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1 Introduction to optimization

Please repeat the topics which were contained in Introduction to optimization or
similar lectures:

• Polyhedral sets

• Cones

• Extreme points and directions

• Farkas theorem

• Convexity of sets and functions

• Symmetric Local Optimality Conditions (SLPO)

Example 1.1. Derive the sets of extreme points and extreme directions for the poly-
hedral set

−x1 + x2 ≤ 1,
x2 ≤ 3,
x1 ≥ 0, x2 ≥ 0.

Use

• the picture,

• the computational approach (direct method).

Solution. Picture is left to readers. We will focus on the computational approach.
First, we transform the constraints into the standard (equality) form using nonnega-
tive slack variables2, i.e.

−x1 + x2 + x3 = 1,
x2 + x4 = 3,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

So we have matrix and rhs vector

A =

(
−1 1 1 0

0 1 0 1

)
, b =

(
1
3

)
.

Now, to get the extreme points we must solve all systems of linear equalities with
square 2× 2 regular submatrices of A and nonengative solutions, e.g. by solving(

−1 1
0 1

)(
x1
x2

)
=

(
1
3

)
,

we obtain (2, 3, 0, 0) where the elements corresponding to the omitted columns are
substituted by 0.

2+ with ≤, − with ≥
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Similar approach can be used to get the extreme directions where we solve all
homogenous systems with rectangle 2×3 submatrices ofA and we look for nonnegative
solutions, e.g. by solving

(
−1 1 1

0 1 0

) x1
x2
x3

 =

(
0
0

)
,

we get (1, 0, 1, 0) where again the elements corresponding to the omitted columns are
set to 0.

After going through all possibilities, we obtain

ext(M) =




2
3
0
0

 ,


0
1
2
0

 ,


0
0
1
3


 , extd(M) =




1
0
1
0


 .

Example 1.2. Apply the graphical method to solve the dual problem to the following
problem

min −6x1 + 3x3 + 5x4
s.t. 3x1 + x2 − x3 − x4 = 3,

2x1 − x2 + 2x3 + 3x4 ≤ 2,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Derive the optimal solution(s) of the primal problem using the complementarity con-
ditions. Identify the extreme points and directions of the dual problem.

Solution: We can derive the dual problem using the table. First the primal problem
is coded, then the dual problem is derived:

x1 x2 x3 x4
≥ 0 ≥ 0 ≥ 0 ≥ 0
3 1 -1 -1 = 3
2 -1 2 3 ≤ 2

-6 0 3 5 min

x1 x2 x3 x4
≥ 0 ≥ 0 ≥ 0 ≥ 0

y1 ∈ R 3 1 -1 -1 = 3
y2 ≤ 0 2 -1 2 3 ≤ 2

≤ ≤ ≤ ≤ max
-6 0 3 5 min
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We can formulate the dual problem:

max 3y1 + 2y2

s.t. 3y1 + 2y2 ≤ −6,

y1 − y2 ≤ 0,

− y1 + 2y2 ≤ 3,

− y1 + 3y2 ≤ 5,

y2 ≤ 0.

As a solution we obtain line segment connecting two extreme points: (−2, 0), (−6/5,−6/5),
which can be written as

(y1, y2) ∈

{(
t,−3− 3

2
t

)
, t ∈

[
−2,−6

5

]}
.

The optimal value is equal to −6. Note that there is another extreme point (−3, 0)
of the feasibility set and the (non-normalized) extreme directions are: (−1,−1),
(−2,−1). So the set is polyhedral, but not a polyhedron.

Now, using the complementarity conditions

x1(3y1 + 2y2 + 6) = 0,

x2(y1 − y2) = 0,

x3(−y1 + 2y2 − 3) = 0,

x4(−y1 + 3y2 − 5) = 0,

we obtain that x2 = x3 = x4 = 0. Using the second set of complementarity conditions

y1(3x1 + x2 − x3 − x4 − 3) = 0

y2(2x1 − x2 + 2x3 + 3x4 − 2) = 0,

we have x1 = 1 with optimal solution of the primal problem equal to −6, which
corresponds to the strong duality.

Example 1.3. Consider the problem

min x1

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1,

(x1 − 1)2 + (x2 + 1)2 ≤ 1,

x1, x2 ≥ 0.

Using the picture find an optimal solution. Formulate the symmetric local optimal-
ity conditions and verify if they are fulfilled for the optimal solution. Discuss the
constraints qualification conditions.

Solution: The optimal solution is obviously the only feasible point (1, 0). Note that
the functions (in the objective function as well as in the constraints) are convex.
Write the Lagrange function

L(x1, x2y1, y2) = x1+y1
(
(x1−1)2+(x2−1)2−1

)
+y2

(
(x1−1)2+(x2+1)2−1

)
, y1, y2 ≥ 0.
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Derive the SLPO optimality conditions

i)
∂L

∂x1
= 1 + 2y1(x1 − 1) + 2y2(x1 − 1) ≥ 0, x1

∂L

∂x1
= 0, x1 ≥ 0,

∂L

∂x2
= 2y1(x2 − 1) + 2y2(x2 + 1) ≥ 0, x2

∂L

∂x2
= 0, x2 ≥ 0,

ii)
∂L

∂y1
= (x1 − 1)2 + (x2 − 1)2 − 1 ≤ 0, y1

(
(x1 − 1)2 + (x2 − 1)2 − 1

)
= 0, y1 ≥ 0,

∂L

∂y2
= (x1 − 1)2 + (x2 + 1)2 − 1 ≤ 0, y2

(
(x1 − 1)2 + (x2 + 1)2 − 1

)
= 0, y2 ≥ 0.

(1)

Now, by substituting point (1,0) into the conditions, since x1 = 1 6= 0 we obtain

∂L

∂x1
(1, 0) = 1 6= 0,

i.e. there are no Lagrange multipliers y1,2 ≥ 0 such that (1, 0, y1, y2) fulfills the SLPO
conditions. The explanation is easy: No Constraint Qualification condition is fulfilled.
We can quickly check the basic (strongest) ones:
Slater CQ: There is no x ≥ 0 such that

(x1 − 1)2 + (x2 − 1)2 < 1 & (x1 − 1)2 + (x2 + 1)2 < 1.

LI CQ: We can compute the gradients

∇g1(1, 0) =

(
2(x1 − 1)
2(x2 − 1)

)
|(1,0) =

(
0
−2

)
, ∇g2(1, 0) =

(
2(x1 − 1)
2(x2 + 1)

)
|(1,0) =

(
0
2

)
,

which are obviously not linearly independent. A more detailed explanation will be
given in the second part of the semester.
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2 Separating hyperplane theorems

Please see Lecture notes, Section 1.5: theorem about projection of a point to a
convex set (obtuse angle), separation of a point and a convex set, proper and strict
separability.

Using the theorem about the separation of a point and a convex set, prove the
following lemma about the existence of a supporting hyperplane.

Lemma 2.1. Let ∅ 6= K ⊂ Rn be a convex set and x ∈ ∂K. Then, there is γ ∈ Rn,
γ 6= 0 such that

inf{〈γ, y〉 : y ∈ K} ≥ 〈γ, x〉 .

Hint: separate a sequence xn /∈ K which converge to the point x on the bound-
ary, show the convergence of separating hyperplanes characterized by γn 6= 0. See
Theorem 1.36 in Lecture notes.

From the following examples, where we can draw a picture, you have to get an
idea of the separability of sets and points. Although, in general (in proofs), we usually
have to rely on existential theorems only.

Example 2.2. Find a separating or supporting hyperplane for the following sets and
points:

x1 = (−1,−1) K1 = {(x, y); x ≥ 0, y ≥ 0},
x2 = (3, 1) K2 = {(x, y); x2 + y2 < 10},
x3 = (3, 0, 0) K3 = {(x, y, z); x2 + y2 + z2 ≤ 9},
x4 = (0, 2, 0) K4 = {(x, y, z); x+ y + z ≤ 1}.

Solution: Use pictures and realize that γ is the normal vector of the separat-
ing/supporting hyperplane.
1. We start with the picture

x

y

1

-1

1-1

•x1

K1

For x1, K1 we can use γ = (1, 1) to construct the separating hyperplane, then

min
(x,y)∈K1

x+ y = 0 > −1− 1 = −2.

Note that other choices are also possible, in particular (γ1, γ2) 6= 0 with γ1, γ2 ≥ 0.

7



2. Picture

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x2
K2

Since x2 ∈ ∂(cl(K2)) (on the boundary of the closure) and K2 is a convex set, we are
going to construct the supporting hyperplane. We set γ = (−3,−1) and verify the
property

inf
(x,y)∈K2

−3x− y = −10 ≥ −3 · 3− 1 · 1 = −10.

3. Since x3 ∈ ∂K3 and K3 is a convex closed set, we are going to construct the
supporting hyperplane. We set γ = (1, 0, 0) and verify the property

min
(x,y,z)∈K3

x+ 0 · y + 0 · z = −3 < 3 = 3 + 0 + 0.

So we try γ = (−1, 0, 0):

min
(x,y,z)∈K3

−x+ 0 · y + 0 · z = −3 = −3 + 0 + 0,

which works.
4. Since x4 /∈ cl(K4) and K4 is a convex closed set, we can construct the separating
hyperplane using γ = (−1,−1,−1)

min
(x,y,z)∈K4

−x− y − z = −1 >= −2− 0− 0.

Example 2.3. Let K ⊆ Rn, K 6= ∅. Show that K is a closed convex set if and only
if it is an intersection of all closed half-spaces which contain K.

Hint: Show that if y /∈ K, then it is not contained in the intersection using the
theorem about separation of a point and a convex set. See Theorem 1.37 in Lecture
notes.

Example 2.4. Provide a description of the circle in R2 and ball in R3 as a intersec-
tion of supporting halfspaces.

8



Solution (R2 case): WLOG consider K = {(x1, x2) : x21 + x22 ≤ 1}. Then in each
point of the boundary ∂(K) we can construct the supporting hyperplane. In fact,
the point x ∈ ∂(K) already corresponds to the normal vector γ, i.e. the supporting
hyperplane is

Hx = {y ∈ R2 : xTy = c},

where the choice of c is obvious from the fact that x ∈ Hx ∩ K, i.e. c = 1. So, we
obtain

K =
⋂

x∈∂(K)

{y ∈ R2 : xTy ≤ 1}.

Prove the following theorem which gives a sufficient condition for proper separa-
bility of two convex sets.

Theorem 2.5. Let A,B ⊂ Rn be non-empty convex sets. If rint(A) ∩ rint(B) = ∅,
then A and B can be properly separated.

Hint: Separate set K = A − B and point 0. First, show that 0 /∈ rint(K). See
Theorem 1.45 in Lecture notes.

Example 2.6. Verify whether the following pairs of (convex ?) sets are properly or
strictly separable or not. If they are separable, suggest a possible value of γ and verify
the property.

