Comparison of different approaches to calculating pointwise traction in flow



FACULTY OF MATHEMATICS AND PHYSICS **Charles University**

Jan Blechta Jakub Cach Sebastian Schwarzacher Karel Tůma

<blechta@karlin.mff.cuni.cz> <cach@karlin.mff.cuni.cz>

<schwarzacher@karlin.mff.cuni.cz>

<ktuma@karlin.mff.cuni.cz>

Faculty of Mathematics and Physics, Charles University, Prague, Czechia

Introduction

For an incompressible Newtonian fluid flowing around an obstacle we are interested in the pointwise traction acting on it. To determine the local deformation of a solid obstacle, an accurate traction calculation is required. Besides the classical approach that concerns a direct calculation of the traction from the Cauchy stress tensor, we investigate the Poincaré-Steklov method based on calculating a dual problem and it seems to provide more accurate results. Indeed, we show a better convergence rate of the latter method with respect to the direct approach. The method is applied to the Turek benchmark, which considers a flow past a rigid cylinder. We also consider a rigid square prism as an obstacle. In this benchmark the total drag and lift acting on the cylinder is computed the benchmark and computed the point-wise traction for different mesh resolutions and Reynolds numbers.

Problem description

1) Comparison of traction computation approaches on Turek benchmark

Steady incompressible Navier-Stokes equations with inflow and outflow

 $\rho \mathbf{v} \cdot \nabla \mathbf{v} = \operatorname{div} \mathbb{T} \quad \text{in } \Omega,$ div $\mathbf{v} = 0$ in Ω , $\mathbb{T} = -\boldsymbol{\rho}\mathbb{I} + \mu(\nabla \mathbf{v} + \nabla \mathbf{v}^T),$ $\mathbf{v} = \mathbf{v}_D^i$ on $\Gamma_i \subset \partial \Omega$, $\mathbb{T}\mathbf{n} = 0$ on $\partial \Omega \setminus \mathsf{U} \mathsf{\Gamma}_i$.

Analytical background

- ► Traction is defined on boundary using unit outward normal **n** $\mathbf{t} := \mathbb{T}\mathbf{n}$.
- Standard finite-dimensional estimate for Stokes eq. in bulk gives:

 $\|p-p_h\|_{L^2(\Omega)}+\|\nabla(\mathbf{v}-\mathbf{v}_h)\|_{L^2(\Omega)}\leq Ch\|\nabla^2\mathbf{v}\|_{L^2(\Omega)}.$

▶ The direct calculation of traction from computed (\mathbf{v}, p) relies on the estimate on boundary that uses theory of traces

 $\|\nabla(\mathbf{v}-\mathbf{v}_h)\|_{L^2(\partial\Omega)} \leq C \|v-v_h\|_{H^{3/2}(\Omega)} \leq Ch^{\frac{1}{2}} \|\nabla^2 \mathbf{v}\|_{L^2(\Omega)}.$

- \blacktriangleright Disadvantages: loss of 1/2 of convergence order, need of normal **n**.
- ► In the Poincaré-Steklov computation, we view traction as a functional: Find **t** s.t. $\forall \varphi \in V \subset H^1(\Omega)$:

$$\int_{\Gamma} \mathbf{t} \cdot \varphi \, dS = - \int_{\Omega} \mathbb{T} \cdot \nabla \varphi \, dx + \int_{\partial \Omega \setminus \Gamma} (\mathbb{T}\mathbf{n}) \cdot \varphi \, dS.$$

- Can be computed for Navier-Stokes eq., Γ is a boundary of interest, linear problem only.
- \blacktriangleright Advantages: no need for normal **n**, retains former convergence order for the Stokes equation. ► Conjecture: preserves the former convergence order also for N-S eq. ► Proof: based on analogy between Stokes and Laplace eq. Assume we solved $-\Delta u = f, u|_{\partial \Omega} = 0$ and we are looking for t, which is an analogy of the traction, i.e., the flux through boundary:

• Considering laminar (Re = 20) Turek benchmark with cylinder and square obstacles.

