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|
Algorithm classification

Order of derivatives!: derivative-free, first order (gradient),
second-order (Newton)

Feasibility of the constructed points: interior and exterior point
methods

Deterministic/randomized

Local/global

LIf possible, deliver the derivatives.
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@ Review of basic methods for unconstrained problems
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Unconstrained problems

Let f: R" > R, x0 be a starting point, d* € R" be a descent direction,
and A € R be a step length.

Find a descent direction d*, solve the line search problem

A= in  f(xX+ Ad*
argOSKnglg\]max (X + )

and set
xkTL — xk 1 \kgk,

Iterate until a convergence criterion is not satisfied, e.g. HdkH < e or
[F(xF) — (x| < e.
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Review of line search methods

Bazaraa et al. (2006):

@ Derivative-free: dichotomous search, golden section method,
Fibonacci search

o Using derivatives: bisection search, Newton's method
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Descent directions — Steepest descent

A vector d is called a descent direction of a function f at x if there exists
a § > 0 such that

f(x+ Ad) < f(x), A€ (0,0).

Steepest descent d with ||d|| = 1 minimizes the limit

< 0.

F(x: d) = )\i’& f(x+ )\c//\) — f(x)

If f is differentiable at x with a nonzero gradient, then

Vf(x)

9= TV

leading to the gradient (Cauchy) method.
f'(x;d) = VFf(x)"d.
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Descent directions

If we set
h(\) == f(x + A\d),

then
H(0) = Vf(x)"d.

h is decreasing < f is decreasing in direction d.
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Descent directions

Steepest descent — works well during the early steps, the zigzagging
phenomenon often appears in later steps, see Bazaraa et al. (2006),
Example 8.6.2

Martin Branda (KPMS MFF UK) 2017-04-27 8 /45



Descent directions — Newton direction

Approximation of f by a limited Taylor expansion around x*
g(x) == F(x) + VF(x¥)T(x — x*) + %(x — XY T2F(x}) (x — xk)
Setting Vxg(x) = 0, we obtain the Newton direction
d=— (sz(xk))_l VF(x9).

If V2f(x¥) > 0, then d is a descent direction?.

%In general, d = —~AVf(x*) for A > 0 is a descent direction — Quasi-Newton
methods.
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Descent directions — Newton direction

Convergence of the algorithm: Bazaraa et al. (2006), Theorem 8.6.5
(f € C?, Vf(x) = 0 and V?f(X) > 0 at a local minimum X, starting point
is sufficiently close.)

Martin Branda (KPMS MFF UK) 2017-04-27 10 / 45



_______Review of basic methods for unconstrained problems |
Descent directions — Example

min(x — y)* +2x° + y* — x + 2y
X,y

Partial derivatives

% —4(x—y) +4x—1=0,
8f(8>;y) = —4(x—y)*+2y+2=0.
Second-order partial derivatives
% =12(x — y)* + 4,
Troen) — oy,
32’;(7;‘2’” =12(x — y)* +2.

Compare directions d°° = Vf(x) and d"e"to" = —
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Algorithm convergence

Definition

Let X CRP, Y C RY9 be nonempty closed sets. Let F: X — Y be a
set-valued mapping. The map F is said to be closed at x € X if for any
sequences {x¥} C X, and {y*} satisfying xx — x, y* € F(x¥), y* = y we
have that y € F(x).

The map F is said to be closed on Z C X if it is closed at each point in Z.
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Algorithm convergence — Zangwill's theorem

Bazaraa et al. (2006), Theorem 7.2.3: Let

Al.
A2,
A3.
A4,

A5.
Ab6.

X C RP be a nonempty closed set,
XCXbea nonempty solution set,
F : X = X be a set-valued mapping closed over complement of X,

Given x! € X the sequence {x*} is generated iteratively as follows: If
xk € X, then STOP; otherwise, let xk*1 ¢ F(xk) and repeat,

the sequence x1, x?,... be contained in a compact subset of X,

there exist a continuous function® « such that a(y) < a(x) if
x ¢ X and y € F(x).

Then either the algorithm stops in a finite number of steps with a point in
X or it generates an infinite sequence {x*} such that all accumulation
points belong to X and a(x¥) — a(x) for some x € X.

3descent function: a(x) = f(x) or a(x) = || VF(x)|
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Algorithm convergence — Newton method

Let X be an optimal solution, set

F(x) =x— (V2f(x)) " VF(x),

a(x) =[x =X

More details: Bazaraa et al. (2006), Theorem 8.6.5
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Method of Zoutendijk

Bazaraa et al. (2006), Section 10.1: f : R" = R, gj : R" = R
differentiable

min f(x) s.t. gi(x) <0, j=1,...,m.
X
(Extension including equality constraints is possible.)