A1 = {(x, y); y ≥ |x|}, B1 = {(x, y); 2y + x ≤ 0},
A2 = {(x, y); xy ≥ 1, x > 0}, B2 = {(x, y; x ≤ 0, y ≤ 0},
A3 = {(x, z); x+ y + z ≤ 1}, B3 = {(x, y, z); (x− 2)2 + (y − 2)2 + (z − 2)2 ≤ 1},
A4 = {(x, y, z); 0 ≤ x, y, z ≤ 1}, B4 = {(x, y, z); (x− 2)2 + (y − 2)2 + (z − 2)2 ≤ 3}.
A5 = {(x, y); e−x ≤ y}, B5 = {(x, y); −e−x ≥ y}.

Solution: Use general theorems and pictures.
1. We start with the picture

x

y

1

-1

1-1

A1

B1

Sets A1, B1 are properly separable using vector γ = (1, 2):

min
(x,y)∈A1

x+ 2y = 0 ≥ 0 = max
(x,y)∈B1

x+ 2y.
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Note that the assumptions of general theorem about proper separability are fulfilled
(both sets are convex and int(A1) ∩ int(B1) = ∅.

2. From a picture (that you can draw yourself), we can see that sets A2, B2 can
be strictly separated even though they do not fulfill the assumption of the general
theorem. We can use γ = (1, 1) and verify

min
(x,y)∈A2

x+ y = 2 > 0 = max
(x,y)∈B2

x+ y,

where the minimum is attained at (1,1) and maximum at (0,0).
3. If you use your spatial imagination or a picture, you can realize that A3 ∩B3 = ∅.
The assumptions of the theorem about strict separability are fulfilled and the sets
can be strictly separated using γ = (−1,−1,−1):

min
(x,y,z)∈A3

−x− y − z = −1 > −6 +
√

3 = max
(x,y,z)∈B3

−x− y − z.

The closest point from B3 to A3, where the maximum over B3 is attained, is (2 −√
3
3
, 2−

√
3
3
, 2−

√
3
3

).
4. In this case, you can realize that A4 ∩ B4 = (1, 1, 1). The assumptions of the
theorem about proper separability are fulfilled and the sets can be properly separated
using γ = (−1,−1,−1):

min
(x,y,z)∈A4

−x− y − z = −3 = max
(x,y,z)∈B4

−x− y − z.

5. This example is quite interesting, because both sets are closed convex and has no
intersection, but cannot be strictly separated: general theorem about strict separa-
bility requires that at least one set is compact which is not fulfilled here. The sets
can be properly separated using γ = (0, 1), i.e.

inf
(x,y)∈A5

0 · x+ y = 0 = sup
(x,y)∈B5

0 · x+ y.

Example 2.7. (*) Discuss the proof of the Farkas theorem.

Hint: Use an alternative formulation of the FT: Denote the columns of A by a•,i, i =
1, . . . , n. ThenAx = b has a nonnegative solution if and only if b ∈ pos({a•,1, . . . , a•,n}).

Example 2.8. Reformulate the Farkas theorem for the sets

M1 = {x : Ax ≥ b} ,
M2 = {x : Ax ≥ b, x ≥ 0} ,
M3 = {x : Ax ≤ b, x ≤ 0} ,
M4 = {x : Ax = b} .
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Solution: Consider M1. We can transform the constraints to the standard form, i.e.
we use x = x+ − x−, x+, x− ≥ 0, and slack variables y ≥ 0 such that

A(x+ − x−)− Iy = b,

i.e. we can set Ã = (A| − A| − I) and x̃T = (x+T |x−T |yT ) ≥ 0. Now we can apply
the Farkas theorem to

Ãx̃ = b, x̃ ≥ 0.

We can simplify ATu ≥ 0, −ATu ≥ 0, and −Iu ≥ 0 to ATu = 0 and u ≤ 0. The
modified Farkas theorem is:
Ax ≥ b has a solution if and only if for all u ≤ 0, ATu = 0 it holds bTu ≥ 0.
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3 Convex sets and functions

Repeat the rules for estimating convexity of functions and sets:

• intersection of convex sets is a convex set,

• level sets of convex functions are convex sets,

• nonnegative combination of convex functions is a convex function,

• maximum of convex functions is a convex function,

• function composition when

– inner function is linear and outer convex,

– inner function is convex and outer convex and nondecreasing

is a convex function,

• once differentiable univariate function is convex iff the first order derivative is
nondecreasing,

• twice differentiable univariate function is convex iff the second order derivative
is nonnegative,

• twice continuously differentiable multivariate function is convex iff Hessian ma-
trix is positive semidefinite.

Definition 3.1. For a function f : Rn → R∗, we define its epigraph

epi(f) =
{

(x, ν) ∈ Rn+1 : f(x) ≤ ν
}
.

Example 3.2. Prove the equivalence between the possible definitions of convex func-
tions f : Rn → R∗:

1. epi(f) is a convex set,

2. Dom(f) is a convex set and for all x, y ∈ Dom(f) and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Solution: Let the epigraph be convex, x, y ∈ Dom(f), and choose λ ∈ (0, 1). We
know that (x, f(x)) ∈ epi(f) as well as (y, f(y)) ∈ epi(f). Since the epigraph is a
convex set, we know that the convex combination of the points belongs also to the
epi, i.e.

λ(x, f(x)) + (1− λ)(y, f(y)) ∈ epi(f).

This means that
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),
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which we wanted to show.
Now let 2. is valid. Choose λ ∈ (0, 1), and (x, ν), (y, η) ∈ epi(f), i.e. ν ≥ f(x) and
η ≥ f(y). From 2. we know that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λν + (1− λ)η,

i.e. (
λx+ (1− λ)y, λν + (1− λ)η

)
∈ epi(f),

and we can conclude that the epigraph is a convex set.

Remark 3.3. You can restrict domain of any function and define its outside the
domain using +∞. This influences also the epigraph. For example consider f(x) = x3

on R, and g(x) = x3 on R+ and g(x) = +∞ for x ∈ (−∞, 0). Realize how their
epigraphs look. Then g is obviously convex, but f not.

Example 3.4. Decide whether the following sets are convex:

M1 =
{

(x, y) ∈ R2
+ : ye−x − x ≥ 1

}
, (2)

M2 =
{

(x, y) ∈ R2 : x ≥ 2 + y2
}
, (3)

M3 =
{

(x, y) ∈ R2 : x2 + y log y4 ≤ 139, y ≥ 2
}
, (4)

M4 =
{

(x, y) ∈ R2 : log x− y2 ≥ 1, x ≥ 1, y ≥ 0
}
, (5)

M5 =
{

(x, y) ∈ R2 : (x3 + ey) log(x3 + ey) ≤ 49, x ≥ 0, y ≥ 0
}
, (6)

M6 =
{

(x, y) ∈ R2 : x log x+ xy ≥ 0, x ≥ 1
}
, (7)

M7 =
{

(x, y) ∈ R2 : 1− xy ≤ 0, x ≥ 0
}
, (8)

M8 =

{
(x, y, z) ∈ R3 :

1

2
(x2 + y2 + z2) + yz ≤ 1, x ≥ 0, y ≥ 0

}
, (9)

M9 =
{

(x, y, z) ∈ R2 : 3x− 2y + z = 1
}
. (10)

Solution:

2. M2 is an epigraph of function f(y) = 2 + y2, which is obviously convex, so a
convex set.

3. We can show that the function which defines the set is convex, i.e.

f(x, y) = x2 + y log y4 = x2 + 4y log y on R× [2,∞).

Function x2 is obviously convex and g(y) := y log y is convex on (0,∞) – we
can verify it using derivatives

g′(y) = log y + 1, g′′(y) =
1

y
.

So M3 is a level set of the convex function.

7. We cannot use the level set approach because the function is not convex, but
from the picture it is obvious that the set M7 is a convex set.
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9. M9 is a hyperplane, thus convex set.

Example 3.5. Establish conditions under which the following sets are convex:

M10 =
{
x ∈ Rn : α ≤ aTx ≤ β

}
, for some a ∈ Rn, α, β ∈ R, (11)

M11 =
{
x ∈ Rn :

∥∥x− x0∥∥ ≤ ‖x− y‖ , ∀y ∈ S} , for some S ⊆ Rn, (12)

M12 =
{
x ∈ Rn : xTy ≤ 1, ∀y ∈ S

}
, for some S ⊆ Rn. (13)

Solution:

12. If S = ∅, then we have no condition and M12 = Rn, which is obviously convex.
Now consider S 6= ∅, then we can use the definition: let λ ∈ (0, 1) and x1, x2 ∈
M12, which means that

xT1 y ≤ 1 and xT2 y ≤ 1, ∀y ∈ S.

We can obtain

(λx1 + (1− λ)x2)
Ty = λxT1 y + (1− λ)xT2 y ≤ λ+ (1− λ) = 1, ∀y ∈ S,

which implies that λx1 + (1 − λ)x2 ∈ M12 and therefore the considered set is
convex. Note that no restrictions (such as convexity) on the set S are necessary.

Example 3.6. Verify if the following functions are convex:

f1(x, y) = x2y2 +
x

y
, x > 0, y > 0, (14)

f2(x, y) = xy, (15)

f3(x, y) = log(ex + ey)− log x, x > 0, (16)

f4(x, y) = exp{x2 + e−y}, x > 0, y > 0, (17)

f5(x, y) = − log(x+ y), x > 0, y > 0, (18)

f6(x, y) =
√
ex + e−y, (19)

f7(x, y) = x3 + 2y2 + 3x, (20)

f8(x, y) = − log(cx+ dy), c, d ∈ R, (21)

f9(x, y) =
x2

y
, y > 0, (22)

f10(x, y) = xy log xy, x > 0, y > 0, (23)

f11(x, y) = |x+ y|, (24)

f12(x) = sup
y∈Dom(f)

{xTy − f(y)} = f ∗(x), f : Rn → R, (25)

f13(x) = ‖Ax− b‖22 . (26)
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Solution:
6. Consider f6(x, y) =

√
ex + e−y. The first order partial derivatives are equal to

∂f6
∂x

(x, y) =
ex

2
√
ex + e−y

,

∂f6
∂y

(x, y) =
−e−y

2
√
ex + e−y

,

and the second order derivatives are

∂2f6
∂x2

(x, y) =
e2x + 2ex−y

4(ex + e−y)
3
2

,

∂2f6
∂y2

(x, y) =
e−2y + 2ex−y

4(ex + e−y)
3
2

,

∂2f6
∂y∂x

(x, y) =
∂2f6
∂x∂y

(x, y) =
ex−y

4(ex + e−y)
3
2

To verify that the Hessian matrix is positive definite, it is sufficient to look on the
numerators, because the common denominator 4(ex + e−y)

3
2 is always positive. Ob-

viously e2x + 2ex−y is positive, thus it remains to verify that

(e2x + 2ex−y)(e−2y + 2ex−y)− (ex−y)2 > 0.

11. Inner function x + y is linear and the outer function | · | is convex, which is
sufficient to prove the convexity of f11.
13. Realize that

f13(x) = ‖Ax− b‖22 = (Ax− b)T (Ax− b) = xTATAx− 2bTAx+ bT b.

The first term is convex because the matrix ATA is positive semidefinite, the second
term is linear (affine) and the last one is a constant. So the function as a sum of two
convex functions (and a constant) is convex.

