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Abstract. We consider diversification-consistent DEA models which are consistent
with the second order stochastic dominance (SSD). These models can identify the
portfolios which are SSD efficient and suggest the revision of portfolio weights for
the inefficient ones. There is also a way how to reconstruct the utility of particular
investors based on efficient portfolio which they hold. We apply the above mentioned
approaches to industry representative portfolios and discuss the risk aversion of the
investors. We focus on the sensitivity with respect to various levels of the risk aversion.
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1 Introduction
Data envelopment analysis (DEA), introduced in [13], is nowadays an important class of models which serve to
access efficiency of decision making units which consume given set of inputs to produce several outputs. The
applications ranges from bank branches up to country regions efficiency, cf. [23]. A special attention has been
paid to applications in finance, especially to efficiency of mutual funds and investment opportunities in general.
Since the seminar work [26], many papers has been published on applications as well as methodology, see,
e.g., [5, 11, 14, 25]. Recently, new class of DEA models with diversification, known also as diversification-
consistent DEA (DC DEA), was introduced in [19]. These new models overcame the drawback of the traditional
DEA models which does not take into account diversification effect between considered investment opportunities.
In other words, if risk measures were considered as the inputs, the traditional DEA model underestimated the
risk of the combination of investment opportunities and classified some of them as efficient, even though some
improvement in the risk criterion is possible. Since the work [19], several DC DEA classes of models were
investigated. Note that previously several attempts can be found in the literature, in particular in [11, 12, 17]
which were focused on mean–variance, and mean–variance–skewness efficiency. They also introduced shadow
utility functions based on the moment criteria. Paper [6] dealt with DC DEA models based on general deviation
measures and investigated the strength of the proposed models as well as inclusion of condition on sparsity of
portfolios. In [7], the models were generalized and the analysis was extended to coherent risk measures using
the directional distance measures. Bootstrap technique was employed to investigate the empirical properties and
stability of the models and resulting scores. The dynamic extension was introduced by [21]. They decomposed
the overall efficiency of mutual funds over the whole investment period into efficiencies at individual investment
periods taking into account dependence among the periods. Paper [8] studied models with Value at Risk inputs and
proposed tractable reformulations. Traditional DEA models were used to approximate the efficient frontier and to
assess performance of portfolios by [24]. In [22], two directional distance based diversification super-efficiency
models for discriminating efficient funds were proposed. Paper [29] was focused on robustness and integrated
parameter uncertainty into diversification-consistent DEA models leading to bi-level problems which were then
transformed into equivalent single-level DEA problems. Note that in many cases, for discretely distributed returns
and proper choices of risk measures, the authors showed that the proposed models can be formulated as linear
programming problems which enables to solve even large instances of the obtained problems to optimality.

An important research topic is relation of DEA efficiency and stochastic dominance efficiency. The efficiency with
respect to stochastic dominance is a well established concept in financial mathematics since [15, 16], see also [20].
In DEA literature, we can find several papers which were investigating relations to stochastic dominance efficiency,
in particular [25] introduced several models which are consistent with second order stochastic dominance (SSD),
whereas [18] proposed equivalent models. In [9], an equivalence between new class of diversification-consistent
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DEA models and stochastic dominance efficiency tests with respect to SSD was shown. This relation was further
elaborated by [7]. The equivalences were then generalized to 𝑁-order stochastic dominance efficiency tests in [10].

Recently, [2] proposed new approach how to incorporate the risk aversion of a particular investor into the DC
DEA framework which is equivalent with SSD efficiency. They derived a shadow utility which renders the DC-
DEA/SSD efficient portfolios as optimal for the investor. We will focus on this approach and propose an additional
sensitivity analysis with respect to the investor risk aversion. The approach relies on spectral risk measures which
were proposed by [1] as a special class of coherent risk measures [4]. Using the proper choice of the risk spectra,
we can identify the optimal investment opportunity for any risk-averse investor, see [28].

The paper is organized as follows. Section 2 reviews the DC DEA models and the basic notation of efficiency with
respect to the second order stochastic dominance. In Section 3, an approach to risk aversion based on spectral risk
measures is summarized. Section 4 provides a numerical study with a special attention to sensitivity with respect
to the risk aversion.

