Rightarrow$ Safe to assume that $\kappa_{2}(\tilde{A})$ is the same order of magnitude as $\kappa_{2}(A)$


## LS-IR in 3 precisions

Compute QR factorization $A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}U \\ 0\end{array}\right]$
precision $u_{f}$

## LS-IR in 3 precisions

Compute QR factorization $A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}U \\ 0\end{array}\right]$
Compute $x_{0}=U^{-1} Q_{1}^{T} b, r_{0}=b-A x_{0}$
precision $u_{f}$ precision $u$

## LS-IR in 3 precisions

Compute QR factorization $A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}U \\ 0\end{array}\right]$ $\qquad$
Compute $x_{0}=U^{-1} Q_{1}^{T} b, r_{0}=b-A x_{0} \longrightarrow$ precision $u$
For $i=0, \ldots$
Compute residuals $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{c}b-r_{i}-A x_{i} \\ -A^{T} r_{i}\end{array}\right]$
precision $u_{r}$

## LS-IR in 3 precisions

Compute QR factorization $A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}U \\ 0\end{array}\right]$
Compute $x_{0}=U^{-1} Q_{1}^{T} b, r_{0}=b-A x_{0}$
precision $u_{f}$

For $i=0, \ldots$
Compute residuals $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{c}b-r_{i}-A x_{i} \\ -A^{T} r_{i}\end{array}\right] \longrightarrow$ precision $u_{r}$ Solve $\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}\Delta r_{i} \\ \Delta x_{i}\end{array}\right]=\left[\begin{array}{c}f_{i} \\ g_{i}\end{array}\right]$, via

$$
\left.\begin{array}{rl}
h & =U^{-T} g_{i} \\
{\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]} & =\left[Q_{1}, Q_{2}\right]^{T} f_{i} \\
\Delta r_{i} & =Q\left[\begin{array}{c}
h \\
d_{2}
\end{array}\right] \\
\Delta x_{i} & =U^{-1}\left(d_{1}-h\right)
\end{array}\right] \quad \text { precision } u
$$

## LS-IR in 3 precisions

Compute QR factorization $A=Q R=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}U \\ 0\end{array}\right]$
Compute $x_{0}=U^{-1} Q_{1}^{T} b, r_{0}=b-A x_{0}$
precision $u_{f}$

For $i=0, \ldots$
Compute residuals $\left[\begin{array}{l}f_{i} \\ g_{i}\end{array}\right]=\left[\begin{array}{c}b-r_{i}-A x_{i} \\ -A^{T} r_{i}\end{array}\right] \longrightarrow$ precision $u_{r}$ Solve $\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}\Delta r_{i} \\ \Delta x_{i}\end{array}\right]=\left[\begin{array}{c}f_{i} \\ g_{i}\end{array}\right]$, via

$$
\begin{aligned}
h & =U^{-T} g_{i} \\
{\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right] } & =\left[Q_{1}, Q_{2}\right]^{T} f_{i} \\
\Delta r_{i} & =Q\left[\begin{array}{c}
h \\
d_{2}
\end{array}\right] \\
\Delta x_{i} & =U^{-1}\left(d_{1}-h\right)
\end{aligned}
$$

Update $x_{i+1}=x_{i}+\Delta x_{i}, r_{i+1}=r_{i}+\Delta r_{i}$

## Returning to IR3 Analysis...

The backward error for the correction solve:

$$
(\tilde{A}+\Delta \tilde{A}) \hat{d}_{i}=\tilde{r}_{i}, \quad\|\Delta \tilde{A}\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty}
$$

## Returning to IR3 Analysis...

The backward error for the correction solve:

$$
(\tilde{A}+\Delta \tilde{A}) \hat{d}_{i}=\tilde{r}_{i}, \quad\|\Delta \tilde{A}\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty} \quad u_{s}=u_{f}
$$

## Returning to IR3 Analysis...

The backward error for the correction solve:

$$
(\tilde{A}+\Delta \tilde{A}) \hat{d}_{i}=\tilde{r}_{i}, \quad\|\Delta \tilde{A}\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty} \quad u_{s}=u_{f}
$$

1. $\hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$u_{s}\left\|E_{i}\right\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty}$

## Returning to IR3 Analysis...

The backward error for the correction solve:

$$
(\tilde{A}+\Delta \tilde{A}) \hat{d}_{i}=\tilde{r}_{i}, \quad\|\Delta \tilde{A}\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty}
$$

$$
u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$u_{s}\left\|E_{i}\right\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty}$
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$ $\max \left(c_{1}, c_{2}\right) u_{s}=O\left(u_{f}\right)$