Example 3.7. Show that

f14(x) = −
n∑
i=1

ln(bi − aTi x). (27)

is convex on its domain dom(f14) = {x ∈ Rn : aTi x < bi, i = 1, . . . , n}.

Example 3.8. Let f(x, y) : Rn+m → R be a convex function (jointly in x and y) and
C ⊆ Rm be a nonempty convex set. Show that

g(x) = inf
y∈C

f(x, y). (28)

is convex.
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Solution: Consider λ ∈ (0, 1) and points x1, x2 from the domain of the function g,
i.e. for each ε > 0 there exist y1, y2 ∈ C such that

g(x1) + ε ≥ f(x1, y1),

g(x2) + ε ≥ f(x2, y2),

because the infimum need not to be attained but the function value must be arbitrary
close. Then, we can obtain the following relations

f(λx1+(1−λ)x2, λy1+(1−λ)y2) ≤ λf(x1, y1)+(1−λ)f(x2, y2) ≤ λg(x1)+(1−λ)g(x2)+ε.

It remain to show that

g(λx1 + (1− λ)x2) ≤ f(λx1 + (1− λ)x2, λy1 + (1− λ)y2),

which follows from the fact that C is a convex set, therefore the convex combination
of y1, y2 is feasible, i.e.

λy1 + (1− λ)y2 ∈ C.

Remind that g is defined as the infimum of f over C. By letting ε → 0+ and
combining the above inequalities, we can conclude that g is convex on its domain.

Example 3.9. (Vector composition) Let gi : Rn → R, i = 1, . . . , k and h : Rk → R
be convex functions. Moreover let h be nondecreasing in each argument. Then

f(x) = h
(
g1(x), . . . , gk(x)

)
. (29)

is convex.
Apply to

f(x) = log

(
k∑
i=1

egi(x)

)
,

where gi are convex.
Hint: the first part can be verified using the definition of convexity, in the sec-
ond part compute the Hessian matrix H(x) and use the Cauchy-Schwarz inequality
(aTa)(bT b) ≥ (aT b)2 to verify that vTH(x)v ≥ 0 for all v ∈ Rk.

Solution: We can prove the convexity using the definition and the assumed proper-
ties. Consider x1, x2 ∈ Rn and λ ∈ (0, 1), then

f(λx1 + (1− λ)x2) = h
(
g1(λx1 + (1− λ)x2), . . . , gk(λx1 + (1− λ)x2)

)
≤ h

(
λg1(x1) + (1− λ)g1(x2), . . . , λgk(x1) + (1− λ)gk(x2)

)
≤ λh

(
g1(x1), . . . , gk(x1)

)
+ (1− λ)h

(
g1(x2), . . . , gk(x2)

)
= λf(x1) + (1− λ)f(x2),

where the first inequality follows from that g1, . . . , gk are convex and h is nondecreas-
ing, the second one from the convexity of h.
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Now, consider the function

h(z) = log

(
k∑
i=1

ezi

)
.

Obviously it is nondecreasing in each argument. We can show that it is also convex.
We compute its second order partial derivatives

∂2h

∂z2j
(z) =

ezj(
∑k

i=1 e
zi)− ezjezj

(
∑k

i=1 e
zi)2

, j = 1, . . . , k,

∂2h

∂zj∂zl
(z) =

−ezjezl

(
∑k

i=1 e
zi)2

, j 6= l.

If we use the notation y = (ez1 , . . . , ezk)T and I = (1, . . . , 1)T ∈ Rk, we can write the
Hessian matrix in the form

Hh(y) =
1

(ITy)2
(
diag(y)(ITy)− yyT

)
,

where ITy =
∑k

i=1 yi =
∑k

i=1 e
zi and diag(y) denotes the diagonal matrix with ele-

ments y. We would like to verify that vTHh(y)v ≥ 0 for arbitrary v ∈ Rk. We can
compute

vTHh(y)v =
(
∑k

i=1 yiv
2
i )(
∑k

i=1 yi)− (
∑k

i=1 yivi)
2

(
∑k

i=1 yi)
2

.

By setting ai =
√
yivi and bi =

√
yi and using the Cauchy-Schwarz inequality in the

form (aTa)(bT b)− (aT b)2 ≥ 0, we can obtain that the numerator is nonnegative, i.e.
vTHh(y)v ≥ 0.

Example 3.10. (*) Verify that the geometric mean is concave3:

f(x) =

(
n∏
i=1

xi

)1/n

, x ∈ (0,∞)n. (30)

Hint: compute the Hessian matrix and use the Cauchy-Schwarz inequality (aTa)(bT b) ≥
(aT b)2.

3f is concave ⇔ −f is convex.
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4 Subdifferentiability and subgradient

From Introduction to optimization (or similar course), you should remember the
following property which holds for any differentiable convex function f : X → R,
X ⊆ Rn:

∀x, y ∈ X f(y)− f(x) ≥ 〈∇f(x), y − x〉 .
This property can be generalized for nondifferentiable convex function by the notation
of subdifferentiability. Any subgradient a ∈ Rn of function f at x ∈ X fulfills

f(y)− f(x) ≥ 〈a, y − x〉 = aT (y − x) ∀y ∈ X.

Set of all subgradients at x is called subdifferential of f at x and denoted by ∂f(x).

Optimality condition
0 ∈ ∂f(x∗)

is sufficient for x∗ ∈ X being a global minimum of convex function f .

Example 4.1. Let f : Rn → R be a convex function. Then, a is a subgradient of f
at x if and only if (a,−1) supports epi(f) at (x, f(x)).

Solution: Apply the definition of the supporting hyperplane to an epigraph, i.e. use
γ = (a,−1):

max
(y,z)∈epi(f)

aTy − z ≤ aTx− f(x).

Now, realize that (y, f(y)) ∈ epi(f) and f(y) is the smallest value of z leading to

∀y ∈ dom(f) aTy − f(y) ≤ aTx− f(x).

Finally, it is sufficient to reorganize the formula to get the definition of subgradient

∀y ∈ dom(f) f(y)− f(x) ≥ aTy − aTx.

Example 4.2. (*) Consider (do not necessarily prove, rather think about) the fol-
lowing properties of subgradient:

1. if f is convex, then ∂f(x) 6= ∅ for all x ∈ rint domf .

2. if f is convex and differentiable, then ∂f(x) = {∇f(x)}.

3. if ∂f(x) = {g} (is singleton), then g = ∇f(x).

4. ∂f(x) is a closed convex set.

Example 4.3. Derive the subdifferential for the following functions:

f1(x) = |x|,
f2(x) = x2 if x ≤ −1,

−x if x ∈ [−1, 0],
x2 if x ≥ 0,

f3(x, y) = |x+ y| at (0, 0).
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Solution:
1. The function f1 is convex and nondifferentiable at x = 0. If we write the definition
of subgradient in that point

|x| − |0| ≥ a(x− 0),

we can see that the possible values of a are in [−1, 1]. In all other points, the
subgradient corresponds to the derivative. So we have

∂f1(x) = {−1} if x ∈ (−∞, 0),
[−1, 1] if x = 0,
{1} if x ∈ (0,∞).

2. We can use the plot of f2

x

y

−3 −2 −1 1 2 3

We can see that the function is differentiable almost everywhere with the exception
of two points x ∈ {−1, 0}, i.e. we have

∂f2(x) = {2x} if x ∈ (−∞,−1),
[−2,−1] if x = −1,
{−1} if x ∈ (−1, 0),
[−1,−0] if x = 0,
{2x} if x ∈ (0,∞).

Note that ∂f2(0) = [f ′2−(0), f ′2+(0)], i.e. it correspond to the interval bounded by
one-sided derivatives.

3. We can start with the definition and by elaborating possible values we get the
explicit formula for ∂f3(0, 0), i.e.

|x+ y| − |0 + 0| ≥ a1(x− 0) + a2(y − 0), (x, y) ∈ R2,

or simply
|x+ y| ≥ a1x+ a2y, (x, y) ∈ R2.

Obviously a1, a2 ∈ [−1, 1], otherwise we will get a contradiction immediately (take,
e.g., (x, y) = (1, 0)). Now consider the case a1 6= a2, WLOG a1 > a2. Consider x > 0
and set y = −x. Then we have

0 = |x− x| < a1x− a2x = x(a1 − a2) > 0,
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which is a contradiction with the definition of subgradient. We can conclude that

∂f3(0, 0) = {(a, a) : a ∈ [−1, 1]}.

Lemma 4.4. Let f1, . . . , fk : Rn → R be convex functions and let

f(x) := f1(x) + · · ·+ fk(x).

Then it holds
∂f1(x) + · · ·+ ∂fk(x) ⊆ ∂f(x).

Solution: Let a1 ∈ ∂f1(x), . . . , ak ∈ ∂fk(x). We would like to show that

a1 + · · ·+ ak ∈ ∂f(x).

We can the definition of subgradient: Consider y ∈ Rn and write

f(y)− f(x) =
k∑
i=1

fi(y)−
k∑
i=1

fi(x)

=
k∑
i=1

fi(y)− fi(x)

≥
k∑
i=1

aTi (y − x)

=

(
k∑
i=1

ai

)T

(y − x),

which confirms that
∑k

i=1 ai ∈ ∂f(x).
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5 Generalizations of convex functions

We can be faced some optimization problems when the functions in the objective
and constraints are not convex, but the problem still posses some global optimality
properties. For example, the set of the feasible solutions can still be convex in the case
of quasiconvex constraints or the objective may be pseudoconvex. Many optimality
conditions, which are sufficient to prove optimality under convexity assumptions, can
be valid under some of the generalizations, see Bazaraa et al. (2006).

5.1 Quasiconvex functions

Definition 5.1. We say that a function f : Rn → R is quasiconvex, if all its level
sets are convex, i.e. {x ∈ dom(f) : f(x) ≤ α} is convex for all α ∈ R.

Obviously all convex functions are quasiconvex.

Example 5.2. Find several examples of functions which are quasiconvex, but they
are not convex. Try to find an example of function which is not continuous on the
interior of its domain (thus it cannot be convex).

Solution: Consider logarithm, which is not convex (it is even concave), but it is
quasiconvex, because the level sets {x ∈ (0,∞) : ln(x) ≤ α} = (0, eα] are intervals,
thus convex sets.

Consider the cumulative distribution function of a discrete random variable with
equiprobable realizations ξ1, ξ2, ξ3:

F (x) =
1

3

3∑
i=1

I(ξi ≤ x).

CDF is not convex, but it is quasiconvex because the α-level sets are intervals

{x ∈ R : F (x) ≤ α} = (−∞, F−1(α)], α ∈ [0, 1],

where the generalized quantile (inverse of cdf) is defined as

F−1(α) = min x : F (x) ≥ α.

Example 5.3. Show that the following property is equivalent to the definition of
quasiconvexity:

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}
for all x, y ∈ dom(f) and λ ∈ [0, 1].