- \blacktriangleright Very fast convergence in L^1 norm on the cylinder drag and lift. But the correct norm for traction is L^2 .
- ► With smooth boundary, such as a cylinder, we observe same order of convergence for direct (TndS) and Poincaré-Steklov (PS) approaches.
- ► The solution on the square obstacle is less regular, and hence we observe a loss of convergence order. This is partially saved by PS approach.
- Results are pointwise divergence free: $\int_{\Omega} div \, \mathbf{v} \, dx \approx 10^{-16}$.

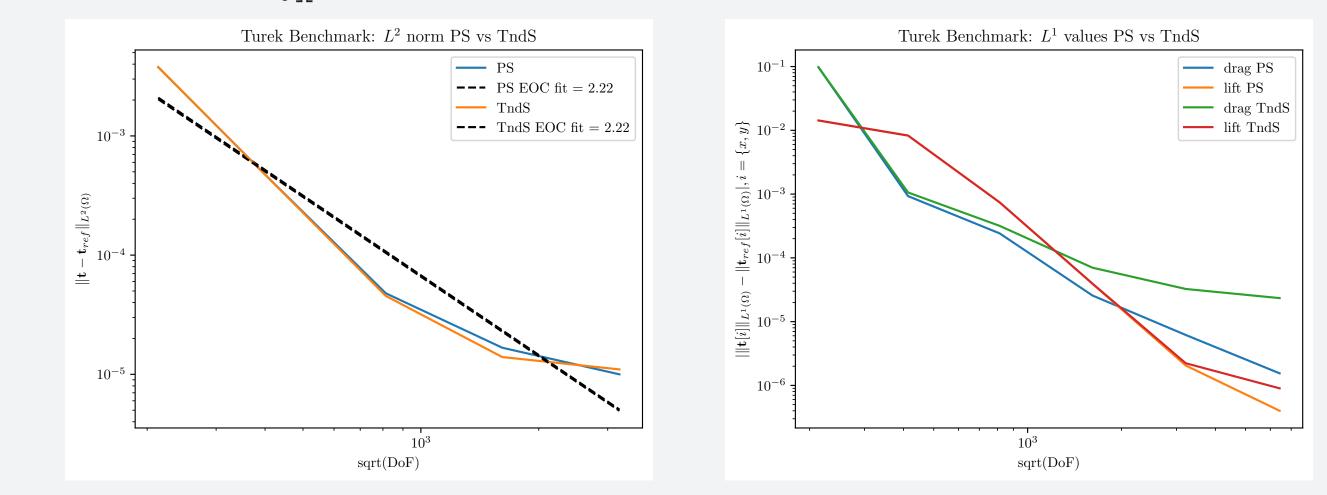
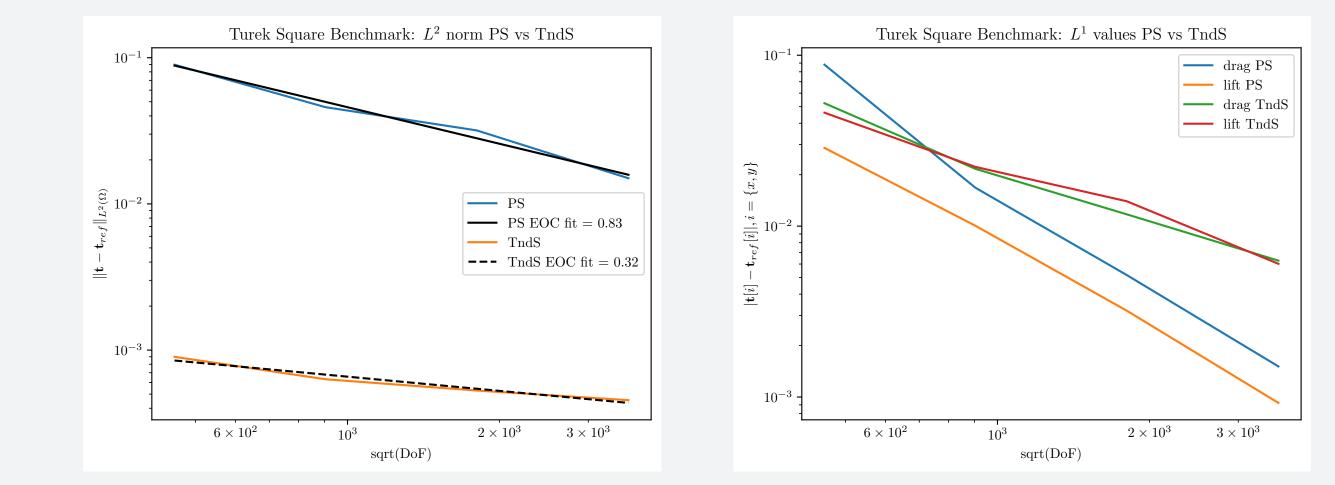