## Returning to IR3 Analysis...

The backward error for the correction solve:

$$
(\tilde{A}+\Delta \tilde{A}) \hat{d}_{i}=\tilde{r}_{i}, \quad\|\Delta \tilde{A}\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty}
$$

$$
u_{s}=u_{f}
$$

1. $\hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$
$u_{s}\left\|E_{i}\right\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty}$
2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$

## Returning to IR3 Analysis...

The backward error for the correction solve:

$$
(\tilde{A}+\Delta \tilde{A}) \hat{d}_{i}=\tilde{r}_{i}, \quad\|\Delta \tilde{A}\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty} \quad u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$

As long as $\kappa_{\infty}(\tilde{A}) \lesssim \boldsymbol{u}_{f}^{-1}$, expect convergence to limiting relative forward error

$$
\frac{\|\tilde{x}-\hat{\tilde{x}}\|_{\infty}}{\|\tilde{x}\|_{\infty}} \approx u_{r} \operatorname{cond}(\tilde{A}, \tilde{x})+u
$$

2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$

## Returning to IR3 Analysis...

The backward error for the correction solve:

$$
(\tilde{A}+\Delta \tilde{A}) \hat{d}_{i}=\tilde{r}_{i}, \quad\|\Delta \tilde{A}\|_{\infty} \leq c_{m, n} u_{f}\|\tilde{A}\|_{\infty} \quad u_{s}=u_{f}
$$

1. $\quad \hat{d}_{i}=\left(I+u_{s} E_{i}\right) d_{i}, \quad u_{s}\left\|E_{i}\right\|_{\infty}<1$

As long as $\kappa_{\infty}(\tilde{A}) \lesssim \boldsymbol{u}_{f}^{-1}$, expect convergence to limiting relative forward error

$$
\frac{\|\tilde{x}-\hat{\tilde{x}}\|_{\infty}}{\|\tilde{x}\|_{\infty}} \approx u_{r} \operatorname{cond}(\tilde{A}, \tilde{x})+u
$$

2. $\left\|\hat{r}_{i}-A \hat{d}_{i}\right\|_{\infty} \leq u_{s}\left(c_{1}\|A\|_{\infty}\left\|\hat{d}_{i}\right\|_{\infty}+c_{2}\left\|\hat{r}_{i}\right\|_{\infty}\right)$
3. $\left|\hat{r}_{i}-A \hat{d}_{i}\right| \leq u_{s} G_{i}\left|\hat{d}_{i}\right|$

As long as $\kappa_{\infty}(\tilde{A}) \lesssim u_{f}^{-1}$, expect normwise and componentwise backward errors to be $O(u)$

$$
\begin{gathered}
\max \left(c_{1}, c_{2}\right) u_{s}=O\left(u_{f}\right) \\
u_{s}\left\|G_{i}\right\|_{\infty}=O\left(u_{f}\|\tilde{A}\|_{\infty}\right)
\end{gathered}
$$

```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
\boldsymbol{u}_{f}: \text { half, } \quad u \text { : single, } \quad u_{r}: \text { double }
$$



```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
\boldsymbol{u}_{f}: \text { half, } \quad u \text { : single, } \quad u_{r}: \text { double }
$$

$$
\kappa=1 \mathrm{e}+02
$$



```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
\boldsymbol{u}_{\boldsymbol{f}}: \text { half, } \quad \boldsymbol{u} \text { : single, } \boldsymbol{u}_{r} \text { : double }
$$

$$
\kappa=1 \mathrm{e}+03
$$