Solution: Let all level sets of the function be convex. Consider arbitrary x, y ∈
dom(f), λ ∈ (0, 1) and set α := max{f(x), f(y)}. This means that points x, y belong
to the α-level set. Since the α-level set is convex, we have also that the convex
combination λx+ (1− λ)y belongs to it too. This means that

f(λx+ (1− λ)y) ≤ α = max{f(x), f(y)}, (31)
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which we wanted to show.
Now let the property (31) be fulfilled. Choose α such that the corresponding level

set is nonempty. Take two arbitrary x, y from the α-level set and λ ∈ (0, 1). Since
the property (31) is fulfilled, we have that

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} ≤ α,

i.e. the convex combination λx + (1 − λ)y belongs to the α-level set and the set is
convex.

Example 5.4. Verify that the following functions are quasiconvex on given sets:

f1(x, y) = xy for (x, y) ∈ R+ × R−,

f2(x) =
aTx+ b

cTx+ d
for cTx+ d > 0.

Solution:
1. We use the original definition and investigate the convexity of the level sets:

{(x, y) ∈ R+ × R− : xy ≤ α} .

For α ≥ 0 the level set equals to the whole quadrant R+×R−, i.e. it is convex. When
α < 0, we have {

(x, y) ∈ (0,∞)× (−∞, 0) : y ≤ α

x

}
,

which is also a convex set (use a plot, if necessary). Thus the function is quasiconvex.
2. It is easier to use the first definition and consider a nonempty α-level set{

x ∈ Rn : cTx+ d > 0,
aTx+ b

cTx+ d
≤ α

}
.

The constraint can be rewritten as

aTx+ b ≤ α(cTx+ d),

or
(a− αc)Tx+ b− αd ≤ 0,

which is a halfspace, same as cTx+ d > 0, thus a convex set.

Example 5.5. Continuous function f : R → R is quasiconvex if and only if one of
the following conditions holds

• f is nondecreasing,

• f is nonincreasing,

• there is a c ∈ R such that f is nonincreasing on (−∞, c] and nondecreasing on
[c,∞).
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Solution: Realize that the level sets of the above described cases are intervals which
are the only convex subsets of R. In any other case you arrive for some α to a union
of disjoint intervals which is not a convex set.

Example 5.6. (*) Let f be differentiable. Show that f is quasiconvex if and only if
it holds

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0.

Example 5.7. (*) Let f be a differentiable quasiconvex function. Show that the
condition

∇f(x) = 0

does not imply that x is a local minimum of f . Find a counterexample.

Example 5.8. Let f1, f2 : Rn → R be quasiconvex functions, g : R → R be a
nondecreasing function and t ≥ 0 be a scalar. Prove that the following operations
preserve quasiconvexity:

1. t f1,

2. max{f1, f2},

3. g ◦ f1.

Solution:
1. Consider the alternative definition (31), i.e. it holds

f1(λx+ (1− λ)y) ≤ max{f1(x), f1(y)}

for all x, y ∈ dom(f1) and λ ∈ [0, 1]. If we multiply the inequality by nonnegative
scalar t, we obtain

t f1(λx+ (1− λ)y) ≤ t max{f1(x), f1(y)} = max{t f1(x), t f1(y)},

i.e. the function t f1 is also quasiconvex.
2. Left to the readers.
3. We can again use that

f1(λx+ (1− λ)y) ≤ max{f1(x), f1(y)}

for all x, y ∈ dom(f1) and λ ∈ [0, 1] and apply nondecreasing function g

g
(
f1(λx+ (1− λ)y)

)
≤ g
(

max{f1(x), f1(y)}
)

= max
{
g
(
f1(x)

)
, g
(
f1(y)

)}
,

which confirms the quasiconvexity of the composition.

Example 5.9. Let f1, f2 be quasiconvex functions. Find counterexamples that the
following operations DO NOT preserve quasiconvexity:
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1. f1 + f2,

2. f1f2.

Solution:
1. Consider f1(x) = x3 and f2(x) = −x, which are obviously both quasiconvex.
However, if we plot their sum, we obtain

x

y

−1 1

which is not a quasiconvex function, because it does not fulfill Lemma 5.5.
2. Left to the readers.

Example 5.10. Verify that the following functions are quasiconvex on given sets:

f1(x, y) =
1

xy
on R2

++,

f2(x, y) =
x

y
on R2

++,

f3(x, y) =
x2

y
on R× R++,

f4(x, y) =
√
|x+ y| on R2.

Solution:
1. Use one of the definitions.
2. Use one of the definitions.
3. Use one of the definitions.
4. Since |x + y| is convex, therefore quasiconvex, and

√
· is nondecreasing, we can

use the rule and conclude that f4 is quasiconvex.

Example 5.11. Let S be a nonempty convex subset of Rn, g : S → R+ be convex
and h : S → (0,∞) be concave. Show that the function defined by

f(x) =
g(x)

h(x)

is quasiconvex on S.
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Solution: We can show that the α-level sets are convex: for α ≥ 0 the constraint
can be rewritten as{

x ∈ S :
g(x)

h(x)
≤ α

}
=

{
x ∈ S : g(x)− αh(x) ≤ 0

}
,

where g(x) is assumed to be convex and −αh(x) is also convex. Therefore their sum
is a convex function and we have its 0-level set. Note that the attempt to verify the
alternative definition was usually not successful.

5.1.1 Additional examples: strictly quasiconvex functions

Definition 5.12. We say that a function f : Rn → R is strictly quasiconvex if

f(λx+ (1− λ)y) < max{f(x), f(y)}

for all x, y with f(x) 6= f(y) and λ ∈ (0, 1).

Lemma 5.13. (*) Let f be strictly quasiconvex and S be a convex set. Then any
local minimum x of minx∈S f(x) is also a global minimum.

5.2 Pseudoconvex functions

Definition 5.14. Consider S ⊂ Rn a nonempty open set. We say that differentiable
function f : S → R is pseudoconvex with respect to S if it holds

∇f(x)T (y − x) ≥ 0 =⇒ f(y) ≥ f(x)

for all x, y ∈ S.

Remark 5.15. Sometimes it is useful to employ an alternative expression of the
definition

f(y) < f(x) =⇒ ∇f(x)T (y − x) < 0

for all x, y ∈ S.

Example 5.16. Let f : Rn → R be a differentiable function. Show that if f is convex,
then it is also pseudoconvex on its domain.

Solution: We know that for every differentiable convex function it holds

f(y) ≥ f(x) +∇f(x)T (y − x), x, y ∈ dom(f).

Then obviously ∇f(x)T (y − x) ≥ 0 implies that f(y) ≥ f(x).

Example 5.17. (*) Find a pseudoconvex function which is not convex.
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Hint: Consider increasing functions.

Example 5.18. Use the definition to show that the following fractional linear func-
tion is pseudoconvex:

f(x) =
aTx+ b

cTx+ d
for cTx+ d > 0.

Solution: We focus on the univariate case, i.e. x ∈ R and

f(x) =
ax+ b

cx+ d
for cx+ d > 0.

We compute the derivative

f ′(x) =
a(cx+ d)− (ax+ b)c

(cx+ d)2
.

We would like to show that f ′(x)(y − x) ≥ 0 implies f(y) ≥ f(x), i.e.(
a(cx+ d)− (ax+ b)c

)
(y − x) = ady + bcx− adx− bcy ≥ 0

implies
ay + b

cy + d
≥ ax+ b

cx+ d
,

which is on the domain equivalent to

(ay + b)(cx+ d)− (ax+ b)(cy + d) = ady + bcx− adx− bcy ≥ 0.

The conditions are obviously the same.

Example 5.19. (*) Consider fractional function f as defined in Example 5.11. More-
over, let S be open and g, h be differentiable on S. Show that f is pseudoconvex.

Example 5.20. Let f : S → R be a differentiable function. Show that if f is
pseudoconvex, than it is also quasiconvex.

Solution: We will verify the alternative definition from Example 5.3. Take x, y ∈ S
and λ ∈ (0, 1). Set z = λx + (1 − λ)y. If f(z) ≤ f(x), we are finished. So assume
that f(z) > f(x). Since the function is quasiconvex, we have

∇f(z)T (x− z) < 0.

Consider
x− z = x− λx− (1− λ)y = (1− λ)(x− y),

y − z = y − λx− (1− λ)y = −λ(x− y),

hence

y − z =
−λ

1− λ
(x− z),
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and using the properties of the scalar product we obtain

∇f(z)T (y − z) =
−λ

1− λ
∇f(z)T (x− z) > 0.

Function f is pseudoconvex, therefore f(z) ≤ f(y). Hence we have

f(z) ≤ max{f(x), f(y)}.

Example 5.21. Show that if ∇f(x) = 0 for a pseudoconvex f , then x is a global
minimum of f .

Solution: The condition ∇f(x)T (y − x) = 0 ≥ 0 is fulfilled which implies that
f(y) ≥ f(x) for all y from the domain.

Example 5.22. (*) The following table summarizes relations between the stationary
points and minima of a differentiable function f :

f general: x global min. =⇒ x local min. =⇒ ∇f(x) = 0
f quasiconvex: x global min. =⇒ x local min. =⇒ ∇f(x) = 0
f strictly quasiconvex: x global min. ⇐⇒ x local min. =⇒ ∇f(x) = 0
f pseudoconvex: x global min. ⇐⇒ x local min. ⇐⇒ ∇f(x) = 0
f convex: x global min. ⇐⇒ x local min. ⇐⇒ ∇f(x) = 0.

For details see Bazaraa et al. (2006).
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6 Optimality conditions

6.1 Optimality conditions based on directions

Example 6.1. Consider the global optimization problem

min 2x21 − x1x2 + x22 − 3x1 + e2x1+x2 .

Find a descent direction at point (0,0) and formulate a minimization problem in that
direction.

Solution: Compute the gradient, i.e. denote the objective function by f and

∂f

∂x1
= 4x1 − x2 − 3 + 2e2x1+x2 ,

∂f

∂x2
= −x1 + 2x2 + e2x1+x2 .

We have that

∇f(0, 0) =

(
−1

1

)
,

which is not zero vector, i.e. −∇f(0, 0) is a (local) descent direction. Below we will
describe the whole set of descent directions. Using step length t ≥ 0 we move to a
new point in the descent direction as(

xt1
xt2

)
=

(
0
0

)
+ t

(
1
−1

)
.

Then we can solve the following one dimensional problem with decision variable t

min
t≥0

f(xt1, x
t
2).

Note that many algorithms for solving nonlinear programming problems work in this
way and they differ by the choices of the descent direction. In our case, it corresponds
to the gradient (first order) algorithm.

Example 6.2. Verify the optimality conditions at point (2, 4) for problem

min (x1 − 4)2 + (x2 − 6)2

s.t. x21 ≤ x2,

x2 ≤ 4.

Consider the same point for the problem with the second inequality constraint in the
form

x2 ≤ 5.
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Solution: Use the basic optimality conditions derived for a convex objective function
and a convex set of feasible solutions, see Theorem 3.3 in Lecture notes. Denote the
objective function by f and compute its gradient

∂f

∂x1
= 2(x1 − 4),

∂f

∂x2
= 2(x2 − 6),

hence ∇f(2, 4) = (−4,−4)T . The optimality condition stands

∇f(2, 4)T
(
x1 − 2
x2 − 4

)
= −4(x1 − 2)− 4(x2 − 4) ≥ 0,

for all feasible solutions, which is fulfilled because |x1| ≤ 2 and x2 ≤ 4, i.e. (2, 4) is a
point of global minima.

