
Erin C. Carson,

KNM, MFF, Charles University

Current Problems in Numerical Analysis Seminar

Institute of Mathematics, Czech Academy of Sciences

December 14, 2018

Exploiting Multiprecision Hardware
in Solving Linear Systems

and Least Squares Problems

Hardware Support for Multiprecision Computation

1

• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017:

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision;

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU): quantizes 32-bit FP computations
into 8-bit integer arithmetic

• Future exascale supercomputers: (~2021) Expected extensive support for
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

Performance of LU factorization on an NVIDIA V100 GPU

2[Haidar, Tomov, Dongarra, Higham, 2018]

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

3

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

3

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Traditional"

(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

3

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Traditional"

(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

(high-precision
residual computation)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1,
• relative forward error is 𝑂 𝑢
• relative normwise and componentwise backward errors are 𝑂(𝑢)

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

4

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

4

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1,
• relative forward error is 𝑂(𝑢)cond 𝐴, 𝑥
• relative normwise and componentwise backward errors are 𝑂(𝑢)

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

5

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

5

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

"Low-precision factorization"

(in precision 𝑢1/2)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

As long as 𝜅∞ 𝐴 ≤ 𝑢−1/2,
• relative forward error is 𝑂(𝑢)cond 𝐴, 𝑥
• relative normwise and componentwise backward errors are 𝑂(𝑢)

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

6

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

6

⇒ 3-precision iterative refinement

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM
SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

6

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM
SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

6

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

• Enables new types of IR: (half, single, double), (half, single, quad),
(half, double, quad), etc.

Key Analysis Innovations I

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

7

Key Analysis Innovations I

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − 𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

7

Key Analysis Innovations I

𝜇𝑖 ≪ 1

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − 𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 𝑥𝑖

≈ 𝑢 ≪
𝑥 − 𝑥𝑖

𝑥

7

Key Analysis Innovations I

𝜇𝑖 ≪ 1

𝜇𝑖 ≈ 1

Typical bounds used in analysis: 𝐴(𝑥 − 𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − 𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − 𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 𝑥𝑖

≈ 𝑢 ≪
𝑥 − 𝑥𝑖

𝑥

But close to convergence,
𝑟𝑖 ≈ 𝐴 𝑥 − 𝑥𝑖

7

Key Analysis Innovations I

8

(𝐴 = 𝑈Σ𝑉𝑇)𝑥 − 𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 − 𝑥𝑖 2

Key Analysis Innovations I

8

(𝐴 = 𝑈Σ𝑉𝑇)𝑥 − 𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑥 − 𝑥𝑖 2
2 ≥

𝑗=𝑛+1−𝑘

𝑛
𝑢𝑗

𝑇𝑟𝑖
2

𝜎𝑗
2 ≥

1

𝜎𝑛+1−𝑘
2

𝑗=𝑛+1−𝑘

𝑛

𝑢𝑗
𝑇𝑟𝑖

2
=

𝑃𝑘𝑟𝑖 2
2

𝜎𝑛+1−𝑘
2

where 𝑃𝑘 = 𝑈𝑘𝑈𝑘
𝑇 , 𝑈𝑘 = [𝑢𝑛+1−𝑘 , … , 𝑢𝑛]

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 − 𝑥𝑖 2

Key Analysis Innovations I

8

(𝐴 = 𝑈Σ𝑉𝑇)𝑥 − 𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑥 − 𝑥𝑖 2
2 ≥

𝑗=𝑛+1−𝑘

𝑛
𝑢𝑗

𝑇𝑟𝑖
2

𝜎𝑗
2 ≥

1

𝜎𝑛+1−𝑘
2

𝑗=𝑛+1−𝑘

𝑛

𝑢𝑗
𝑇𝑟𝑖

2
=

𝑃𝑘𝑟𝑖 2
2

𝜎𝑛+1−𝑘
2

where 𝑃𝑘 = 𝑈𝑘𝑈𝑘
𝑇 , 𝑈𝑘 = [𝑢𝑛+1−𝑘 , … , 𝑢𝑛]

𝜇𝑖
(2)

≤
𝑟𝑖 2

𝑃𝑘𝑟𝑖 2

𝜎𝑛+1−𝑘

𝜎1

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 − 𝑥𝑖 2

Key Analysis Innovations I

8

(𝐴 = 𝑈Σ𝑉𝑇)𝑥 − 𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑥 − 𝑥𝑖 2
2 ≥

