

Flow around an obstacle:

Various approaches to calculate pointwise traction

Jakub Cach joint work with Jan Blechta, Sebastian Schwarzacher, Karel Tůma

Mathematical Institute of Charles University Faculty of Mathematics and Physics Charles University

September 24, 2024

Point-wise traction

- Flow force inducing local deformation of bodies
- Net forces (lift, drag) insufficient
- Fluid-Structure Interaction (FSI)
- Estimate of initial deformation without FSI
- No benchmarks yet

Turek Benchmark

- Cannonical computational benchmark for Navier-Stokes equation
- Flow around cylinder
- Provides referential values for lift and drag only
- Aim: Compare different approaches for computing point-wise traction

Figure: Turek, Schaefer; Benchmark computations of laminar flow around cylinder; in Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics 52, 547-566, Vieweg 1996

MPDE 2024

Equations and traction

• Steady incompressible Navier-Stokes equations

$$\begin{split} & \mathbf{v} \cdot \nabla \mathbf{v} = \mathsf{div} \ \mathbb{T} \quad \text{in } \Omega, \\ & \mathsf{div} \ \mathbf{v} = 0 \quad \text{in } \Omega, \\ & \mathbb{T} = -\boldsymbol{\rho} \mathbb{I} + \boldsymbol{\mu} (\nabla \mathbf{v} + (\nabla \mathbf{v})^T), \\ & \mathbf{v} = \mathbf{v}_D^i \quad \text{on } \Gamma_i \subset \partial \Omega, \\ & \mathbb{T} \mathbf{n} = 0 \quad \text{on } \partial \Omega \backslash \mathsf{U} \Gamma_i. \end{split}$$

• Traction

$$\mathbf{t} := \mathbb{T}\mathbf{n}$$
.

Traction computation

- Direct approach
 - Compute solution **v**, *p*
 - Evaluate traction from definition $\mathbf{t}:=\mathbb{T}(
 abla \mathbf{v}, oldsymbol{
 ho})\mathbf{n}$
- Weak / Dual / Poincaré-Steklov operator approach
 - Compute solution **v**, *p*
 - Use equation again!

$$\int_{\Omega} \rho(\mathbf{v} \cdot \nabla \mathbf{v}) \cdot \phi \, d\mathbf{x} = -\int_{\Omega} \mathbb{T} \cdot \nabla \phi \, d\mathbf{x} + \int_{\partial \Omega} (\mathbb{T}\mathbf{n}) \cdot \phi \, d\mathbf{S}.$$

- Make new unknown \mathbf{t}^{PS} to solve for

$$\int_{\partial\Omega} \mathbf{t}^{\mathsf{PS}} \cdot \phi \, dS = \int_{\Omega} \mathbb{T} \cdot \nabla \phi \, d\mathbf{x} + \int_{\Omega} \rho(\mathbf{v} \cdot \nabla \mathbf{v}) \cdot \phi \, d\mathbf{x}$$

Analysis result

Standard estimate for Stokes equation

$$\|\boldsymbol{p} - \boldsymbol{p}_h\|_{L^2(\Omega)} + \|\nabla(\mathbf{v} - \mathbf{v}_h)\|_{L^2(\Omega)} \le Ch\|\nabla^2 \mathbf{v}\|_{L^2(\Omega)} + Ch\|\nabla \boldsymbol{p}\|_{L^2(\Omega)}$$

Scaling argument on the boundary (direct computation)

$$\|\nabla(\mathbf{v}-\mathbf{v}_h)\|_{L^2(\partial\Omega)} \leq C \|\mathbf{v}-\mathbf{v}_h\|_{H^{3/2}(\Omega)} \leq C h^{\frac{1}{2}} \|\nabla^2 \mathbf{v}\|_{L^2(\Omega)}$$

We hope: Poincaré-Steklov approach retains former convergence rate

 $\|\mathbf{t}^{\mathsf{PS}} - \mathbf{t}^{\mathsf{PS}}_{h}\|_{L^{2}(\partial\Omega)} \leq \mathcal{C}h\|
abla^{2}\mathbf{v}\|_{L^{2}(\Omega)}$

Conjecture

This also holds for the Navier-Stokes equation.

MPDE 2024

Implementation

- Firedrake customizable finite element library
- Taylor-Hood pair
- Monolithic approach Newton solver and sparse LU factorization
- Reference obtained on mesh with 7M DoFs

Implementation: Traction Computation

• Poincaré-Steklov (PS): using CG1 elements solve for

$$\int_{\partial\Omega} \mathbf{t}^{\mathsf{PS}} \cdot \phi \, d\mathbf{S} = \int_{\Omega} \mathbb{T} \cdot \nabla \phi \, d\mathbf{x} + \int_{\Omega} \rho(\mathbf{v} \cdot \nabla \mathbf{v}) \cdot \phi \, d\mathbf{x}$$

• L²-projection (proj): using CG1 elements solve for

$$\int_{\partial\Omega} \mathbf{t}^{\mathsf{proj}} \cdot \phi \, dS = \int_{\Omega} \mathbb{T} \mathbf{n} \cdot \phi \, dx$$

• Direct (dir): interpolate values in nodes

$$\mathbf{t}^{\mathsf{dir}} = \mathbb{T}\mathbf{n}|_{\partial\Omega}$$

Convergence plots: Turek benchmark

a) Stokes equations

Turek Benchmark: Poincaré-Steklov compared to direct computation

b) Navier-Stokes equations

Point-wise drag for Turek benchmark

Turek square benchmark

Convergence plots: Turek square bench.

b) Navier-Stokes equations

103

References and acknowledgement

- 1) Turek, Schaefer, Benchmark computations of laminar flow around cylinder, in Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics 52, 547-566, Vieweg 1996
- 2) David A. Ham et al. *Firedrake User Manual*. First edition. Imperial College London and University of Oxford and Baylor University and University of Washington. May 2023. DOI: 10.25561/104839.

• This work have been supported by ERC/CZ LL2105, supported by the Ministry of Education, Youth and Sport of the Czech Republic.

Questions?

Jakub Cach joint work with Jan Blechta, Sebastian Schwarzacher, Karel Tůma

Mathematical Institute of Charles University Faculty of Mathematics and Physics Charles University

September 24, 2024