If we change the last constraint, the optimality condition remains valid, however
the set of feasible solutions is |x1| ≤

√
5 and x2 ≤ 5, i.e. by choosing x1 = 2 and

x2 = 5, we obtain
−4(2− 2)− 4(5− 4) < 0,

i.e. the condition is not fulfilled.

Example 6.3. Consider open ∅ 6= S ⊆ Rn, f : S → R, and define set of improving
directions of f at x ∈ S

Ff (x) = {s ∈ Rn : s 6= 0, ∃δ > 0 ∀0 < λ < δ : f(x+ λs) < f(x)}.

1. For a differentiable f , define the inner approximation

Ff,0(x) = {s ∈ Rn : 〈∇f(x), s〉 < 0}.

Show that it holds
Ff,0(x) ⊆ Ff (x).

2. Moreover, if f is pseudoconvex at x with respect to a neighborhood of x, then

Ff,0(x) = Ff (x).

3. If f is convex, then

Ff (x) = {α(y − x) : α > 0, f(y) < f(x), y ∈ S}.

4. For a differentiable f , define the outer approximation

F ′f,0(x) = {s ∈ Rn : s 6= 0, 〈∇f(x), s〉 ≤ 0}.

Show that it holds
Ff (x) ⊆ F ′f,0(x).
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Solution: We will use the scalarization function:

ϕx,s(λ) = f(x+ λs),

which is defined on Dx,s = {λ ∈ R : x + λs ∈ S}. If f is differentiable at x, then
ϕx,s is differentiable at 0 and it holds

ϕ′x,s(0) = ∇f(x)T s.

1. Take s ∈ Ff,0(x), hence

ϕ′x,s(0) = ∇f(x)T s < 0,

i.e. ϕx,s(λ) is decreasing on some δ-neighborhood of 0 for some δ > 0, which means
that

f(x+ λs) < f(x), 0 < λ < δ.

This means that s ∈ Ff (x).
2. Let f be pseudoconvex with respect to δ′-neighborhood of x for some δ′ > 0.
Consider s ∈ Ff (x), which means that

f(x+ λs) < f(x), 0 < λ < δ, for some δ > 0.

Together with psedoconvexity this implies that

∇f(x)T (x+ λs− x) = λ∇f(x)T s < 0, for λ ∈ (0, δ′′),

where δ′′ = min{δ/ ‖s‖ , δ′}. This means that ∇f(x)T s < 0 and s ∈ F ′f,0(x).
3. Left to the readers.
4. The proof is in the reverse order of 1. when

f(x+ λs) < f(x), 0 < λ < δ

implies that
ϕ′x,s(0) = ∇f(x)T s ≤ 0.

Example 6.4. Consider the global optimization problem from Example 6.1

min 2x21 − x1x2 + x22 − 3x1 + e2x1+x2 .

Derive the set of improving directions at (0,0).

Solution: We know that
∂f

∂x1
(0, 0) = −1,

∂f

∂x2
(0, 0) = 1,

i.e. we get
Ff,0(0, 0) = {s ∈ R2 : s1 > s2},
F ′f,0(0, 0) = {s ∈ R2 : s 6= 0, s1 ≥ s2}.

Since f is convex, thus pseudoconvex, we have that

Ff (x) = Ff,0(x).
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Example 6.5. Consider the global optimization problem

min 2x21 − 3x1x
2
2 + x42.

Derive the set of improving directions at (0,0).

Solution: Compute the gradient of the objective function

∂f

∂x1
= 4x1 − 3x22|(0,0) = 0,

∂f

∂x2
= −6x1x2 + 4x32|(0,0) = 0.

Since we obtained zero gradient, realize that the approximating sets are trivial

Ff,0(0, 0) = ∅,
F ′f,0(0, 0) = R2 \ {(0, 0)}.

We should verify whether (0, 0) is a point of local minima. However, the Hessian
matrix does not answer the question and higher order derivatives are necessary.

We focus on local approximation of the set of feasible solutions.

Example 6.6. Consider open ∅ 6= S ⊆ Rn, functions gi : S → R, and the set of
feasible solutions

M = {x ∈ S : gi(x) ≤ 0, i = 1, . . . ,m}.
Define the set of feasible directions of M at x ∈M

DM(x) = {s ∈ Rn : s 6= 0, ∃δ > 0 ∀0 < λ < δ : x+ λs ∈M}.

1. If M is a convex set, then

DM(x) = {α(y − x) : α > 0, y ∈M, y 6= x}.

2. For differentiable gi and x ∈M define4

Gg,0(x) = {s ∈ Rn : 〈∇gi(x), s〉 < 0, i ∈ Ig(x)},
G′g,0(x) = {s ∈ Rn : s 6= 0, 〈∇gi(x), s〉 ≤ 0, i ∈ Ig(x)}.

In general, it holds5

Gg,0(x) ⊆ DM(x) ⊆ G′g,0(x).

Solution:
1. Left to the readers.
2. We will use the scalarization functions: for i ∈ Ig(x) define

ϕi,x,s(λ) = gi(x+ λs),

4Set of indices of active constraints: Ig(x) = {i : gi(x) = 0}
5Note that there are sufficient conditions stating which approximation is tight, see Bazaraa et

al. (2006) for details.
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which is defined on Dx,s = {λ ∈ R : x + λs ∈ S}. If gi is differentiable at x, then
ϕi,x,s is differentiable at 0 and it holds

ϕ′i,x,s(0) = ∇gi(x)T s.

Let x ∈M and s ∈ Gg,0(x). This means that for i ∈ Ig(x) with gi(x) = 0 we have

ϕ′i,x,s(0) = ∇gi(x)T s < 0,

i.e. there is δi > 0 such that gi is decreasing in direction s from x using step lengths
λ ∈ (0, δi), thus gi(x + λs) ≤ 0 for λ ∈ (0, δi). For i /∈ Ig(x) with gi(x) < 0,
differentiability (hence continuity) implies that there is δi > 0 such that gi(x+λs) ≤ 0
for λ ∈ (0, δi). It is enough to consider δ = mini δi to show that s ∈ DM(x).
Proof of DM(x) ⊆ G′g,0(x) is left to the readers.

Example 6.7. Derive the above defined sets of directions for the sets

M1 = {(x, y) : −(x− 2)2 ≥ y − 2, −(y − 2)2 ≥ x− 2},
M2 = {(x, y) : (x− 2)2 ≥ y − 2, (y − 2)2 ≥ x− 2},

at point (2,2). Use the pictures to decide which of the approximations are tight.

Solution: Consider M1 and compute

∇g1(2, 2) =

(
2(x− 2)

1

)
|(2,2) =

(
0
1

)
, ∇g2(2, 2) =

(
1

2(y − 2)

)
|(2,2) =

(
1
0

)
So we have

Gg,0(2, 2) = {s ∈ R2 : s1 < 0, s2 < 0},
G′g,0(2, 2) = {s ∈ R2 : s 6= 0, s1 ≤ 0, s2 ≤ 0}.

Using the picture, we can conclude that the tangent directions do not belong to the
set of feasible directions, i.e.

DM1(2, 2) = Gg,0(2, 2).

M1

x

y

Consider M2 and compute

∇g1(2, 2) =

(
−2(x− 2)

1

)
|(2,2) =

(
0
1

)
, ∇g2(2, 2) =

(
1

−2(y − 2)

)
|(2,2) =

(
1
0

)
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So we have
Gg,0(x) = {s ∈ R2 : s1 < 0, s2 < 0},
G′g,0(x) = {s ∈ R2 : s 6= 0, s1 ≤ 0, s2 ≤ 0}.

Using the picture, we can conclude that the tangent directions belong to the set of
feasible directions, i.e.

DM2(2, 2) = G′g,0(2, 2).

M2

x

y

Example 6.8. (*) Derive the above defined sets of directions for a polyhedral set

M = {x ∈ Rn : Ax ≤ b}.

Example 6.9. Derive the above defined sets of directions for the problem

min (x1 − 3)2 + (x2 − 2)2

s.t. x21 + x22 ≤ 5,

x1 + x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0,

at point (2,1). Discuss the intersection of the sets of directions which is an optimality
condition. Apply the Farkas theorem to the conditions on directions.

Solution: Denote
g1(x) = x21 + x22 − 5,

g2(x) = x1 + x2 − 3,

g3(x) = − x1,
g4(x) = − x2,

and realize that Ig(2, 1) = {1, 2}. Now compute

∇g1(2, 1) =

(
2x1
2x2

)
|(2,1) =

(
4
2

)
, ∇g2(2, 1) =

(
1
1

)
.

So we have

Gg,0(x) = {s ∈ R2 : 2s1 + s2 < 0, s1 + s2 < 0},
G′g,0(x) = {s ∈ R2 : s 6= 0, 2s1 + s2 ≤ 0, s1 + s2 ≤ 0}.
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Using the picture, we can conclude that

DM(2, 1) = {s ∈ R2 : s 6= 0, 2s1 + s2 < 0, s1 + s2 ≤ 0}.

Note that this means that

Gg,0(x) ( DM(x) ( G′g,0(x).

Denote f(x) = (x1 − 3)2 + (x2 − 2)2 and

∇f(2, 1) =

(
2(x1 − 3)
2(x2 − 2)

)
|(2,1) =

(
−2
−2

)
.

So we have
Ff,0(2, 1) = {s ∈ R2 : s1 + s2 > 0},
F ′f,0(2, 1) = {s ∈ R2 : s 6= 0, s1 + s2 ≥ 0}.

Since the objective function is convex, thus pseudoconvex, we know that

Ff (2, 1) = Ff,0(2, 1).

We can see that it holds
Ff (2, 1) ∩DM(2, 1) = ∅,

which is necessary and under convexity also sufficient optimality condition based on
the sets of directions, i.e. there is no feasible direction from (2, 1) to the set in which
the objective function decreases.

Now we can apply the Farkas theorem to

∀s ∈ R2

(
−∇g1(2, 1)T

−∇g2(2, 1)T

)
s ≥ 0 ⇒ ∇f(2, 1)T s ≥ 0,

i.e. any feasible direction (with respect to the outer approximation) is not an im-
proving direction. The implication is fulfilled if and only if system

−∇g1(2, 1)u1 −∇g2(2, 1)u2 = ∇f(2, 1)

has a nonnegative solution. After reorganizing the terms, we obtain Karush-Kuhn-
Tucker (KKT) conditions:

∇f(2, 1) +∇g1(2, 1)u1 +∇g2(2, 1)u2 = 0, u1,2 ≥ 0.

We emphasize that this is just an outline and we refer the readers to the lecture notes
for a precise derivation. We can compute the Lagrange multipliers u1, u2 by solving

− 2 + 4u1 + u2 = 0,

− 2 + 2u1 + u2 = 0.

We obtain u1 = 0, u2 = 2 which are both nonnegative.
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Example 6.10. Derive the sets of directions for the problem

min (x1 − 3)2 + (x2 − 3)2

s.t. x21 + x22 = 4,

at point (
√

2,
√

2). Consider the set of feasible directions for equality constraints
hj(x) = 0, j = 1, . . . , l, where hj : S → R are differentiable:

Hh,0(x) = {s ∈ Rn : s 6= 0, 〈∇hj(x), s〉 = 0, j = 1, . . . , l}.