Below we will assume that 𝑛 assets with random rates of return 𝑅𝑖 are available and we can use any (nonnegative1)
combination to compose a portfolio. This leads to the following sets of available investment opportunities, or
simply portfolios:

X =

{
𝑛∑︁
𝑖=1

𝑥𝑖𝑅𝑖 :
𝑛∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0
}
. (1)

2 Diversification consistent DEA models
First, we review the general formulation of a diversification-consistent DEA model as it was proposed in [7].
It employs 𝐽 return measures E 𝑗 as the outputs and 𝐾 coherent risk measures R𝑘 as the inputs. Coherent risk
measures were proposed in [4] as real functionals on L𝑝 (Ω) space with finite 𝑝-th moment (usually 𝑝 ∈ {1, 2}),
which fulfill the following axioms:
(R1)translation equivariance: R(𝑋 + 𝑐) = R(𝑋) − 𝑐 for all 𝑋 ∈ L𝑝 (Ω) and constants 𝑐 ∈ R,
(R2)positive homogenity: R(0) = 0, and R(𝜆𝑋) = 𝜆R(𝑋) for all 𝑋 ∈ L𝑝 (Ω) and all 𝜆 ≥ 0,
(R3)subadditivity: R(𝑋1 + 𝑋2) ≤ R(𝑋1) + R(𝑋2) for all 𝑋1, 𝑋2 ∈ L𝑝 (Ω),
(R4)monotonicity: R(𝑋1) ≤ R(𝑋2) when 𝑋1 ≥ 𝑋2, 𝑋1, 𝑋2 ∈ L𝑝 (Ω).

Note that the axioms (R2) and (R3) imply convexity. We say that E is a return measure if there exists a coherent
risk measure R such that E = −R. Since both coherent risk as well as return measures can take positive as well
as negative values, the DC DEA models proposed by paper [7] were based on the directional distance measures
where, for a benchmark portfolio 𝑋0 ∈ X, the directions are defined as

𝑒 𝑗 (𝑋0) = max
𝑋 ∈X

E 𝑗 (𝑋) − E 𝑗 (𝑋0), 𝑑𝑘 (𝑋0) = R𝑘 (𝑋0) − min
𝑋 ∈X

R𝑘 (𝑋). (2)

These directions quantify the maximal possible improvements over the risk and return measures for the benchmark
portfolio 𝑋0 to reach the efficient frontier. The frontier corresponds to the strong Pareto–Koopmans efficiency, i.e.
we say that 𝑋0 is efficient, if there is not other portfolio 𝑋1 ∈ X such that

R𝑘 (𝑋1) ≤ R𝑘 (𝑋0),∀𝑘, E 𝑗 (𝑋1) ≥ E 𝑗 (𝑋0),∀ 𝑗 ,

with at least one inequality strict. This efficiency can be then accessed by the following diversification-consistent
DEA model based on directional distance measure:

min
𝜃𝑘 ,𝜑 𝑗 ,𝑥𝑖

1 − 1
𝐾

∑𝐾
𝑘=1 𝜃𝑘

1 + 1
𝐽

∑𝐽
𝑗=1 𝜑 𝑗

s.t. E 𝑗

(
𝑛∑︁
𝑖=1

𝑅𝑖𝑥𝑖

)
≥ E 𝑗 (𝑋0) + 𝜑 𝑗 · 𝑒 𝑗 (𝑋0), 𝑗 = 1, . . . , 𝐽, (3)

R𝑘

(
𝑛∑︁
𝑖=1

𝑅𝑖𝑥𝑖

)
≤ R𝑘 (𝑋0) − 𝜃𝑘 · 𝑑𝑘 (𝑋0), 𝑘 = 1, . . . , 𝐾,

𝑛∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, 𝜑 𝑗 ≥ 0, 𝜃𝑘 ≥ 0,

1 Short-sales are not allowed.
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where 𝜑 𝑗 denotes the fraction of the improvement of the optimal portfolio
∑ 𝑗

𝑖=1 𝑅𝑖𝑥𝑖 over the maximal possible
improvement in return E 𝑗 . Similarly, 𝜃𝑘 denotes the fraction of the improvement of the optimal portfolio

∑ 𝑗

𝑖=1 𝑅𝑖𝑥𝑖
over the maximal possible improvement in risk R 𝑗 . The objective function quantifies the mean improvement in
risks in the numerator and the mean improvements in returns in the denominator. If the optimal is equal to one,
then 𝑋0 is identified as efficient, otherwise it is inefficient and the optimal solution (weights 𝑥𝑖) corresponds to
an efficient portfolio which can be seen as a projection to an efficient frontier and used to revise the inefficient
portfolio. However, the projection need not be in relation with the investor’s risk aversion.

