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Introduction

For an incompressible Newtonian fluid flowing around an obstacle we are interested in the pointwise traction acting on it. To determine the local deformation of a solid obstacle, an accurate traction calculation is required. Besides
the classical approach that concerns a direct calculation of the traction from the Cauchy stress tensor, we investigate the Poincaré-Steklov method based on calculating a dual problem and it seems to provide more accurate
results. Indeed, we show a better convergence rate of the latter method with respect to the direct approach. The method is applied to the Turek benchmark, which considers a flow past a rigid cylinder. We also consider a rigid
square prism as an obstacle. In this benchmark the total drag and lift acting on the cylinder is computed. We extended the benchmark and computed the point-wise traction for different mesh resolutions and Reynolds numbers.

Problem description

Steady incompressible Navier-Stokes equations with inflow and outflow

ρv · ∇v = div T in Ω,

div v = 0 in Ω,

T = −pI + µ(∇v +∇vT ),

v = viD on Γi ⊂ ∂Ω,

Tn = 0 on ∂Ω\UΓi .

Analytical background

▶ Traction is defined on boundary using unit outward normal n

t := Tn.

▶ Standard finite-dimensional estimate for Stokes eq. in bulk gives:

∥p − ph∥L2(Ω) + ∥∇(v − vh)∥L2(Ω) ≤ Ch∥∇2v∥L2(Ω).
▶ The direct calculation of traction from computed (v,p) relies on the

estimate on boundary that uses theory of traces

∥∇(v − vh)∥L2(∂Ω) ≤ C∥v − vh∥H3/2(Ω)
≤ Ch

1
2∥∇2v∥L2(Ω).

▶ Disadvantages: loss of 1/2 of convergence order, need of normal n.
▶ In the Poincaré-Steklov computation, we view traction as a functional:

Find t s.t. ∀φ ∈ V ⊂ H1(Ω):∫
Γ
t · φ dS = −

∫
Ω

T · ∇φ dx +

∫
∂Ω\Γ

(Tn) · φ dS .

▶ Can be computed for Navier-Stokes eq., Γ is a boundary of interest,
linear problem only.

▶ Advantages: no need for normal n, retains former convergence order
for the Stokes equation.

▶ Conjecture: preserves the former convergence order also for N-S eq.

▶ Proof: based on analogy between Stokes and Laplace eq. Assume we
solved −∆u = f , u|∂Ω = 0 and we are looking for t, which is an
analogy of the traction, i.e., the flux through boundary:

⟨t, φ⟩L2(∂Ω) = ⟨∇u,∇φ⟩L2(Ω) + ⟨f , φ⟩L2(Ω) ∀φ ∈ V = H1(Ω).

▶ In finite-dimensional space:

⟨th, φh⟩L2(∂Ω) = ⟨∇uh,∇φh⟩L2(Ω) + ⟨f , φh⟩L2(Ω) ∀φh ∈ Vh ⊂ V .

▶ Define harmonic extension Ψ of the traction t to the Ω: −∆Ψ = 0,
Ψ|∂Ω = t. It holds:

⟨t, t⟩L2(∂Ω) = ⟨∇u,∇Ψ⟩L2(Ω) + ⟨f ,Ψ⟩L2(Ω).
▶ Assuming regularity ∥∇2Ψ∥L2(Ω) ≤ C , using Galerkin orthogonality

and Interpolation theorem (k = 1):

⟨t − th, t − th⟩L2(∂Ω) = ⟨∇(u − uh),∇(Ψ− Ψh)⟩L2(Ω)
≤ ∥∇(u − Phu)∥L2(Ω)∥∇(Ψ− PhΨ)∥L2(Ω)
≤ Ch2∥∇2u∥2

L2(Ω)
.

▶ Poincaré-Steklov approach improves the convergence rate h
1
2 → h.

Numerical implementation

▶ FEM library Firedrake.

▶ Pressure robust method: Scott-Vogeliuis pair (CG2 velocity, DG1
pressure), triangles, barycentric split.

▶ Newton solver, sparse LU solver — MUMPS.

▶ Up to 55M DoFs on computational node with 512 GB RAM.

▶ Poincaré-Steklov problem is ill-posed.

▶ Regularization: Find t ∈ V such that∫
Γ
t · φ + id(t, φ) = F (φ) for all φ ∈ V .

▶ In code we add ones instead of zeros on the diagonal.

▶ Sparse LU regular factorization for linear Poincaré-Steklov problem.

▶ Question: Right discrete space for traction in PS problem. Now CG1.

▶ Evaluation of ∥t− tref∥L2(Ω), where the reference is obtained on the

finest grid, is not straightforward due to projection / interpolation.

1) Comparison of traction computation approaches on Turek benchmark

▶ Considering laminar (Re = 20) Turek benchmark with cylinder and square obstacles.

▶ Very fast convergence in L1 norm on the cylinder — drag and lift. But the correct norm for traction is L2.

▶ With smooth boundary, such as a cylinder, we observe same order of convergence for direct (TndS) and Poincaré-Steklov (PS) approaches.

▶ The solution on the square obstacle is less regular, and hence we observe a loss of convergence order. This is partially saved by PS approach.

▶ Results are pointwise divergence free:
∫
Ω div v dx ≈ 10−16.
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Turek Benchmark: L2 norm PS vs TndS
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Turek Benchmark: L1 values PS vs TndS
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Figure: Reference obtained with 52M DoFs and from Turek benchmark. EOCs are drag = {3.03, 2.24}, lift = {3.37, 3.18} for methods {PS, TndS}.
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Turek Square Benchmark: L2 norm PS vs TndS
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Turek Square Benchmark: L1 values PS vs TndS
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Figure: Reference obtained with 41M DoFs. EOCs are drag = {1.94, 1.01}, lift = {1.66, 0.95} for methods {PS, TndS}. PS by ≈ 1/2 convergence order better in L2 norm.
The worst absolute error in L2 norm could be due to the wrong projection / interpolation on the reference mesh.

2) Visualisation of traction on square in Turek benchmark computed using Poincaré-Steklov approach

▶ Start computing with 4 points on side of the square and coarse mesh in bulk, and plot magnitude of traction on square.

▶ L1 norms for direct and Poincaré-Steklov approaches coincide up to error on both shapes, however, L2 norms are completely different numbers
on square — possible reason are spikes in corners.
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3) Pointwise traction profiles for different Reynolds numbers computed using Poincaré-Steklov approach

▶ Profile of lift is dramatically changing with increasing Reynolds number and the fluid wants to deform the cylinder in non-obvious way.
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