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1 INTRODUCTION 

 

Uncertainty is an issue present throughout 

the field of modeling and simulation. Due to 

uncertainty, modelers must make assumptions 

which affect simulation output. The user must 

possess knowledge about how and to what 

extent each assumption affects results in order to 

gain useful insights from the model. This 

knowledge is often, however, not present.  

To address this problem, we implement 

and evaluate a framework for quantified 

representation and propagation of uncertainty. 

This framework allows for incorporation of 

uncertainty in model input and produces an 

uncertainty range in model output through use 

of imprecise probability theory. Combined 

with a sensitivity analysis, the quantifiable 

effect of each assumption is obtainable. Our 

work provides users with insights into model 

validity and enables effective comparison 

between models.  

To measure success, the framework is 

applied to smallpox intervention models. Due 

to the high level of uncertainty in smallpox 

models and the high-risk decisions they 

influence, smallpox models serve as an 

appropriate case study. Focusing on two 

commonly-cited smallpox models and a range 

of subject matter expert parameter sets, we 

demonstrate that insights can be gained from 

the application of the framework which are not 

attainable from the model output itself. This 

outcome serves as a validation of the 

framework and as a significant contribution to 

the field of computational epidemiology.  

 

1.1 SIGNIFICANCE OF SMALLPOX 

 

Funding for the study of smallpox spread 

and intervention has increased in the past 

decade due to social and political factors. 

Despite eradication of smallpox in 1980, U.S. 

intelligence has uncovered at least five 

countries, including the U.S., which possess 

samples of the smallpox virus (Kemper, 

2003). In light of the events of September 11th 

and the subsequent anthrax attacks, potential 

malicious use of these samples is a concern.  

In order to protect the public, policy 

officials seek to devise an intervention 

strategy to minimize deaths in the event of an 

outbreak. The smallpox vaccination carries 

high risk of adverse effects, making the 

solution more complex than requiring mass 

public vaccination. As experimental studies of 

intervention effectiveness are not possible 

short of intentionally infecting the public, 

policy officials have turned to computational 

methods.  

Numerous groups have created models to 

aid in determining an optimal intervention 

strategy. These models, however, give 

conflicting results and recommendations due 

to varying model assumptions. Figure 1 

depicts the estimated total smallpox cases 

from a single model when run with different 

parameter sets assumed by four subject matter 

experts. The predicted number of total cases 

differs by orders of magnitude.  
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The issue of conflicting results due to 

uncertainty has been acknowledged by 

epidemiologists. Ferguson (2003) argues that a 

detailed understanding of model sensitivity to 

assumptions is essential. He warns that if such 

analysis is not performed, incorrect policy 

decisions could be made, increasing the death 

toll of a smallpox outbreak. This work seeks to 

address the concerns of Ferguson, enabling 

policy officials to understand the effect of 

uncertainty when using model results as a 

basis for high-risk decisions.  

 

1.2 OBJECTIVES 

 

The objectives defining the scope of this work 

include:  

1. Implementation of a framework for the 

quantification and propagation of 

uncertainty, including: 

a. Enumeration of values and 

distributions for a set of assumptions 

common to the specified area of 

modeling 

b. Calculation of imprecise probability 

structures, aggregating values and 

distributions from a variety of subject 

matter expert opinions 

c. Implementation of models and ability 

to sample from uncertainty structures 

2. Application of this framework to smallpox 

intervention models 

3. Analysis of insights that can be obtained 

and benefits provided by use of this 

framework to serve as validation of 

effectiveness 

 

2 BACKGROUND 

 

To preface this study, we present an 

overview of commonly-cited smallpox 

intervention models and methods in imprecise 

probability theory.  

 

2.1 SMALLPOX INTERVENTION MODELS 

 

Multiple groups have built models to 

simulate smallpox spread and intervention 

techniques. These models are based on the 

accepted SEIR compartmental model to 

describe disease spread, in which an individual 

goes through Susceptible, Exposed, Infected, 

and Removed stages. Progression to the next 

stage is determined by a probability 

distribution.  

The Center for Disease Control and 

Prevention in Atlanta, Georgia published a 

model in 2001 (Meltzer, 2001). The authors 

consider vaccination, quarantine, and a 

combination technique in halting disease 

spread. Their results led to the 

recommendation of a combination of 

quarantine and vaccination in the event of an 

outbreak.  