Formal definition of the second-order stochastic dominance (SSD) efficiency over L1(Ω) space is based on the
twice cumulative probability distribution function of 𝑋 ∈ L1(Ω) defined by

𝐹
(2)
𝑋

(𝑡) =

∫ 𝑡

−∞
𝐹𝑋 (𝜂) d𝜂,

where 𝐹𝑋 (𝑡) = 𝑃(𝑋 ≤ 𝑡) is cdf. We say that 𝑋 dominates �̃� with respect to the second-order stochastic dominance
(SSD), �̃� �𝑆𝑆𝐷 𝑋 , if and only if

𝐹
(2)
𝑋

(𝑡) ≤ 𝐹
(2)
�̃�

(𝑡), ∀𝑡 ∈ R, (4)

The relation is strict, i.e. �̃� ≺𝑆𝑆𝐷 𝑋 , if the inequality is strict for at least one 𝑡 ∈ R. We say that 𝑋 ∈ X is SSD
efficient if there is no other �̃� ∈ X for which it holds 𝑋 ≺𝑆𝑆𝐷 �̃� . Paper [7] showed that if the distribution of random
retusn is discrete with 𝑆 equiprobable realizations, the inputs in DC DEA model (3) correspond to Conditional
Value at Risks (CVaRs, [27]) on levels 1/𝑆, 2/𝑆, . . . , 1 and the output is the expected return, then the resulting DC
DEA model is equivalent to SSD efficiency tests. In other words, the portfolio is SSD efficient if and only if it is
DC DEA efficient.

3 Risk aversion and spectral risk measures
Spectral risk measures (SRM), cf. [1], is a special subclass of the coherent risk measures. They are defined as the
weighted quantiles of the random returns

𝑀𝜙 (𝑋) = −
∫ 1

0
𝐹−1
𝑋 (𝑝) 𝜙(𝑝) 𝑑𝑝 (5)

where we consider the quantile function

𝐹−1
𝑋 (𝑝) = min{𝑥 : 𝐹𝑋 (𝑥) ≥ 𝑝}, 𝑝 ∈ [0, 1], (6)

and an admissible risk spectrum which must be:
(A1)positive: for all 𝐼 ⊆ [0, 1] holds ∫

𝐼

𝜙(𝑝)𝑑𝑝 ≥ 0,

(A2)non-increasing: for all 𝑞 ∈ (0, 1) and 𝜀 > 0 such that [𝑞 − 𝜀, 𝑞 + 𝜀] ⊂ [0, 1], holds∫ 𝑞

𝑞−𝜀
𝜙(𝑝)𝑑𝑝 ≥

∫ 𝑞+𝜀

𝑞

𝜙(𝑝)𝑑𝑝,

(A3)normalized:

‖𝜙‖ =
∫ 1

0
𝜙(𝑝)𝑑𝑝 = 1.

Note that Conditional Value at Risk on level 𝛼 can be obtained as a special case for risk spectrum for the risk
spectrum

𝜙(𝑝) = 1
1 − 𝛼 I{0 ≤ 𝑝 ≤ 1 − 𝛼}.

In general, investors can identify their risk aversion by choosing the risk spectrum 𝜙 and derive the admissible
empirical risk spectrum using the formula

𝜙𝑠 =
𝜙(𝑠/𝑆)∑𝑆
𝑠=1 𝜙(𝑠/𝑆)

. (7)
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Figure 1 Optimal weights 𝜇𝑠 for efficient projected portfolios

Each empirical spectral risk measure (5) can be then expressed as

𝑀𝑆
𝜙 (𝑋) =

𝑆∑︁
𝑠=1

𝜇𝑠CVaR𝑆1−𝑠/𝑆 (𝑋) = 𝜇𝑆E(−𝑋) +
𝑆−1∑︁
𝑠=1

𝜇𝑠CVaR𝑆1−𝑠/𝑆 (𝑋), (8)

where the weights can be derived from the empirical risk spectrum using the relation

𝜇𝑠 = 𝑠(𝜙𝑠 − 𝜙𝑠+1), 𝑠 = 1, . . . , 𝑆, (9)

together with 𝜙𝑆+1 ≡ 0. If the investors identify the risk spectrum corresponding to their risk aversion, they can
obtain an ideal portfolio by solving the problem (8).