𝑗=𝑛+1−𝑘

𝑛
𝑢𝑗

𝑇𝑟𝑖
2

𝜎𝑗
2 ≥

1

𝜎𝑛+1−𝑘
2

𝑗=𝑛+1−𝑘

𝑛

𝑢𝑗
𝑇𝑟𝑖

2
=

𝑃𝑘𝑟𝑖 2
2

𝜎𝑛+1−𝑘
2

where 𝑃𝑘 = 𝑈𝑘𝑈𝑘
𝑇 , 𝑈𝑘 = [𝑢𝑛+1−𝑘 , … , 𝑢𝑛]

𝜇𝑖
(2)

≤
𝑟𝑖 2

𝑃𝑘𝑟𝑖 2

𝜎𝑛+1−𝑘

𝜎1

• 𝜇𝑖
2

≪ 1 if 𝑟𝑖 contains significant component in span(𝑈𝑘) for any 𝑘 s.t. 𝜎𝑛+1−𝑘 ≈ 𝜎𝑛

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 − 𝑥𝑖 2

• 𝜇𝑖
2

≪ 1 if 𝑟𝑖 contains significant component in span(𝑈𝑘) for any 𝑘 s.t. 𝜎𝑛+1−𝑘 ≈ 𝜎𝑛

• Expect 𝜇𝑖
2

≪ 1 when 𝑟𝑖 is "typical", i.e., contains sizeable components in the
direction of each left singular vector

• In that case, 𝑥 − 𝑥𝑖 is not "typical", i.e., it contains large components in right singular
vectors corresponding to small singular values of 𝐴

Key Analysis Innovations I

(𝐴 = 𝑈Σ𝑉𝑇)𝑥 − 𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑥 − 𝑥𝑖 2
2 ≥

𝑗=𝑛+1−𝑘

𝑛
𝑢𝑗

𝑇𝑟𝑖
2

𝜎𝑗
2 ≥

1

𝜎𝑛+1−𝑘
2

𝑗=𝑛+1−𝑘

𝑛

𝑢𝑗
𝑇𝑟𝑖

2
=

𝑃𝑘𝑟𝑖 2
2

𝜎𝑛+1−𝑘
2

where 𝑃𝑘 = 𝑈𝑘𝑈𝑘
𝑇 , 𝑈𝑘 = [𝑢𝑛+1−𝑘 , … , 𝑢𝑛]

𝜇𝑖
(2)

≤
𝑟𝑖 2

𝑃𝑘𝑟𝑖 2

𝜎𝑛+1−𝑘

𝜎1

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 − 𝑥𝑖 2

8

Key Analysis Innovations I

(𝐴 = 𝑈Σ𝑉𝑇)𝑥 − 𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑥 − 𝑥𝑖 2
2 ≥

𝑗=𝑛+1−𝑘

𝑛
𝑢𝑗

𝑇𝑟𝑖
2

𝜎𝑗
2 ≥

1

𝜎𝑛+1−𝑘
2

𝑗=𝑛+1−𝑘

𝑛

𝑢𝑗
𝑇𝑟𝑖

2
=

𝑃𝑘𝑟𝑖 2
2

𝜎𝑛+1−𝑘
2

where 𝑃𝑘 = 𝑈𝑘𝑈𝑘
𝑇 , 𝑈𝑘 = [𝑢𝑛+1−𝑘 , … , 𝑢𝑛]

𝜇𝑖
(2)

≤
𝑟𝑖 2

𝑃𝑘𝑟𝑖 2

𝜎𝑛+1−𝑘

𝜎1

• 𝜇𝑖
2

≪ 1 if 𝑟𝑖 contains significant component in span(𝑈𝑘) for any 𝑘 s.t. 𝜎𝑛+1−𝑘 ≈ 𝜎𝑛

• Expect 𝜇𝑖
2

≪ 1 when 𝑟𝑖 is "typical", i.e., contains sizeable components in the
direction of each left singular vector

• In that case, 𝑥 − 𝑥𝑖 is not "typical", i.e., it contains large components in right singular
vectors corresponding to small singular values of 𝐴

• Wilkinson (1977), comment in unpublished manuscript: 𝜇𝑖
(2)

increases with 𝑖

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 − 𝑥𝑖 2

8

Key Analysis Innovations II

9

Allow for general solver:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

Key Analysis Innovations II

Allow for general solver:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

9

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

9

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

9

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

9

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

9

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

9

Key Analysis Innovations II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇
 𝐿 𝑈

∞

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

9

Key Analysis Innovations II

Allow for general solver:

Assume computed solution 𝑑𝑖 to 𝐴𝑑𝑖 = 𝑟𝑖 satisfies:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, 𝑟𝑖, 𝑛, and 𝒖𝒔

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 𝐿 𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇

 𝐿 𝑈
∞

𝐴 ∞

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇
 𝐿 𝑈

∞

9

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

10

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 2𝒖𝒔 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is sufficiently less than 1, then the forward error is reduced on the 𝑖th
iteration by a factor ≈ 𝜙𝑖 until an iterate 𝑥𝑖 is produced for which

𝑥 − 𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

10

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

Analogous traditional bounds: 𝜙𝑖 ≡ 3𝑛𝒖𝒇𝜅∞ 𝐴

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 2𝒖𝒔 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is sufficiently less than 1, then the forward error is reduced on the 𝑖th
iteration by a factor ≈ 𝜙𝑖 until an iterate 𝑥𝑖 is produced for which

𝑥 − 𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

10

Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is sufficiently less than 1, then the residual is reduced on the 𝑖th iteration
by a factor ≈ 𝜙𝑖 until an iterate 𝑥𝑖 is produced for which

𝑏 − 𝐴 𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞ 𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

11

IR3: Summary

12

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

LP fact.

LP fact.

LP fact.

12

IR3: Summary

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Fixed

LP fact.

LP fact.

LP fact.

12

IR3: Summary

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Trad.

Fixed

LP fact.

LP fact.

LP fact.

12

IR3: Summary

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

12

IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

13

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

13

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower
precision factorization w/no loss of accuracy!

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

Standard (LU-based) IR with 𝑢𝑓: single, 𝑢: double, 𝑢𝑟: double

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

14

100

Standard (LU-based) IR with 𝑢𝑓: single, 𝑢: double, 𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

14

100

Standard (LU-based) IR with 𝑢𝑓: single, 𝑢: double, 𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

14

100

Standard (LU-based) IR with 𝑢𝑓: double, 𝑢: double, 𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

14

100

GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝑢𝑓, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝑢𝑓,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

15

GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝑢𝑓, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝑢𝑓,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to 𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

 𝐴 𝑟𝑖

15

GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝑢𝑓, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝑢𝑓,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to 𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

 𝐴 𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on 𝐴𝑑𝑖 = 𝑟𝑖

15

GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if 𝐿 and 𝑈 are computed LU factors of 𝐴 in

precision 𝑢𝑓, then

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝑢𝑓,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to 𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

 𝐴 𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on 𝐴𝑑𝑖 = 𝑟𝑖

𝒖𝒔 = 𝒖

15

Standard (LU-based) IR with 𝑢𝑓: single, 𝑢: double, 𝑢𝑟: quad

16

100

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞
 𝐴 ≈ 2e4

GMRES-IR with 𝑢𝑓: single, 𝑢: double, 𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞
 𝐴 ≈ 2e4

16

100

GMRES-IR: Summary

Benefits of GMRES-IR:

17

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

17

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

17

𝜅∞ 𝐴 ≤ 𝑢− 1 2 𝑢𝑓
−1

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ If 𝜅∞ 𝐴 ≤ 1012, can use lower precision factorization w/no loss of accuracy!

17

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3

17

https://github.com/eccarson/ir3/

Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

18

Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

18

Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if 𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

18

Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if 𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

18

Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if 𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

• Depending on conditioning of A, applying 𝐴 to a vector must be done accurately
(precision 𝑢2) in each GMRES iteration

18

Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if 𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

• Depending on conditioning of A, applying 𝐴 to a vector must be done accurately
(precision 𝑢2) in each GMRES iteration

• Why GMRES?

• Theoretical purposes: existing analysis and proof of backward stability [Paige,
Rozložník, Strakoš, 2006]

• In practice, use any solver you want!

18

Extension to Least Squares Problems

• Want to solve
min

𝑥
𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

19

Extension to Least Squares Problems

• Want to solve
min

𝑥
𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 × 𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

19

Extension to Least Squares Problems

• Want to solve
min

𝑥
𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 × 𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement
often needed to improve accuracy and stability

19

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Least Squares Iterative Refinement

20

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

20

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

20

 𝐴 𝑥 = 𝑏

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

20

 𝐴 𝑥 = 𝑏

 𝑟𝑖 = 𝑏 − 𝐴 𝑥𝑖

 𝐴𝑑𝑖 = 𝑟𝑖

 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

Least Squares Iterative Refinement
• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖

𝑔𝑖
=

𝑏
0

−
𝐼 𝐴

𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖

3. Update "solution":

𝑟𝑖+1

𝑥𝑖+1
=

𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

20

 𝐴 𝑥 = 𝑏

 𝑟𝑖 = 𝑏 − 𝐴 𝑥𝑖

 𝐴𝑑𝑖 = 𝑟𝑖

 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖
Results for 3-precision
IR for linear systems
also applies to least
squares problems