In 2002, an intervention model was 

published in Science (Halloran, 2002). This 

group considers different vaccination 

strategies, modeling targeted vaccination as 

well as mass vaccination before and after the 

epidemic. The resulting policy 

recommendation is highly dependent on 

whether there exists residual immunity from 

vaccinations up until 1972. When residual 

immunity is assumed, this group found that 

targeted vaccination is optimal under all 

scenarios.  

A third model, from the University of 

Tubingen in Germany, focuses on case 

isolation, contact tracing, and vaccination of 

contacts as intervention methods (Eichner, 

2003). The author claims that a smallpox 

outbreak could be extinguished in less than 

half a year with no more than 550 cases per 

100 index cases. 

A model created by the RAND Center for 

Domestic and International Health Security 

goes a step further, simulating a variety of 

attack scenarios (Bozzette, 2003). The study 

focuses solely on strategies involving 

vaccination, including mass vaccination, ring 

vaccination, and prophylactic vaccination. 

Potentially adverse effects of vaccination are 

considered when determining an optimal 

policy. The authors conclude that prior 

vaccination of health care workers is 

preferable, but depending on the scenario, 

mass vaccination could cause more deaths 

than the disease itself.   

Elderd et al (2006) addresses the call for 

recognition and analysis of smallpox model 

uncertainties. They study a model with 

vaccination strategies incorporated and focus 
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on four key epidemic parameters. Their results 

quantitatively demonstrate the risks associated 

with ignoring uncertainty in these four 

parameters. However, only uncertainty in 

disease spread is taken into account and 

uncertainty estimates are based on historical 

outbreak data rather than current subject 

matter expert estimates. Furthermore, the 

methodology used is only applicable to 

analytic models, whereas a large portion of 

smallpox models are agent-based. Their 

results therefore do not go far enough in 

aiding a policy official to evaluate and support 

an intervention strategy. 

 

2.2 IMPRECISE PROBABILITY THEORY 

 

Imprecise probability theory is useful in 

capturing uncertainty in parameters and 

distributions, enabling the representation of 

both partial knowledge and conflicting 

knowledge. The simplest approach employs 

traditional probability theory, allowing 

computation of expected value and upper and 

lower bounds. However, traditional 

probability theory falls short in the 

representation of epistemic uncertainty, 

uncertainty due to a lack of knowledge. The 

use of probability boxes improves upon the 

shortcomings of traditional probability theory. 

Probability boxes allow epistemic and aleatory 

uncertainty, uncertainty due to inherent 

variability, to be represented differently 

through upper and lower bounds of possible 

values.  

Dempster-Shafer theory goes a step 

further and allows multiple, contradictory 

intervals, and employs “belief” and 

“plausibility” functions as upper and lower 

bounds (Spiegel, 2007). Belief is used to 

quantify the extent to which evidence exists to 

imply something is true, and plausibility 

captures the extent to which evidence implies 

that something might be true. Dempster-Shafer 

theory is useful because it allows for the 

incorporation of only partial information and 

allows results to be derived despite conflicting 

evidence. Due to the conflicting and partial 

information present in smallpox data and 

subject matter expert opinions, we have 

selected Dempster-Shafer theory for use in 

this study.  

The framework employed here for 

uncertainty representation and propagation 

was implemented based on methods proposed 

in Spiegel (2007). Spiegel outlines a plan for a 

new programming language, RiskModelica, 

which will enable specification of uncertainty. 

The success of the work presented here 

establishes the viability and utility of 

RiskModelica. 

 

3 METHODOLOGY 

 

Two commonly-cited smallpox 

intervention models were selected for use in 

this study: Meltzer (2001) and Eichner (2003). 

Our framework’s methodology involves 

model implementation and validation, 

generation of Dempster-Shafer imprecise 

probability structures, and propagation of 

uncertainty through the simulation.  