Figure: Reference obtained with 52M DoFs and from Turek benchmark. EOCs are drag = $\{3.03, 2.24\}$, lift = $\{3.37, 3.18\}$ for methods $\{PS, TndS\}$.



 $\langle t, \varphi \rangle_{L^2(\partial \Omega)} = \langle \nabla u, \nabla \varphi \rangle_{L^2(\Omega)} + \langle f, \varphi \rangle_{L^2(\Omega)} \quad \forall \varphi \in V = H^1(\Omega).$

► In finite-dimensional space:

 $\langle t_h, \varphi_h \rangle_{L^2(\partial\Omega)} = \langle \nabla u_h, \nabla \varphi_h \rangle_{L^2(\Omega)} + \langle f, \varphi_h \rangle_{L^2(\Omega)} \quad \forall \varphi_h \in V_h \subset V.$

• Define harmonic extension Ψ of the traction t to the Ω : $-\Delta \Psi = 0$, $\Psi|_{\partial\Omega} = t$. It holds:

 $\langle t,t\rangle_{L^2(\partial\Omega)} = \langle \nabla u,\nabla\Psi\rangle_{L^2(\Omega)} + \langle f,\Psi\rangle_{L^2(\Omega)}.$

• Assuming regularity $\|\nabla^2 \Psi\|_{L^2(\Omega)} \leq C$, using Galerkin orthogonality and Interpolation theorem (k = 1): $\langle t - t_h, t - t_h \rangle_{L^2(\partial \Omega)} = \langle \nabla (u - u_h), \nabla (\Psi - \Psi_h) \rangle_{L^2(\Omega)}$ $\leq \|\nabla(u-\mathbb{P}_{h}u)\|_{L^{2}(\Omega)}\|\nabla(\Psi-\mathbb{P}_{h}\Psi)\|_{L^{2}(\Omega)}$

 $\leq Ch^2 \|\nabla^2 u\|_{L^2(\Omega)}^2.$

▶ Poincaré-Steklov approach improves the convergence rate $h^{\frac{1}{2}} \rightarrow h$.