```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
u_{f}: \text { half, } \quad u: \text { single, } u_{r}: \text { double }
$$



```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

Standard (QR-based) least squares IR with

$$
u_{f}: \text { half, } \quad u \text { : single, } u_{r}: \text { double }
$$

$$
\kappa=1 \mathrm{e}+05
$$



## GMRES-IR for Least Squares

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver


## GMRES-IR for Least Squares

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?


## GMRES-IR for Least Squares

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?
- A couple possibilities:

1. Construct triangular factors using $R\left(=\left[U^{T} 0\right]^{T}\right)$ factor; use as split-preconditioner:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right] \approx\left[\begin{array}{cc}
I & 0 \\
R^{T} & U^{T}
\end{array}\right]\left[\begin{array}{cc}
I & R \\
0 & -U
\end{array}\right]
$$

## GMRES-IR for Least Squares

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?
- A couple possibilities:

1. Construct triangular factors using $R\left(=\left[U^{T} 0\right]^{T}\right)$ factor; use as split-preconditioner:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right] \approx\left[\begin{array}{cc}
I & 0 \\
R^{T} & U^{T}
\end{array}\right]\left[\begin{array}{cc}
I & R \\
0 & -U
\end{array}\right]
$$




## GMRES-IR for Least Squares

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?
- A couple possibilities:

1. Construct triangular factors using $R\left(=\left[U^{T} 0\right]^{T}\right)$ factor; use as split-preconditioner:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right] \approx\left[\begin{array}{cc}
I & 0 \\
R^{T} & U^{T}
\end{array}\right]\left[\begin{array}{cc}
I & R \\
0 & -U
\end{array}\right]
$$



2. Use Hermitian/skew Hermitian splitting (HSS) preconditioning for saddlepoint systems; use left-preconditioned system matrix $M^{-1} \tilde{A}$ where

$$
\begin{aligned}
M & =(H+\alpha I)(S+\alpha I) \\
& =\left[\begin{array}{cc}
(\alpha+1) I & 0 \\
0 & \alpha I
\end{array}\right]\left[\begin{array}{cc}
\alpha I & R \\
R^{T} & \alpha I
\end{array}\right]
\end{aligned}
$$

## GMRES-IR for Least Squares

- Similar to the linear system case, we can use a lower precision factorization for even more ill-conditioned problems if we improve the effective precision of the solver
- Again, don't want to compute an LU factorization of the augmented system
- How can we use existing QR factors to construct an effective and inexpensive preconditioner for the augmented system?
- A couple possibilities:

1. Construct triangular factors using $R\left(=\left[U^{T} 0\right]^{T}\right)$ factor; use as split-preconditioner:

$$
\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right] \approx\left[\begin{array}{cc}
I & 0 \\
R^{T} & U^{T}
\end{array}\right]\left[\begin{array}{cc}
I & R \\
0 & -U
\end{array}\right]
$$


2. Use Hermitian/skew Hermitian splitting (HSS) preconditioning for saddlepoint systems; use left-preconditioned system matrix $M^{-1} \tilde{A}$ where

$$
\begin{aligned}
M & =(H+\alpha I)(S+\alpha I) \\
& =\left[\begin{array}{cc}
(\alpha+1) I & 0 \\
0 & \alpha I
\end{array}\right]\left[\begin{array}{cc}
\alpha I & R \\
R^{T} & \alpha I
\end{array}\right]
\end{aligned}
$$




```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

GMRES-LSIR and "Standard" LSIR with $u_{f}$ : half, $u$ : single, $u_{r}$ : double


```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

GMRES-LSIR and "Standard" LSIR with $u_{f}$ : half, $u$ : single, $u_{r}$ : double


```
        &
    A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

GMRES-LSIR and "Standard" LSIR with $u_{f}$ : half, $u$ : single, $u_{r}$ : double


```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

GMRES-LSIR and "Standard" LSIR with $u_{f}$ : half, $u$ : single, $u_{r}$ : double


```
A = gallery('randsvd', 100, 10, kappa)
b = randn(100,1); b = b./norm(b)
```

GMRES-LSIR and "Standard" LSIR with $u_{f}$ : half, $u$ : single, $u_{r}$ : double


## The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad


## The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
- e.g., bfloat16 (truncated 16-bit version of single precision) in upcoming Intel AI processors, Google Cloud TPUs, etc.


## The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
- e.g., bfloat16 (truncated 16-bit version of single precision) in upcoming Intel AI processors, Google Cloud TPUs, etc.
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm


## The rise of multiprecision hardware

- Future machines will support a range of precisions: quarter, half, single, double, quad
- New, non-IEEE compliant floating point formats will appear in commercially-available hardware
- e.g., bfloat16 (truncated 16-bit version of single precision) in upcoming Intel AI processors, Google Cloud TPUs, etc.
- Lower-precision arithmetic is faster and more energy efficient, but the potential for its use depends heavily on the particular problem and algorithm
- As numerical analysts, we must determine when and where we can exploit lower-precision arithmetic to improve performance


## Thank You!

## carson@karlin.mff.cuni.cz

 www.karlin.mff.cuni.cz/ ${ }^{\text {carson/ }}$