Although smallpox is employed as a case 

study, we suspect that our study can benefit 

other fields which use modeling and 

simulation for decision-making purposes. A 

generalized approach is as follows: 

 

1. In-depth analysis of relevant models 

and enumeration of both implicit and 

explicit assumptions made in each 

2. Identification of uncertain quantities 

or methods associated with each 

assumption 

3. Collection of a variety of subject 

matter expert opinions and data sets to 

support various estimates of uncertain 

quantities 

4. Quantification of uncertainty using 

imprecise probability theory 

5. Modification of models to sample 

from imprecise probability structures  

6. Analysis of the extent to which each 

uncertain quantity enlarges this range  

 

3.1 MODEL IMPLEMENTATION AND 

VALIDATION 

 

Models presented by Meltzer (2001) and 

Eichner (2003), herein referred to as the 

Meltzer model and the Eichner model, were 
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selected for use based on ease of 

implementation and their prominence in the 

literature. The Meltzer model simulates a 

smallpox outbreak with 100 index cases and a 

transmission rate of 3.0, with an infinite 

population of susceptible individuals. The 

model assumes that contagion begins during 

the prodromal period. Quarantine, vaccination, 

and a combination strategy are considered, 

although our implementation is restricted to 

quarantine for simplification. Meltzer reports 

that an outbreak can be controlled if 50% of 

infected individuals are quarantined per day, 

considering intervention starting on day 25, 

30, and 45.  

Based on the published algorithm and 

parameter descriptions, the Meltzer model was 

implemented in Java. A comparison between 

published results and our implementation is 

given in Figure 2. Although our 

implementation and published results do not 

correspond precisely, results are on the same 

order of magnitude and general trends are 

preserved. Because the general order of 

magnitude of predicted cases is the important 

result, we consider the implemented model 

valid.  

The Eichner model focuses on contact 

tracing as a method to stop disease outbreak. 

Eichner assumes 100 initially infected, with a 

transmission rate of 5 people. Time to detect a 

case starts at 7 days and exponentially decays 

over time to 3 days. Detected cases are 

immediately isolated and 5 close contacts are 

kept under surveillance. Code for the Eichner 

simulation was provided by the author, and 

thus the model used here is identical to the 

model used to obtain published results. 

Therefore, validation experiments were not 

necessary.  

 

3.2 GENERATION OF IMPRECISE PROBABILITY 

STRUCTURES 

 

Our study focuses on five uncertain quantities: 

distributions for incubation time, prodromal 

time, and symptomatic time, as well as single-

valued parameters for number of initial cases 

and transmission rate. These quantities were 

selected based on commonality in smallpox 

intervention models.   

Subject matter expert opinions were 

collected and organized for use in generating 

uncertainty structures. Data for transmission 

rate is displayed in Table 1, while ranges for 

the remaining uncertain parameters and 

distributions are listed in Appendix A. 

Dempster-Shafer theory was used for 

quantification of uncertainty and the 

aggregation of various subject matter expert 

opinions. The MatLab Imprecise Probability 

Toolbox was used to calculate cumulative 

distribution functions for each disease stage 

distribution. For transmission rate and index 

case parameters, the calculation was 

performed by hand. The resulting Plausibility 

and Belief distributions for Incubation length 

are displayed in Figure 3. Remaining 

distributions can be found in Appendix B.   

Figure 2. Comparison of Meltzer Implementation 

to Published Results. Data is given for simulations 

with intervention starting on day 25, 30, and 45. 

Results are presented for total cases and new cases 

per day.  (Carson). 
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3.3 UNCERTAINTY PROPAGATION 

 

Plausibility and Belief functions portray a 

static view of uncertainty in model structure 

and parameters. For the purpose of obtaining 

uncertainty in model output using these 

structures, the uncertainty must be propagated 

over time through simulation. Sampling from 

a Plausibility-Belief distribution involves 

sampling from points both on and in between 

the two cumulative distribution functions.  

We implemented this sampling method by 

creating a mesh across the graph and then 

selecting points on and in between the 

distributions. The mesh size was calculated 

based on the smallest distance between 

consecutive x and y values obtained for the 

plausibility and belief functions. To sample 

from the array of selected points, a random 

index was selected using the random number 

generator available in Java's Math package.  

Each simulation was run for 1000 

experiments, sampling from the Plausibility-

Belief functions to obtain individual 

incubation length, prodromal length, and 

infection length, and to obtain a global 

transmission rate and number initially 

infected. The results of the experiments serve 

to create upper and lower bounds enveloping 

the range of output uncertainty.  

 

4 EXPERIMENTAL RESULTS AND ANALYSIS 

 

Experiments were run for both the Meltzer 

model and the Eichner model, sampling from 

the generated uncertainty structures for the 

five selected uncertain quantities. In order to 

obtain a view of how different subject matter 

expert opinions align within the uncertainty 

envelope, the Meltzer model and the Eichner 

model were also run substituting in parameter 

sets used by various subject matter experts. 