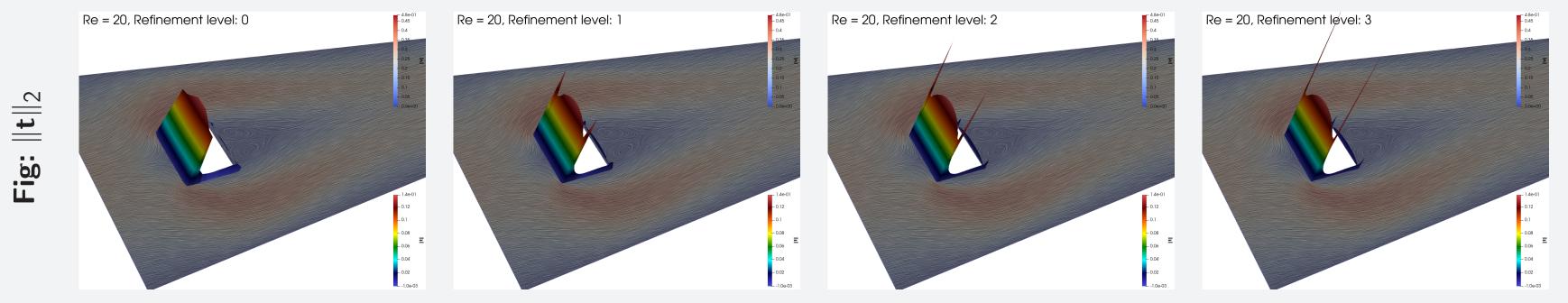
Numerical implementation

- ► FEM library Firedrake.
- Pressure robust method: Scott-Vogeliuis pair (CG2 velocity, DG1) pressure), triangles, barycentric split.
- ► Newton solver, sparse LU solver MUMPS.

Figure: Reference obtained with 41M DoFs. EOCs are drag = $\{1.94, 1.01\}$, lift = $\{1.66, 0.95\}$ for methods $\{PS, TndS\}$. PS by $\approx 1/2$ convergence order better in L^2 norm. The worst absolute error in L^2 norm could be due to the wrong projection / interpolation on the reference mesh.

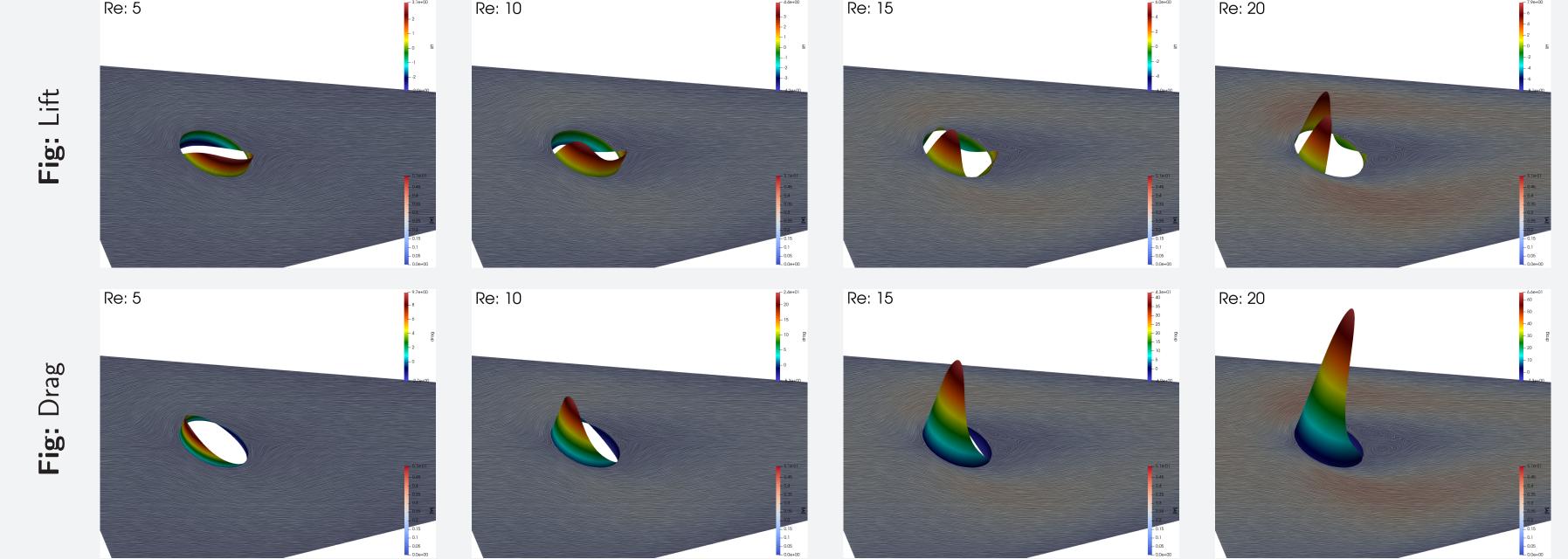
2) Visualisation of traction on square in Turek benchmark computed using Poincaré-Steklov approach

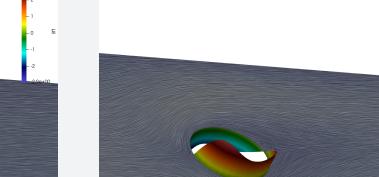
- Start computing with 4 points on side of the square and coarse mesh in bulk, and plot magnitude of traction on square.
- \blacktriangleright L^1 norms for direct and Poincaré-Steklov approaches coincide up to error on both shapes, however, L^2 norms are completely different numbers on square — possible reason are spikes in corners.