Least Squares Iterative Refinement

• To apply the existing analysis, we must consider:

1. How is the condition number of 𝐴 related to the condition number of
𝐴?

2. What are bounds on the forward and backward error in solving the
correction equation 𝐴𝑑𝑖 = 𝑟𝑖?

• We now have a QR factorization rather than an LU factorization,
and the augmented system has structure which can be exploited

21

Augmented System Condition Number
• Result of Björck (1967):

The matrix

 𝐴𝛼 =
𝛼𝐼 𝐴
𝐴𝑇 0

has condition number bounded by

2𝜅2 𝐴 ≤ min
𝛼

𝜅2
 𝐴𝛼 ≤ 2𝜅2 𝐴 , max

𝛼
𝜅2

 𝐴𝛼 > 𝜅2 𝐴 2

and min𝛼 𝜅2
 𝐴𝛼 is attained for 𝛼 = 2−

1

2 𝜎𝑚𝑖𝑛(𝐴).

22

Augmented System Condition Number
• Result of Björck (1967):

The matrix

 𝐴𝛼 =
𝛼𝐼 𝐴
𝐴𝑇 0

has condition number bounded by

2𝜅2 𝐴 ≤ min
𝛼

𝜅2
 𝐴𝛼 ≤ 2𝜅2 𝐴 , max

𝛼
𝜅2

 𝐴𝛼 > 𝜅2 𝐴 2

and min𝛼 𝜅2
 𝐴𝛼 is attained for 𝛼 = 2−

1

2 𝜎𝑚𝑖𝑛(𝐴).

• Scaling does not change the solution to least squares problem; further, if 𝛼
is a power of the machine base, it doesn't affect rounding errors

⇒ Safe to assume that 𝜅2(𝐴) is the same order of magnitude as 𝜅2(𝐴)

22

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

23

precision 𝑢𝑓

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

23

precision 𝑢𝑓

precision 𝑢

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

For 𝑖 = 0, …

Compute residuals
𝑓𝑖

𝑔𝑖
=

𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

23

precision 𝑢𝑓

precision 𝑢

precision 𝑢𝑟

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

For 𝑖 = 0, …

Compute residuals
𝑓𝑖

𝑔𝑖
=

𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

Solve
𝐼 𝐴

𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖
, via

ℎ = 𝑈−𝑇𝑔𝑖

𝑑1

𝑑2
= 𝑄1, 𝑄2

𝑇𝑓𝑖

Δ𝑟𝑖 = 𝑄
ℎ
𝑑2

Δ𝑥𝑖 = 𝑈−1(𝑑1 − ℎ)

23

precision 𝑢𝑓

precision 𝑢

precision 𝑢𝑟

precision 𝑢

LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

Compute 𝑥0 = 𝑈−1𝑄1
𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0

For 𝑖 = 0, …

Compute residuals
𝑓𝑖

𝑔𝑖
=

𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

Solve
𝐼 𝐴

𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖

𝑔𝑖
, via

ℎ = 𝑈−𝑇𝑔𝑖

𝑑1

𝑑2
= 𝑄1, 𝑄2

𝑇𝑓𝑖

Δ𝑟𝑖 = 𝑄
ℎ
𝑑2

Δ𝑥𝑖 = 𝑈−1(𝑑1 − ℎ)

Update 𝑥𝑖+1 = 𝑥𝑖 + Δ𝑥𝑖, 𝑟𝑖+1 = 𝑟𝑖 + Δ𝑟𝑖

23

precision 𝑢𝑓

precision 𝑢

precision 𝑢𝑟

precision 𝑢

precision 𝑢

Returning to IR3 Analysis...

24

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

Returning to IR3 Analysis...

24

𝒖𝒔 = 𝒖𝒇

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

Returning to IR3 Analysis...

24

𝒖𝒔 = 𝒖𝒇

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

Returning to IR3 Analysis...

24

𝒖𝒔 = 𝒖𝒇

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

Returning to IR3 Analysis...

24

𝒖𝒔 = 𝒖𝒇

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ = 𝑂 𝒖𝒇
 𝐴 ∞

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

Returning to IR3 Analysis...

24

𝒖𝒔 = 𝒖𝒇

As long as 𝜅∞
 𝐴 ≲ 𝒖𝒇

−𝟏, expect convergence to

limiting relative forward error

 𝑥 − 𝑥
∞

 𝑥 ∞
≈ 𝒖𝒓 cond 𝐴, 𝑥 + 𝒖

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ = 𝑂 𝒖𝒇
 𝐴 ∞

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

Returning to IR3 Analysis...