Table 2 displays the parameters and 

distributions used.  

To portray the quantifiable impact of each 

specific assumption, sensitivity analyses were 

performed for each of the five uncertain 

quantities for the Meltzer model. A similar 

exercise can be performed for the Eichner 

model.  

 

4.1 MELTZER MODEL UNCERTAINTY RESULTS 

 

Results were obtained for the Meltzer 

model for intervention starting on days 25, 30, 

and 45. Simulation output is organized to 

portray both cumulative total cases and the 

number of new cases per day. This format was 

selected to mirror the results reported by 

Meltzer (2001). Figure 4 shows simulation  

 

Range/Value Source 

3-6 (Kretzschmar, 2004) 

5 (Eichner, 2003) 

5.23 (Kretzschmar, 2004) 

3 (LeGrand, 2003) 

3.2 (Halloran, 2002) 

10-20 (Kretzschmar, 2004) 

5 (Porco, 2004) 

3 (Kaplan, 2002) 

3.5-6 (Kaplan, 2002) 

1.5-20 (LeGrand, 2003) 

4.52-10.1 (Eichner, 2003) 

3 (Meltzer, 2001) 

 
Table 1. Ranges of Subject Matter Expert 

Opinions for Transmission Rate Value. 

(Carson). 
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output for intervention starting on day 25, 

plotted on a log scale. Graphs for the 

remaining simulations are located in Appendix 

C. Dashed lines correspond to simulation 

results when run with a parameter set from a 

certain subject matter expert, while solid lines 

represent upper and lower bounds obtained by 

sampling from the uncertainty structures. 

Plotting model results using parameter sets 

advocated by different subject matter experts 

allows comparison of these estimates. It 

should be noted that the four parameter sets 

tested were only a subset of the values used to 

generate the uncertainty distributions.  

When uncertainty is taken into account, 

the Meltzer model predicts a broad range of 

possible outcomes. The upper bound indicates 

exponential growth despite quarantine 

intervention, while the lower bound indicates 

that intervention methods successfully stopped 

spread of disease.  

From the results, conclusions can be 

drawn which aid in understanding the impact 

of model assumptions. Analysis of new cases 

per day indicates that of the four parameter 

sets, the parameters chosen by Meltzer were 

the only set to result in control of the outbreak. 

This information indicates that success of the 

quarantine algorithm advocated by Meltzer 

depends highly on assumptions made by 

Meltzer. This serves as a warning to health 

officials when using the Meltzer model to 

support a quarantine policy.  

Such insights provide valuable 

information to the user. When assumptions 

 Meltzer Eichner Halloran Bozzette 

Incubation 

Length (days) 

5-18 (Derived from 

inverse CDF in 

(Meltzer, 2003)) 

Gamma (μ=11.6, σ=1.90) Uniform (10,14) Uniform (5.5,22.5) 

Prodromal 

Length (days) 

Uniform (1,3) Gamma (μ=2.49, σ=.88) Uniform (3, 5) Uniform (1.5,4.5) 

Symptomatic 

Length (days) 

Uniform (10,15) Gamma (μ=16, σ=2.83) Uniform (14, 17) Uniform (9,25) 

Transmission 

Rate 

3 5 3.2 3.4 

Index Cases 100 100 5 350 

 Table 2. Parameter Sets for Uncertain Quantities from Four Subject Matter Experts. Parameter set 

for Bozzette is from “building attack” scenario, chosen to most closely match attack scenario in 

other models. (Carson). 
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Figure 4. Total Cases and New Cases Per Day for Meltzer 

Model Uncertainty Analysis. Dependent variable axis is log 

scale. Lower bound for New Cases Per Day is constantly 0, 

and thus not visible on the log scale. (Carson). 
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made in the model are accounted for through 

uncertainty analysis, it is apparent that 

Meltzer’s intervention policy will not 

necessarily be successful. Additionally, use of 

the framework demonstrates that Meltzer’s 

assumed parameter values produce results 

inconsistent with three other subject matter 

experts.  

 

4.2 EICHNER MODEL UNCERTAINTY RESULTS 

 

The Eichner model implements contact 

tracing with surveillance as an intervention 

strategy. Uncertainty analysis was performed 

for five contacts traced per detected case. 

Simulation output, in Figure 5, is depicted in 

terms of total cases per day and the number of 

cases that go undetected per day in order to 

mirror the results published by Eichner (2003). 