Solution: We have

∇f(
√

2,
√

2) =

(
2(x1 − 3)
2(x2 − 3)

)
|(√2,√2) =

(
2(
√

2− 3)

2(
√

2− 3)

)
,

∇h(
√

2,
√

2) =

(
2x1
2x2

)
|(√2,√2) =

(
2
√

2

2
√

2

)
Then obviously

Ff (
√

2,
√

2) = {s ∈ R2 : s1 + s2 > 0},
Hh,0(

√
2,
√

2) = {s ∈ R2 : s 6= 0, s1 + s2 = 0},

and
Ff (
√

2,
√

2) ∩Hh,0(
√

2,
√

2) = ∅,

i.e. the optimality condition is fulfilled.
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6.2 Karush–Kuhn–Tucker optimality conditions

6.2.1 A few pieces of the theory

We emphasize that this section contains just a basic summary and we refer the readers
to the lecture notes for formal definitions and propositions.

Consider a nonlinear programming problem with inequality and equality
constraints:

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l,

(32)

where f, gi, hj : Rn → R are differentiable functions. We denote by M the set of
feasible solutions.

Define the Lagrange function by

L(x, u, v) = f(x) +
m∑
i=1

uigi(x) +
l∑

j=1

vjhj(x), ui ≥ 0. (33)

The Karush–Kuhn–Tucker optimality conditions are then (feasibility, comple-
mentarity and optimality):

i) gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , l,

ii) uigi(x) = 0, ui ≥ 0, i = 1, . . . ,m,

iii) ∇xL(x, u, v) = 0,

(34)

Any point (x, u, v) which fulfills the above conditions is called a KKT point.

If a Constraint Qualification (CQ) condition is fulfilled, then the KKT conditions
are necessary for local optimality of a point. Basic CQ conditions are:

• Slater CQ: ∃x̃ ∈ M such that gi(x̃) < 0 for all i and the gradients ∇xhj(x̃),
j = 1, . . . , l are linearly independent.

• Linear independence CQ at x̂ ∈M : all gradients

∇xgi(x̂), i ∈ Ig(x̂), ∇xhj(x̂), j = 1, . . . , l

are linearly independent.

These conditions are quite strong and are sufficient for weaker CQ conditions, e.g.
the Kuhn–Tucker condition (Mangasarian–Fromovitz CQ, Abadie CQ, ...).

Consider the set of active (inequality) constraints and its partitioning

Ig(x) = {i : gi(x) = 0},
I0g (x) = {i : gi(x) = 0, ui = 0},
I+g (x) = {i : gi(x) = 0, ui > 0},

(35)
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i.e.
Ig(x) = I0g (x) ∪ I+g (x).

Let all functions be twice differentiable. We say that the second-order sufficient
condition (SOSC) is fulfilled at a KKT point (x, u, v) if for all 0 6= z ∈ Rn such that

zT∇xgi(x) = 0, i ∈ I+g (x),

zT∇xgi(x) ≤ 0, i ∈ I0g (x),

zT∇xhj(x) = 0, j = 1, . . . , l,

(36)

it holds

zT ∇2
xxL(x, u, v) z > 0. (37)

Then x is a strict local minimum of the nonlinear programming problem (32).

To summarize, we are going to practice the following relations:

1. KKT point and convex problem → global optimality at x.

2. KKT point and SOSC → (strict) local optimality at x.

3. Local optimality at x and a constraint qualification (CQ) condition → ∃(u, v)
such that (x, u, v) is a KKT point.

6.2.2 Karush–Kuhn–Tucker optimality conditions

Example 6.11. Consider the nonlinear programming problems from Example 6.2.
Compute the Lagrange multipliers at given points.

Solution: Define the Lagrange function

L(x1, x2, u1, u2) = (x1 − 4)2 + (x2 − 6)2 + u1(x
2
1 − x2) + u2(x2 − 4), u1,2 ≥ 0.

Write the KKT optimality conditions:

i) feasibility,

ii) complementarity

u1(x
2
1 − x2) = 0, u2(x2 − 4) = 0, u1,2 ≥ 0,

iii) optimality
∂L

∂x1
= 2(x1 − 4) + 2u1x1 = 0,

∂L

∂x2
= 2(x2 − 6)− u1 + u2 = 0.
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Now, consider point (2, 4) and compute the Lagrange multipliers. Since both con-
straints are active, i.e. Ig(2, 4) = {1, 2}, we must use the optimality iii) and we
get

− 4 + 4u1 = 0,

− 4− u1 + u2 = 0,

and obtain u1 = 1 ≥ 0 and u2 = 5 ≥ 0. We have obtained KKT point (2, 4, 1, 5) and
(2, 4) is a global solution, because the problem is convex.

Example 6.12. (*) Consider the nonlinear programming problems from Example
6.9. Compute the Lagrange multipliers at given points.

Example 6.13. Using the KKT conditions find the closest point to (0,0) in the set
defined by

M = {x ∈ R2 : x1 + x2 ≥ 4, 2x1 + x2 ≥ 5}.
Can several points (solutions) exist?

Solution: We formulate a nonlinear programming problem using the Euclidean dis-
tance in the objective6:

min x21 + x22
s.t. − x1 − x2 + 4 ≤ 0,

− 2x1 − x2 + 5 ≤ 0.

Write the Lagrange function

L(x1, x2, u1, u2) = x21 + x22 + u1(−x1 − x2 + 4) + u2(−2x1 − x2 + 5), u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1(−x1 − x2 + 4) = 0, u1 ≥ 0,

u2(−2x1 − x2 + 5) = 0, u2 ≥ 0,

iii)
∂L

∂x1
= 2x1 − u1 − 2u2 = 0,

∂L

∂x2
= 2x2 − u1 − u2 = 0.

(38)

Now, we will try to find the KKT point by analyzing the optimality conditions, where
we proceed according to the complementarity conditions:
1. Set u1 = 0, u2 = 0: We have from iii) that x1 = 0, x2 = 0 which is not feasible
point.
2. Set x1 + x2 = 4, u2 = 0: Together with iii) we solve

2x1 − u1 = 0,

2x2 − u1 = 0,

x1 + x2 = 4.

(39)

6The square root can be omitted.
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We obtain x1 = 2, x2 = 2, u1 = 4 > 0, i.e. we have KKT point (2, 2, 4, 0).
3. Set u1 = 0, 2x1 + x2 = 5: Solve

2x1 − 2u2 = 0,

2x2 − u2 = 0,

2x1 + x2 = 5.

(40)

We get x1 = 2, x2 = 1, u2 = 2, which is not feasible point.
4. Set x1 + x2 = 4, 2x1 + x2 = 5: We get x1 = 1, x2 = 3 and compute the Lagrange
multipliers by solving

u1 + 2u2 = 2,

u1 + u2 = 6.
(41)

We obtain u1 = 10, u2 = −4 < 0, i.e. the Lagrange multipliers are not nonnegative
and (1,3,10,-4) is not KKT point.

Since the set M is convex, the closest point corresponding to the projection (2, 2)
must be unique.

Example 6.14. Verify that the point (x1, x2) = (4
5
, 8
5
) is a local/global solution of the

problem
min x21 + x22,

s.t. x21 + x22 ≤ 5,

x1 + 2x2 = 4,

x1, x2 ≥ 0.

Solution: Write the Lagrange function

L(x1, x2, u1, u2) = x21+x22+u1(x
2
1+x22−5)−u2x1−u3x2+v(x1+2x2−4), u1, u2, u3 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1(x
2
1 + x22 − 5) = 0, u1 ≥ 0,

u2x1 = 0, u2 ≥ 0,

u3x2 = 0, u3 ≥ 0,

iii)
∂L

∂x1
= 2x1 + 2u1x2 − u2 + v = 0,

∂L

∂x2
= 2x2 + 2u1x2 − u3 + 2v = 0.

(42)

For point (x1, x2) = (4
5
, 8
5
), we have that u1,2,3 = 0 (from complementarity conditions,

i.e. none of the inequality constraints is active) and v = −8
5

which is feasible value
for Lagrange multiplier corresponding to equality constraint. So we have obtained
KKT point (4

5
, 8
5
, 0, 0, 0,−8

5
).

Since the objective function and inequality constraints are convex, and the equal-
ity constraint is linear (affine), (x1, x2) = (4

5
, 8
5
) is a global solution.
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Example 6.15. Consider the problem

min 2ex1−1 + (x2 − x1)2 + x23
s.t. x1x2x3 ≤ 1,

x1 + x3 ≥ c,

x ≥ 0.

For which values of c does x̄ = (1, 1, 1) with multipliers fulfill the KKT conditions?

Solution: Write the Lagrange function

L(x1, x2, x3, u1, u2) = 2ex1−1+(x2−x1)2+x23+u1(x1x2x3−1)+u2(−x1−x3+c), u1, u2 ≥ 0.

Since we are given point x̄ = (1, 1, 1) > 0, we can skip corresponding multipliers
u3,4,5 and related terms, because all these multipliers must be equal to zero (from
complementarity). Derive the KKT conditions

i) feasibility,

ii) u1(x1x2x3 − 1) = 0, u1 ≥ 0,

u2(−x1 − x3 + c) = 0, u2 ≥ 0,

iii)
∂L

∂x1
= 2ex1−1 − 2(x2 − x1) + u1x2x3 − u2 = 0,

∂L

∂x2
= 2(x2 − x1) + u1x1x3 = 0,

∂L

∂x3
= 2x3 + u1x1x2 − u2 = 0.

(43)

So for x̄ = (1, 1, 1), we solve

2 + u1 − u2 = 0,

u1 = 0,

2 + u1 − u2 = 0,

(44)

and get multipliers u1 = 0, u2 = 2. We must not forget for the feasibility. Obviously
first constraint is fulfilled and for the second one it must hold c ≤ 2. However, if
c < 2, then the second complementarity condition is not fulfilled u2(−x1−x3+c) 6= 0.
Therefore we have obtained KKT point (1,1,1,0,2) only if c = 2 when the second
constraint is active.

Example 6.16. (*) Consider the problem

min
x1 + 3x2 + 3

2x1 + x2 + 6

s.t. 2x1 + x2 ≤ 12,

− x1 + 2x2 ≤ 4,

x1, x2 ≥ 0.

Verify that the KKT conditions are fulfilled for all points on the line between (0,0)
and (6,0). Are the KKT conditions sufficient for global optimality?
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Example 6.17. Consider the (water-filling7) problem

min −
n∑
i=1

log(αi + xi)

s.t.
n∑
i=1

xi = 1

xi ≥ 0,

where αi > 0 are parameters. Using the KKT conditions find the solutions.

Solution: First realize that the problem is convex, i.e. the objective is convex and
the constraints are linear. Consider the Lagrange function

L(x, u, v) = −
n∑
i=1

log(αi + xi)−
n∑
i=1

uixi + v

(
n∑
i=1

xi − 1

)
, ui ≥ 0, v ∈ R.