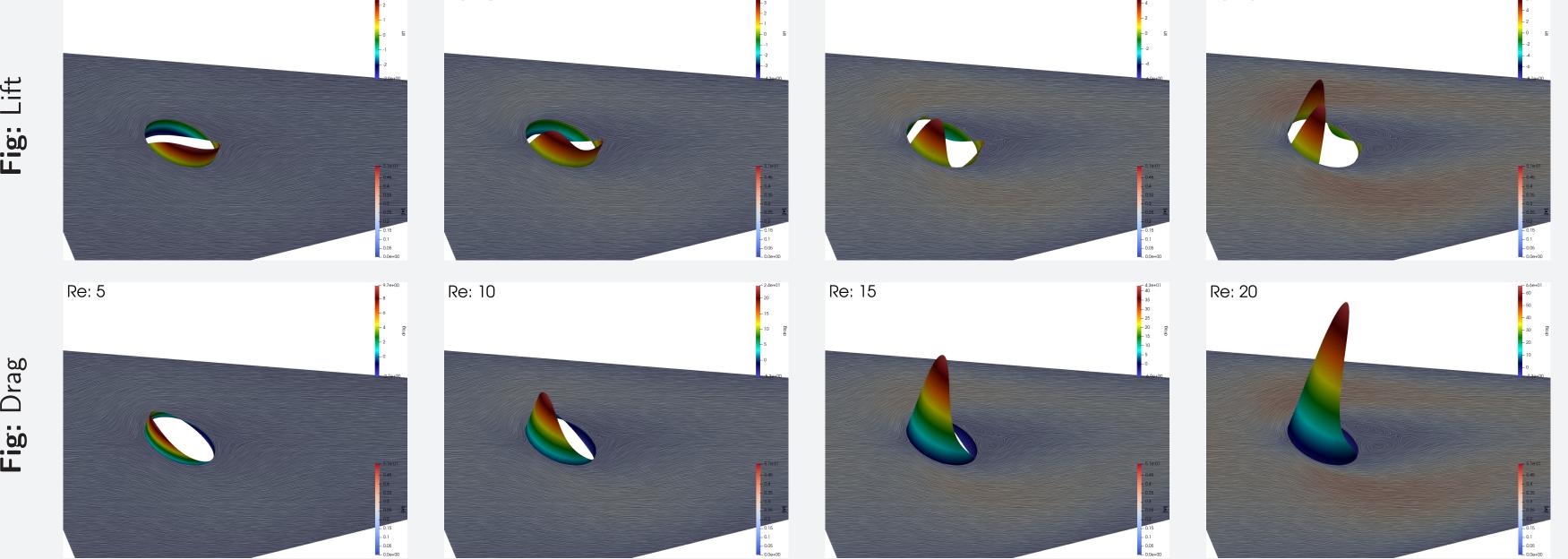


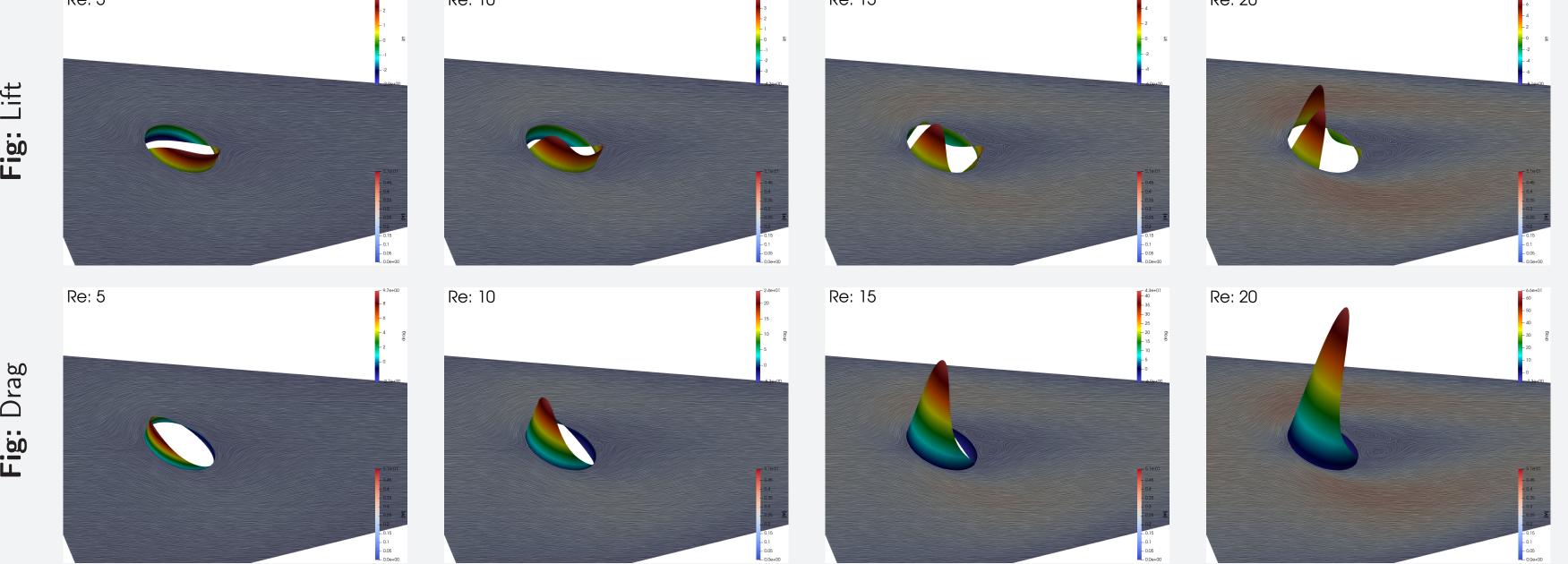
3) Pointwise traction profiles for different Reynolds numbers computed using Poincaré-Steklov approach

Profile of lift is dramatically changing with increasing Reynolds number and the fluid wants to deform the cylinder in non-obvious way.









- ▶ Up to 55M DoFs on computational node with 512 GB RAM.
- Poincaré-Steklov problem is ill-posed.
- Regularization: Find $\mathbf{t} \in V$ such that

 $\int_{\Gamma} \mathbf{t} \cdot \varphi + \mathrm{id}(\mathbf{t}, \varphi) = F(\varphi) \quad \text{for all } \varphi \in V.$

- ► In code we add ones instead of zeros on the diagonal.
- ► Sparse LU regular factorization for linear Poincaré-Steklov problem.
- Question: Right discrete space for traction in PS problem. Now CG1.
- Evaluation of $\|\mathbf{t} \mathbf{t}_{ref}\|_{L^2(\Omega)}$, where the reference is obtained on the finest grid, is not straightforward due to projection / interpolation.

References & Acknowledgement

1) Turek, Schaefer; Benchmark computations of laminar flow around cylinder; in Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics 52, 547-566, Vieweg 1996 2) David A. Ham et al. Firedrake User Manual. First edition. Imperial College London and University of Oxford and Baylor University and University of Washington. May 2023. DOI: 10.25561/104839. 3) Scott, L.R., Vogelius, M. Conforming finite element methods for incompressible and nearly incompressible continua, Technical Note BN-1018, 1984, URL https://apps.dtic.mil/sti/pdfs/ADA141117.pdf Jakub Cach thanks GAUK (131124) for its support. J.C., Karel Tůma, Sebastian Schwarzacher have been supported by ERC/CZ LL2105, supported by the Ministry of Education, Youth and Sport of the Czech Republic.