The graph of total detected cases per day is 

plotted on a logarithmic scale. Again, dashed 

lines correspond to the parameter sets used by 

Meltzer, Eichner, Bozzette, and Halloran. 

These parameter sets are only a subset of the 

information used to generate the uncertainty 

structures.  

Simulation results when taking uncertainty 

into account provide valuable insight in 

analysis of the Eichner model. The quarantine 

method of contact tracing and surveillance in 

the Eichner model proves to stop epidemic 

spread with as many as 1000 initial index 

cases and a high transmission rate of 20 

individuals infected per infective case. The 

upper bound, obtained by sampling from 

Plausibility-Belief distributions for each 

uncertain parameter, indicates that spread of 

disease is decreasing after 200 days. From this 

data, the policy official can conclude that, 

based on the uncertain parameters analyzed, a 

variety of subject matter expert opinions and 

historical outbreak datasets agree: the 

intervention strategy used in the Eichner 

model will successfully stop a smallpox 

outbreak.  

Of course, one can not draw the definitive 

conclusion that such a strategy will stop 

disease spread in all cases. A broader range of 

historical data incorporated into uncertainty 

structures and analysis of other parameters in 

the model may help, but this still fails to 

provide indication that the future will be 

dependent on the past. Caution must be 

exercised.  

 

4. 3 ANALYSIS OF PARAMETER SENSITIVITY 

 

A sensitivity analysis was performed for 

the Meltzer model to assess the extent to 

which each uncertain parameter contributes to 

the inability to control disease spread. Results 

are presented for the cumulative number of 

infectious cases. For all experiments, 

parameters and distributions in the original 

Meltzer model were kept constant except the 

quantity in question. Figure 6 displays the 

simulation results for sensitivity of the 

incubation length distribution and the 

prodromal length distribution. Results for the 
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Figure 5. Total Detected Cases Per Day and 

Undetected Cases Per Day for Eichner Uncertainty 

Analysis. Total Detected Cases plotted on log scale.  

(Carson). 
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remaining parameters are listed in Appendix 

C.  

Results indicate that the model is slightly 

sensitive to the incubation distribution 

selected. The total number of cases ranges 

from 500 to around 2500 at day 200, but the 

trend is decreasing in all cases. Results are 

similar for the symptomatic period 

distribution.  

The selection of the prodromal period 

length, however, produces a wide range of 

results. Both Meltzer and Eichner parameter 

sets predict the end of disease spread, while 

others result in no control by intervention. 

Halloran's distribution for prodromal length 

produces the highest values for stage duration 

of all four parameter sets.  

An analysis of model structure indicates 

that this behavior is attributable to structural 

choices made in the model. Meltzer assumes 

that an individual becomes contagious and can 

spread disease during the prodromal period, 

but due to a lack of physically evident 

symptoms of smallpox during this stage, only 

those in the symptomatic stage are eligible for 

quarantine. Thus, the longer the prodromal 

period, the more time an individual can spread 

infection without intervention.  

For single-valued transmission rate and 

index case parameters, model sensitivity 

varies significantly as well. Selection of the 

number of initially infected individuals scales 

the resulting number of cases, but does not 

cause disease spread to grow exponentially 

despite intervention. The number of infected 

individuals, however, is exponential with 

respect to the transmission rate.  

The user gains valuable insights through 

use of the uncertainty framework in sensitivity 

analysis. It can be concluded that a high 

transmission rate is the primary cause of large 

estimates of total cases in the results, 

preventing quarantine efforts from controlling 

smallpox spread. It is also evident that the 

structural assumptions in the Meltzer model 

necessitate careful choice of prodromal 

distribution. One can also make quantifiable 

comparisons between the effects of different 

subject matter expert assumptions.   

 

 

 

5 CONCLUSION 

 

This work has large implications for use in 

evaluating and analyzing models to support 

decision-making. By recognizing model 

assumptions and quantifying uncertainty in 

corresponding model parameters, uncertainty 

in model output can be obtained. Sensitivity 

analysis can provide further insight into which 

parameters have the greatest effect on 

increasing the bounds of the uncertainty 

envelope. Through use of a case study, we 

have demonstrated how application of this 

framework can increase understanding of 

model assumptions and provide benefits to the 

end user of the model.  
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Figure 6. Sensitivity Analysis for Incubation 

Distribution and Prodromal Distribution. (Carson). 
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5.1 SUMMARY 

 

The quantification and proper 

management of uncertainty is necessary where 

models are used to support high-risk decisions. 