The KKT conditions are:

i)
n∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , n

ii) uixi = 0, ui ≥ 0, i = 1, . . . , n,

iii) − 1

αi + xi
− ui + v = 0, i = 1, . . . , n.

We will proceed in several steps:

1. Since it holds

v =
1

αi + xi
+ ui, ∀i,

and αi > 0 and ui ≥ 0, multiplier v must be positive.

2. Now we can elaborate the complementarity conditions ii) for arbitrary i ∈
{1, . . . , n}, i.e. ui = 0 or xi = 0:

2.a. Let ui = 0, then using iii) and 1. we obtain

xi =
1

v
− αi,

which is nonnegative if and only if v ≤ 1/αi.

2.b. Let xi = 0, then using iii) and 1. we obtain

ui = −1/αi + v,

which is nonnegative if and only if v ≥ 1/αi. Now realize that if v ≥ 1/αi,
then corresponding xi cannot be positive because from iii) it would hold

− 1

αi + xi
+ v = ui > 0,

which violates the complementarity condition (xi and ui cannot be both
positive). In other words, xi is positive if and only if v ∈ (0, 1/αi).

7See Boyd and Vandenberghe (2004).
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We have obtained two cases which are distinguished by relation between v and
1/αi. Then we can write

xi = max

{
1

v
− αi, 0

}
.

3. It remains to determine the value of Lagrange multiplier v using the equality
constraint

n∑
i=1

max

{
1

v
− αi, 0

}
= 1,

which has a unique solution since the function of
∑n

i=1 max {· − αi, 0} is piecewise-
linear, continuous and increasing with breakpoints at points αi. Note that there
is no closed-form formula for v, we are satisfied with its existence.

Example 6.18. Let n ≥ 2. Consider the problem

min x1

s.t.
n∑
i=1

(
xi −

1

n

)2

≤ 1

n(n− 1)
,

n∑
i=1

xi = 1.

Show that (
0,

1

n− 1
, . . . ,

1

n− 1

)
is an optimal solution.

Solution: First, realize that the considered point is feasible. Write the Lagrange
function

L(x1, . . . , xn, u, v) = x1 + u

( n∑
i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
+ v

(
n∑
i=1

xi − 1

)
,

where u ≥ 0 and v ∈ R. The KKT conditions (feasibility, complementarity and
optimality) are

i)
n∑
i=1

(
xi −

1

n

)2

≤ 1

n(n− 1)
,

n∑
i=1

xi = 1,

ii) u

(
n∑
i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
= 0, u ≥ 0,

iii)
∂L

∂x1
= 1 + 2u

(
x1 −

1

n

)
+ v = 0,

∂L

∂xi
= 2u

(
x1 −

1

n

)
+ v = 0, i 6= 1.

(45)
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Realize that the inequality constraint is active at the considered point, i.e.(
0− 1

n

)2

+
n∑
i=2

(
1

n− 1
− 1

n

)2

=
1

n(n− 1)
.

To obtain the values of Lagrange multipliers, we solve the optimality conditions

1− 2u

n
+ v = 0,

2u

(
1

n− 1
− 1

n

)
+ v = 0, (∀i 6= 1).

(46)

By solving this linear system for u and v, we obtain the values

u =
n− 1

2
≥ 0,

v =
−1

n
∈ R.

(47)

Thus, we have obtained a KKT point

(x, u, v) =

(
0,

1

n− 1
, . . . ,

1

n− 1
,
n− 1

2
,
−1

n

)
,

Since the objective function is convex (linear), the inequality constraint is convex and
the equality constraint is linear, the considered point is a global solution (minimum)
of the problem.

Example 6.19. Let n ≥ 2. Consider the problem

min
n∑
j=1

cj
xj

s.t.
n∑
j=1

xj = 1,

xj ≥ ε, j = 1, . . . , n,

where cj > 0,∀j, ε > 0 are parameters. Using the KKT conditions find an optimal
solution.

Solution: Write the Lagrange function

L(x, u, v) =
n∑
j=1

cj
xj

+
n∑
j=1

uj(ε− xj) + v

(
n∑
j=1

xj − 1

)
, uj ≥ 0, v ∈ R.

The KKT condition are then

i) feasibility,
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ii) complementarity:

uj(ε− xj) = 0, uj ≥ 0 j = 1, . . . , n,

iii) optimality:
∂L(x, u, v)

∂xj
=
−cj
(xj)2

− uj + v = 0, j = 1, . . . , n.

We can split the elaboration of the KKT conditions into three cases:

1. xj = ε for all j,

2. uj = 0 for all j,

3. xj = ε for j ∈ J1 and uj = 0 for j ∈ J2, where J1 ∪ J1 = {1, . . . , n} and
J1 ∩ J1 = ∅. (This covers many cases which can be resolved at once.)

1. xj = ε for all j: the obtained point can be feasible only if ε = 1/n. Then we can
calculate the Lagrange multipliers using the optimality conditions

−cj
ε2
− uj + v = 0, j = 1, . . . , n.

If all uj are nonnegative, we have a KKT point.

2. uj = 0 for all j leads to

xj =

√
cj
v
, ∀j.,

which is well defined if v > 0. We can calculate v using the constraint

n∑
j=1

xj =
n∑
j=1

√
cj
v

= 1,

leading to

v =

(
n∑
i=1

√
ci

)2

> 0,

and

xj =

√
cj∑n

i=1

√
ci
.

What is not obvious, is the feasibility, i.e. xj ≥ ε, ∀j. If it holds, then( √
c1∑n

i=1

√
ci
, . . . ,

√
cn∑n

i=1

√
ci
, 0, . . . , 0,

( n∑
i=1

√
ci

)2
)

is a KKT point.

3. uj = 0 for j ∈ J2 leads to

xj =

√
cj
v
, j ∈ J2,
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which is well defined if v > 0. Together with xj = ε, j ∈ J1, using the feasibility
condition, we have

n∑
j=1

xj =
∑
j∈J1

ε+
∑
j∈J2

√
cj
v

= 1.

Let n1 = |J1| be the cardinality of set J1. Then we obtain

v =

(∑n
j∈J2
√
cj

1− n1ε

)2

,

which is well defined if n1ε < 1, and then also positive. The remaining Lagrange
multipliers are equal to

uj =
−cj
ε2

+ v, j ∈ J1.

If these multipliers are nonnegative and xj ≥ ε, ∀j ∈ J2, we have obtained a KKT
point.

We can easily realize that the problem is convex, because the objective function
is convex for xj > 0 (realize that cj > 0) and the constraints are linear. Thus, any
KKT point corresponds to a global solution.

Example 6.20. (*) Consider the problem

min
n∑
j=1

cj
xj

s.t.
n∑
j=1

ajxj = b,

xj ≥ ε,

where aj, b, cj, ε > 0 are parameters. Using the KKT conditions find an optimal
solution.

Example 6.21. (*) Write the KKT conditions for a linear programming problem.

Example 6.22. (*) Derive the least square estimate for coefficients in the linear
regression model under linear constraints, i.e. solve the problem

min
β
‖Y −Xβ‖2 ,

s.t. Aβ = b.

45



6.2.3 Constraint qualification conditions

Example 6.23. Consider the problem

min x1

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1

(x1 − 1)2 + (x2 + 1)2 ≤ 1.

The optimal solution is obviously the only feasible point (1, 0). Why are not the KKT
conditions fulfilled? Discuss the Constraint Qualification conditions.

Solution: Write the Lagrange function

L(x1, x2u1, u2) = x1+u1
(
(x1−1)2+(x2−1)2−1

)
+u2

(
(x1−1)2+(x2+1)2−1

)
, u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1
(
(x1 − 1)2 + (x2 − 1)2 − 1

)
= 0, u1 ≥ 0,

u2
(
(x1 − 1)2 + (x2 + 1)2 − 1

)
= 0, u2 ≥ 0,

iii)
∂L

∂x1
= 1 + 2u1(x1 − 1) + 2u2(x1 − 1) = 0,

∂L

∂x2
= 2u1(x2 − 1) + 2u2(x2 + 1) = 0.

(48)

Now, by substituting point (1,0) into the equation we obtain

∂L

∂x1
(1, 0) = 1 6= 0,

which is a contradiction with the optimality condition. In other words, there are no
multipliers u1,2 ≥ 0 such that (1, 0, u1, u2) is a KKT point. The explanation is easy:
No Constraint Qualification condition is fulfilled. We can quickly check the basic
(strongest) ones:
Slater CQ: There is no x such that

(x1 − 1)2 + (x2 − 1)2 < 1 & (x1 − 1)2 + (x2 + 1)2 < 1.

LI CQ: We can compute the gradients

∇g1(1, 0) =

(
2(x1 − 1)
2(x2 − 1)

)
|(1,0) =

(
0
−2

)
, ∇g2(1, 0) =

(
2(x1 − 1)
2(x2 + 1)

)
|(1,0) =

(
0
2

)
,

which are not linearly independent.
To summarize, the basic (strongest) CQ conditions are not fulfilled, but since we

were not able to find the Lagrange multipliers, even weaker CQ conditions cannot be
fulfilled.
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Example 6.24. Consider the problem with real parameter a

min x1

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1

(x1 − 1)2 + (x2 + a)2 ≤ 1.

Discuss the Slater and LI Constraint Qualification conditions.

Solution: First realize that the set of feasible solutions is nonempty only if a ∈
[−3, 1]. We can verify the CQ conditions:
Slater CQ: the functions defining the set of feasible solutions are convex and

(x1 − 1)2 + (x2 − 1)2 < 1 & (x1 − 1)2 + (x2 + a)2 < 1

is nonempty if a ∈ (−3, 1).
LI CQ: Obviously, the optimal solution is the left intersection of the circles, which
can be expressed as

(x1, x2) =

1−

√
1−

(
1− a2

2(a+ 1)
− 1

)2

,
1− a2

2(a+ 1)

 , a ∈ [−3, 1].

We can compute the gradients in these points

∇g1(1, 0) =

(
2(x1 − 1)
2(x2 − 1)

)
, ∇g2(1, 0) =

(
2(x1 − 1)
2(x2 + a)

)
,

which are linearly independent if a ∈ (−3, 1)\{−1}. Note that a = −1 corresponds to
the case when the constraints are identical. Therefore it can be resolved by forgetting
of one of the constraints. However, for a = −3 we have (x1, x2) = (1, 2) and the
gradients are linearly dependent. Case a = 1 was discussed in the previous example.

Example 6.25. Consider the problem

min (x1 − 2)2 + x22
s.t. − (1− x1)3 + x2 ≤ 0,

x2 ≥ 0.

Use the picture to show that (1, 0) is the global optimal solution. Why are not the
KKT conditions fulfilled? Discuss the Constraint Qualification conditions.

Solution: Write the Lagrange function

L(x1, x2u1, u2) = (x1 − 2)2 + x22 + u1
(
− (1− x1)3 + x2

)
− u2

(
x2
)
, u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1
(
− (1− x1)3 + x2

)
= 0, u1 ≥ 0,

u2
(
x2
)

= 0, u2 ≥ 0,

iii)
∂L

∂x1
= 2(x1 − 2) + 3u1(x1 − 1)2 = 0,

∂L

∂x2
= 2x2 + u1 − u2 = 0.