24

𝒖𝒔 = 𝒖𝒇

As long as 𝜅∞
 𝐴 ≲ 𝒖𝒇

−𝟏, expect convergence to

limiting relative forward error

 𝑥 − 𝑥
∞

 𝑥 ∞
≈ 𝒖𝒓 cond 𝐴, 𝑥 + 𝒖

As long as 𝜅∞
 𝐴 ≲ 𝒖𝒇

−𝟏, expect normwise and

componentwise backward errors to be 𝑂(𝒖)

𝒖𝒔 𝐸𝑖 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

max 𝑐1, 𝑐2 𝒖𝒔 = 𝑂(𝒖𝒇)

3. 𝑟𝑖 − 𝐴 𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| 𝑑𝑖|

2. 𝑟𝑖 − 𝐴 𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

 𝑑𝑖 ∞
+ 𝑐2 𝑟𝑖 ∞)

1. 𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ = 𝑂 𝒖𝒇
 𝐴 ∞

The backward error for the correction solve:

 𝐴 + Δ 𝐴 𝑑𝑖 = 𝑟𝑖, Δ 𝐴 ∞ ≤ 𝑐𝑚,𝑛𝒖𝒇
 𝐴 ∞

25

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

25

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

25

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

25

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

25

Standard (QR-based) least squares IR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

26

GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

• Again, don't want to compute an LU factorization of the augmented system

• How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

26

GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

• Again, don't want to compute an LU factorization of the augmented system

• How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

• A couple possibilities:

1. Construct triangular factors using 𝑅 = 𝑈𝑇 0 𝑇 factor; use as split-preconditioner:

𝐼 𝐴
𝐴𝑇 0

≈
𝐼 0

𝑅𝑇 𝑈𝑇
𝐼 𝑅
0 −𝑈

26

GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

• Again, don't want to compute an LU factorization of the augmented system

• How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

• A couple possibilities:

1. Construct triangular factors using 𝑅 = 𝑈𝑇 0 𝑇 factor; use as split-preconditioner:

𝐼 𝐴
𝐴𝑇 0

≈
𝐼 0

𝑅𝑇 𝑈𝑇
𝐼 𝑅
0 −𝑈

26

GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

• Again, don't want to compute an LU factorization of the augmented system

• How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

• A couple possibilities:

1. Construct triangular factors using 𝑅 = 𝑈𝑇 0 𝑇 factor; use as split-preconditioner:

𝐼 𝐴
𝐴𝑇 0

≈
𝐼 0

𝑅𝑇 𝑈𝑇
𝐼 𝑅
0 −𝑈

2. Use Hermitian/skew Hermitian splitting (HSS) preconditioning for saddlepoint
systems; use left-preconditioned system matrix 𝑀−1 𝐴 where

𝑀 = 𝐻 + 𝛼𝐼 𝑆 + 𝛼𝐼

=
(𝛼 + 1)𝐼 0

0 𝛼𝐼
𝛼𝐼 𝑅
𝑅𝑇 𝛼𝐼

26

GMRES-IR for Least Squares

• Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

• Again, don't want to compute an LU factorization of the augmented system

• How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

• A couple possibilities:

1. Construct triangular factors using 𝑅 = 𝑈𝑇 0 𝑇 factor; use as split-preconditioner:

𝐼 𝐴
𝐴𝑇 0

≈
𝐼 0

𝑅𝑇 𝑈𝑇
𝐼 𝑅
0 −𝑈

2. Use Hermitian/skew Hermitian splitting (HSS) preconditioning for saddlepoint
systems; use left-preconditioned system matrix 𝑀−1 𝐴 where

𝑀 = 𝐻 + 𝛼𝐼 𝑆 + 𝛼𝐼

=
(𝛼 + 1)𝐼 0

0 𝛼𝐼
𝛼𝐼 𝑅
𝑅𝑇 𝛼𝐼

26

27

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

27

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

27

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

27

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

27

GMRES-LSIR and "Standard" LSIR with

𝒖𝒇: half, 𝒖: single, 𝒖𝒓: double

A = gallery('randsvd', 100, 10, kappa)

b = randn(100,1); b = b./norm(b)

𝑚 𝑛

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

28

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision) in upcoming
Intel AI processors, Google Cloud TPUs, etc.

28

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision) in upcoming
Intel AI processors, Google Cloud TPUs, etc.

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

28

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision) in upcoming
Intel AI processors, Google Cloud TPUs, etc.

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

• As numerical analysts, we must determine when and where we can exploit
lower-precision arithmetic to improve performance

28

carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

Thank You!