Differences in model output and 

corresponding policy recommendations can be 

attributed to a number of assumptions, 

reflecting underlying uncertainty. To aid 

policy officials in interpreting and analyzing 

these conflicting results in terms of 

assumptions, a framework for uncertainty 

analysis has been implemented. This 

framework, which employs imprecise 

probability theory, has been applied to 

smallpox intervention models to demonstrate 

benefits of its use.  

Due to high variability in predictions of 

smallpox spread and intervention strategy 

recommendations from different models, 

uncertainty analysis is necessary in order for 

such models to be useful in decision-making 

(N.M. Ferguson, 2003). The quantification and 

propagation of uncertainty in two smallpox 

intervention models for five uncertain 

quantities has been performed. Experimental 

results show that the Meltzer model and the 

Eichner model vary significantly even when 

uncertainty in these parameters is accounted 

for. A sensitivity analysis performed with 

uncertainty estimates provides insight into 

which assumptions have the greatest effect on 

model results. This, in turn, aids the policy 

official in assessment of the two different 

intervention strategies used, as well as in 

comparison between models and subject 

matter expert opinions.   

 

5.2 INTERPRETATION 

 

The results of the case study demonstrate 

that the Meltzer model and corresponding 

intervention strategy are more sensitive to 

assumptions than the Eichner model. Results 

of uncertainty propagation show that under 

certain sets of assumptions considered valid 

by subject matter experts, the Meltzer model 

predicts total number of smallpox cases in the 

trillions, despite attempted quarantine rate of 

50% per day. In contrast, the uncertainty range 

for total cases predicted by the Eichner model, 

for the four parameter sets differs by only 

three orders of magnitude. Furthermore, of the 

four parameter sets assumed by four subject 

matter experts, the Meltzer model results show 

that Meltzer's assumptions were the only 

parameter set to result in end of the outbreak. 

Such results provide a caution to individuals 

using this model to support high-risk 

decisions.  

A sensitivity analysis for each of the five 

uncertain quantities tested in the Meltzer 

model provides further information about 

which parameters must be considered most 

carefully. The choice of transmission rate and 

the distribution for the length of the prodromal 

period can result in predicted exponential 

growth of the epidemic, despite intervention. 

The number of index cases and distributions 

for the length of the incubation period and 

symptomatic period, although scaling the 

number infected in some cases,  did not 

change the predicted end of epidemic spread 

after 200 days.  

Due to high levels of uncertainty, various 

smallpox intervention models provide 

significantly different results. Application of 

our framework for uncertainty quantification 

has enabled insights into the effect of model 

assumptions not otherwise possible. We 

conclude that application of this framework is 

not merely beneficial to the user, but essential 

for models used in high-risk decision-making.  

 

5.3 RECOMMENDATIONS FOR FUTURE WORK 

 

To continue the study of uncertainty in 

smallpox intervention models, it is 

recommended that other assumptions and 

uncertainty be incorporated in order to paint a 

broader picture of the effects of uncertainty on 

output for these two models. Such 

assumptions may include existing residual 

immunity and structural changes such as 

vaccination policy. In order to analyze 

uncertainty when dealing with structural 

changes, a combinatorial method must be used 

to test uncertainty in place of imprecise 

probability theory.  

Results of such a study will become 

increasingly robust as more information is 

incorporated into imprecise probability 
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analysis. Data and distributions used here were 

extracted from various published work on 

smallpox models. Information calculated 

directly from historical outbreak documents, 

available from the World Health Organization 

database, could prove to be useful.  

We highly recommend that this 

framework for uncertainty management be 

applied to other areas of study. Both modelers 

and model users can benefit from an increased 

understanding of how assumptions affect 

model behavior. This understanding enables 

informed decision-making when the user faces 

conflicting evidence.  

It is necessary, however, that the user 

understands the limitations of modeling and 

simulation in general. Model results should 

not be viewed as definitive or absolutely 

correct, or be used as the single source in 

making predictions and high-risk decisions. 

No matter the amount of assumptions and data 

that are taken into account in uncertainty 

analysis, one can not conclude that the past 

will be an indication of the future. Although 

models can not solely provide definitive 

answers, they are useful tools for gaining 

insight and understanding which can help a 

user make decisions.  
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