From Proposition 4.1 in [7] we know that the optimal solution of DC DEA model (3) under mean–CVaRs choice
of the output–inputs corresponds to the SSD efficient portfolio and using Corollary 3.3 in [2] we can construct the
shadow empirical risk spectrum which renders the projection as optimal in SRM minimization problem (8). If 𝑥
are the optimal portfolio weigths for the benchmark portfolio 𝑋0 and �̄� =

∑𝑛
𝑖=1 𝑅𝑖𝑥𝑖 the corresponding random

return of the optimal (efficient) portfolio, then weights can be obtained as

𝜇𝑆 =
1

𝑒(𝑋0)

𝑆−1∑︁
𝑠=1

CVaR𝑆
𝑠/𝑆 ( �̄�) − CVaR

𝑆
𝑠/𝑆 (𝑋0) + 𝑑𝑠 (𝑋0)

𝑑𝑠 (𝑋0)
,

𝜇𝑠 =
1

𝑑𝑆−𝑠 (𝑋0)
E( �̄�) − E(𝑋0) + 𝑒(𝑋0)

𝑒(𝑋0)
, 𝑠 = 1, . . . , 𝑆 − 1,

(10)

and the shadow empirical risk spectrum as

𝜙𝑠 =

𝑆∑︁
𝑡=𝑠

𝜇𝑡

𝑡
, 𝑠 = 1, . . . , 𝑆. (11)

Figure 1 shows the weights obtained for the projected industry representative portfolios which are analyzed in the
numerical study. We can compare the obtained empirical risk spectrum with various theoretical risk spectra which
model various levels of investor’s risk aversion.

4 Empirical study and sensitivity analysis
In this section, we access efficiency of the industry representative portfolios of US stock market which are listed
in the Kenneth French online library. We consider monthly returns between 2012 and 2020. We apply the above
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𝑘 ∈ {1, 2, 3, 4} 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10 𝑘 = 11 𝑘 = 12 𝑘 ∈ {13, 14, 15}
Clths 6 6 6 5 3 17 43 42 42 42
Hlth 21 21 21 21 21 18 15 25 26 27
MedEq 5 5 5 4 2 14 41 43 43 43
Chems 16 16 16 16 15 8 27 30 32 32
Txtls 3 3 2 1 5 25 45 45 45 45
BldMt 17 17 17 17 16 9 26 32 31 31
Cnstr 36 36 36 36 36 35 12 15 13 12
FabPr 20 20 20 20 19 16 23 29 28 28
Mach 18 18 18 18 17 10 29 31 30 30
Ships 1 2 3 7 20 40 47 47 47 47
BusSv 7 7 7 6 4 13 40 41 41 41
Comps 25 25 25 25 25 22 18 26 25 23
LabEq 2 1 1 2 9 32 46 46 46 46
Banks 19 19 19 19 18 12 16 28 29 29
Insur 10 10 10 10 8 1 33 37 38 38
RlEst 9 9 9 9 7 5 37 38 39 39
Oil 47 47 47 47 47 47 42 5 5 1

Table 1 Representative portfolios with most changes in the ranking with respect to the risk aversion

introduced approaches, in particular we will investigate the sensitivity of the proposed DC DEA model and its
solutions with respect to various risk aversions expressed by exponential risk spectrum:

𝜙𝑘 (𝑝) =
𝑘 · 𝑒−𝑘 ·𝑝
1 − 𝑒−𝑘

, 𝑘 > 0, (12)

We will compare the derived shadow risk spectrum and the investor’s one. We consider parameters 𝑘 ∈
{1, 2, . . . , 15} which cover most of the realistic risk aversions of real investors.

Table 1 contains the industry representative portfolios with most changes in ranking according to the risk aversion
and using the distance between the ideal and projected portfolios. We can observe that portfolio Ships is the
best according to the risk aversion represented by parameters 𝑘 ∈ {1, 2, 3, 4}, whereas is one the worst for
𝑘 ∈ {10, . . . , 15}. On the other hand, portfolio Oil, which is the best for 𝑘 ∈ {13, 14, 15} is very far from the
ideal portfolio for 𝑘 ∈ {1, . . . , 10}. To summarize, we can observe that the ranking is highly dependent of the risk
aversion level.

5 Conclusions
In this paper, we have reviewed the diversification-consistent DEA models which are equivalent to the stochastic
dominance tests with respect to the second order stochastic dominance. We have proposed a sensitivity analysis
of the ranking of considered industry representative portfolios with respect to the various levels of the investor’s
risk aversion. In particular, we have compared distances between the shadow and the theoretical (empirical) risk
spectra showing high dependence of the ranking on the risk aversion parameters. More demanding models are
postponed as a topic for future research where they can be solved using the numerical technique proposed in [3].
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