(49)
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Now, by substituting point (1,0) into the equation we obtain

∂L

∂x1
(1, 0) = −2 6= 0,

which is a contradiction with the optimality condition. In other words, there are no
multipliers u1,2 ≥ 0 such that (1, 0, u1, u2) is a KKT point. The explanation is easy:
No Constraint Qualification condition is fulfilled. Note that the interior of the set
of feasible solution is nonempty, however the function g1 which defines the set is not
convex. Therefore the Slater CQ is not fulfilled.

6.2.4 Second Order Sufficient Condition (SOSC)

When the problem is not convex, then the solutions of the KKT conditions need not
to correspond to global optima. The Second Order Sufficient Condition (SOSC) can
be used to verify if the KKT point (its x part) is at least a local minimum.

Example 6.26. Consider the problem

min − x
s.t. x2 + y2 ≤ 1

(x− 1)3 − y ≤ 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

L(x, y, u1, u2) = −x+ u1
(
x2 + y2 − 1

)
+ u2

(
(x− 1)3 − y

)
, u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1
(
x2 + y2 − 1

)
= 0, u1 ≥ 0,

u2
(
(x− 1)3 − y

)
, u2 ≥ 0,

iii)
∂L

∂x
= −1 + 2u1x+ 3u2(x− 1)2 = 0,

∂L

∂y
= 2u1y − u2 = 0.

(50)

Now, we will try to find the KKT point by analyzing the optimality conditions,
where we proceed according to the complementarity conditions:
1. Set u1 = 0, u2 = 0: We have from iii) that −1 = 0 which is a contradiction.

2. Set u1 = 0, (x − 1)3 − y = 0: We have from second equality of iii), that u2 = 0
which is again a contradiction with first equality of iii) −1 6= 0.

3. Set x2 + y2 = 1, u2 = 0: Second equality of iii) reduces to

2u1y = 0.
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Case u1 = 0 leads again to a contradiction, so the only possibility is y = 0. Using
x2 + y2 = 1 we get x ∈ {−1, 1}. Using first equality of iii) we obtain the Lagrange
multipliers, for x = 1 we get u1 = 1

2
. However, for x = −1 we obtain u1 = −1

2
< 0,

which is not feasible Lagrange multiplier. We have found one KKT point

(x, y, u1, u2) =

(
1, 0,

1

2
, 0

)
.

4. Set x2 + y2 = 1, (x− 1)3 − y = 0: Using a picture, we can find two intersections
of the curves: (1, 0) and (0,−1). The first point has been resolved by the previous
point 3. Using iii) for (0,−1) we can get u1 = −1

6
< 0 and u2 = 1

3
, which are not

feasible values of Lagrange multipliers.
Since the problem is non-convex, we can apply SOSC (36), (37). We have

Ig(1, 0) = {1, 2}, I+g (1, 0) = {1} and I0g (1, 0) = {2}. We can cumpute the gradi-
ents

∇g1(1, 0) =

(
2x
2y

)
|(1,0) =

(
2
0

)
, ∇g2(1, 0) =

(
3(x− 1)2

−1

)
|(1,0) =

(
0
−1

)
.

so the conditions on 0 6= z ∈ R2 are:

2z1 = 0,

−z2 ≤ 0.

So we have
Z(1, 0) =

{
z ∈ R2 : z1 = 0, z2 > 0

}
6= ∅.

We must compute the Heassian matrix of the Lagrange function with respect to the
decision variables

∇2
xxL

(
1, 0,

1

2
, 0

)
=

(
2u1 + 6u2(x− 1) 0

0 2u1

)
|(1,0, 1

2
,0) =

(
1 0
0 1

)
.

Thus we have that zT ∇2
xxL(1, 0, 1

2
, 0) z > 0 for any z ∈ Z(1, 0), which implies that

(1, 0) is a strict local minimum of the problem.

Example 6.27. Consider the problem

min x2 − y2

s.t. x− y = 1

x, y ≥ 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

L(x, y, u1, u2, v) = x2 − y2 − u1x− u2y + v(x− y − 1), u1, u2 ≥ 0.

49



Derive the KKT conditions

i) feasibility,

ii) − u1x = 0, u1 ≥ 0,

− u2y = 0, u2 ≥ 0,

iii)
∂L

∂x
= 2x− u1 + v = 0,

∂L

∂y
= −2y − u2 − v = 0.

(51)

Solving this conditions together with feasibility leads to one feasible KKT point

(x, y, u1, u2, v) = (1, 0, 0, 2,−2).

Since the problem is non-convex, we can apply SOSC (36), (37). We have Ig(1, 0) =
I+g (1, 0) = {2} and I0g (1, 0) = ∅, so the conditions on 0 6= z ∈ R2 are:

z1 − z2 = 0,

−z2 = 0.

Since no z 6= 0 exists, the SOSC is fulfilled. (It is not necessary to compute ∇2
xxL.)

Example 6.28. Consider the problem

min − x2 − 4xy − y2

s.t. x2 + y2 = 1.

Using the SOSC verify that point (
√

2/2,
√

2/2) corresponds to a (strict) local mini-
mum.

Solution: Write the Lagrange function

L(x, y, v) = −x2 − 4xy − y2 + v
(
x2 + y2 − 1

)
.

Derive the KKT conditions

i) feasibility,

ii) −

iii)
∂L

∂x
= −2x− 4y + 2vx = 0,

∂L

∂y
= −2y − 4x+ 2vy = 0.

(52)

We can compute the Lagrange multiplier and obtain the KKT point

(x, y, v) =

(√
2

2
,

√
2

2
, 3

)
.
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Since the problem is non-convex, we can apply SOSC (36), (37). We have

∇h(
√

2/2,
√

2/2) =

(
2x
2y

)
|(√2/2,√2/2) =

( √
2√
2

)
,

so we have

Z(
√

2/2,
√

2/2) =
{
z ∈ R2 : z1 + z2 = 0, z 6= 0

}
= {(z1,−z1) : z1 ∈ R \ {0}} .

We must compute the Hessian matrix

∇2
xxL

(√
2/2,
√

2/2, 3
)

=

(
−2 + 2v −4
−4 −2 + 2v

)
|(√2/2,√2/2,3) =

(
4 −4
−4 4

)
.

Thus we have that zT ∇2
xxL(
√

2/2,
√

2/2, 3) z = 16z21 > 0 for any z1 ∈ R \ {0}, which
implies that (

√
2/2,
√

2/2) is a strict local minimum of the problem.

Example 6.29. (*) Consider the problem

min − (x− 2)2 − (y − 3)2

s.t. 3x+ 2y ≥ 6,

− x+ y ≤ 3,

x ≤ 2.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.
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7 Motivation and real-life applications

7.1 Operations Research/Management Science and Mathe-
matical Programming

Goal: improve/stabilize/set of a system. You can reach the goal in the following
steps:

• Problem understanding

• Problem description – probabilistic, statistical and econometric models

• Optimization – mathematical programming (formulation and solution)

• Verification – backtesting, stresstesting

• Implementation (Decision Support System)

• Decisions

7.2 Marketing – Optimization of advertising campaigns

• Goal – maximization of the effectiveness of a advertising campaign given its
costs or vice versa

• Data – “peoplemeters”, public opinion poll, historical advertising campaigns

• Target group – (potential) customers (age, region, education level ...)

• Effectiveness criteria

– GRP (TRP) – rating(s)

– Effective frequency – relative number of persons in the target group hit
k-times by the campaign

• Nonlinear (nonconvex) or integer programming

7.3 Logistic – Vehicle routing problems

• Goal – maximize filling rate of the ships (operation planning), fleet composi-
tion, i.e. capacity and number of ships (strategic planning)

• Rich Vehicle Routing Problem

– time windows

– heterogeneous fleet

– several depots and inter-depot trips

– several trips during the planning horizon

– non-Euclidean distances (fjords)

• Integer programming :-(, constructive heuristics and tabu search
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Figure 1: A boat trip around Norway fjords

Literature: M.B., K. Haugen, J. Novotný, A. Olstad (2017).
Related problems with increasing complexity:

• Traveling Salesman Problem

• Uncapacitated Vehicle Routing Problem (VRP)

• Capacitated VRP

• VRP with Time Windows

• ...

OR approach to real-life problem solution:

1. Mathematical formulation

2. Solving using GAMS based on historical data

3. Heuristic(s) implementation

4. Implementation to a Decision Support System

7.4 Scheduling – Reparations of oil platforms

• Goal – send the right workers to the oil platforms taking into account uncer-
tainty (bad weather – helicopter(s) cannot fly – jobs are delayed)

• Scheduling – jobs = reparations, machines = workers (highly educated, skilled
and costly)
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Figure 2: Fixed interval schedule (assignment of 6 jobs to 2 machines) and corre-
sponding network flow
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7 Sink

• Integer and stochastic programming

Literature: M. Branda, J. Novotný, A. Olstad (2016), M. Branda, S. Hájek (2017)

7.5 Insurance – Pricing in nonlife insurance

• Goal – optimization of prices in MTPL/CASCO insurance taking into account
riskiness of contracts and competitiveness of the prices on the market

• Risk – compound distribution of random losses over 1y (Data-mining & GLM)

• Nonlinear stochastic optimization (probabilistic or expectation constraints)

• See Table 1

Literature and detailed information: M.B. (2012, 2014)

7.6 Power industry – Bidding, power plant operations

Energy markets

• Goal – profit maximization and risk minimization

• Day-ahead bidding from wind (power) farm

• Nonlinear stochastic programming

Power plant operations
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Table 1: Multiplicative tariff of rates: final price can be obtained by multiplying the
coefficients

GLM SP model (ind.) SP model (col.)

TG up to 1000 ccm 3 805 9 318 5 305
TG 1000–1349 ccm 4 104 9 979 5 563
TG 1350–1849 ccm 4 918 11 704 6 296
TG 1850–2499 ccm 5 748 13 380 7 125
TG over 2500 ccm 7 792 17 453 9 169

Region Capital city 1.61 1.41 1.41
Region Large towns 1.16 1.18 1.19
Region Small towns 1.00 1.00 1.00
Region Others 1.00 1.00 1.00

Age 18–30y 1.28 1.26 1.27
Age 31–65y 1.06 1.11 1.11
Age over 66y 1.00 1.00 1.00

DL less that 5y NO 1.00 1.00 1.00
DL more that 5y YES 1.19 1.13 1.12

• Goal – profit maximization and risk minimization

• Coal power plants – demand seasonality, ...

• Stochastic linear programming (multistage/multiperiod)

7.7 Environment – Inverse modelling in atmosphere

• Goal – identification of the source and the amount released into the atmosphere

• Standard approach – dynamic Bayesian models

• New approach – Sparse optimization – Nonlinear/quadratic integer program-
ming (weighted least squares with nonnegativity and sparsity constraints)

• Applications: nuclear power plants accidents, volcano accidents, nuclear tests,
emission of pollutants ...

• Project homepage: http://stradi.utia.cas.cz/

Literature and detailed information: L. Adam, M.B. (2016).
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