Method based on improving feasible directions (remember the
“directional” optimality conditions).
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Method of Zoutendijk

0. Start with a feasible x!. For k = 1,...(, Kmnax) do
1. Set J(x*) = {j : gj(x*) = 0} and solve linear programming
problem for finding a direction:
Td -
st. VFA(x)Td < z,

Vgi(x*)d <z, j e J(xN),

—1§d,<1, izl,...,n.

Denote by (z, d*) € R!*" the optimal solution.

o If zK =0 then STOP (We have found a Fritz-John point).
o Else if zX < 0 then continue with STEP 2.
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Method of Zoutendijk

Firstcorstraint — Vg3(¥)

V(@)

Contours of the
objective function

Third
constraint .
\ Improving feasible
. directions

Second

T constraint
Fourth

constraint

Bazaraa et al. (2006)
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Method of Zoutendijk

2. Find maximal possible step
Amax = sup{\: gj(xk +Ad)<0,j=1,...,m},
solve the line search problem

2\ = in  f(x*+ \d¥
argOS)r‘ng\]max (X + )

and set
Xk+1 — Xk + )\kdk.

Continue with STEP 1.

Martin Branda (KPMS MFF UK) 2017-04-27 20 / 45



Method of Zoutendijk

Where could be a problem? Direction as well as line search mappings need

not to be closed...

Convergence: Bazaraa et al. (2006), part 10.2.
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Method of Zoutendijk — example

Bazaraa et al. (2006), Example 10.1.8

min 2x12 + 2)<22 — 2x1x2 — 4x1 — 6x2
s.t. x1 +xp < 5,

2x7 — x2 <0, (3)
—x1 < 07
— X2 S 0.

VF(x) = (4x1 — 2x2 — 4, 4xp — 2x; — 6)" (4)
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Method of Zoutendijk — Example

Starting point x° = (0,0.75)7, Vf(x°) = (=5.5,-3)7, J(x°) = {3}. The
direction finding problem is then

min z

s.t. —5.5d; —3d> < z,
—dy < z,
—1<d,dr <1.

with optimal solution d! = (1, 1), z} = —1.
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Method of Zoutendijk — Example

Then
X0+ Adt = (), 0.75 - ))
and
F(x% + Adb) = 6A% — 2.5\ — 3.375.

Maximize it over the set of feasible solutions M to obtain A\ = 0.4114.
Finally

min 6% — 2.5\ — 3.375 (6)
s.t. 0 <A\ < Apax-

Al = 0.2083.
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Cutting plane method

f:R" =R, gi:R" =R

min f(x) s.t. g(x) <0, j=1,....m.

Denote M = {x € R: gj(x) <0, j=1,...,m}.

ASS. f is affine, g are convex and differentiable, M is compact.
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Cutting plane method

0. Start with a polyhedral set M° such that M € M°, e.g. a box
MO = [Iby, uby] X - -+ X [Ibm, ubm]. For k =0,...(, Kmax) do

1. Solve the linear programming problem

min f(x) s.t. x € Mk,

and obtain x¥ € Mk, If x € M, then STOP, we have found an

optimal solution. Otherwise continue with STEP 2.

2. If xk ¢ M, then find jk = arg maxjgj(xk), construct a cutting plane
and set

MK+ = Mk {x eR: gi(x*) + Vgu(x*) T (x — x¥) < 0} :

Note that x* violates the cut, and no x € M is cut off* (compare
with the integer programming cuts). Return to STEP 1.

“From convexity gy (x*) + Vgu (x*)T(x — x*) < gi(x) < 0.
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Cutting plane method — Example

min — x| — X2
X

st x¥ 4+ x5 —1<0,
x1,x2 > 0.

Set M = {(x1,x2) : 2 +x3 —1<0,x,x >0}, Vg(x)T = (2x1,2x2).
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___________Cutting plane method |
Cutting plane method — Example

0. Set M® = [0,1]2.
1. Solve min, —x; — xp s.t. x € M° with optimal solution x° = (1,1)7.
2. Since x° ¢ M, construct the cut

g(x) + Vg(x")T(x—x°) <o,

and set
Mt =M0n {(x1,x2) : x1 +x2 < 3/2}.

Continue with STEP 1.
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Cutting plane method — Example

xt} = (1,057, x* ¢ M,

M? =M N {(X]_,X2) D 2x1 +x0 < 9/4}

Martin Branda (KPMS MFF UK) 2017-04-27 30 / 45



Cutting plane method
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Cutting plane method

Algorithm with projection ...

Kall and Mayer (2005).
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Penalty method

Perfect penalty (rather theoretical)
0 if g(x) <0,h(x) =0,
PP(x) = {

oo otherwise.

Compare with the Lagrangian duality (sup over multipliers).

The following problem is equivalent to the original constrained one.

mXin f(x) + PP(x).

Martin Branda (KPMS MFF UK) 2017-04-27 34 /45



Penalty method

L, o— penalty function, p,q € {1,2,...}:

PF(x Z[gj ()2 +Z 1hi(x))9 |

where N > 0 is the penalty parameter, []; = max{-,0}.

More general penalty using ®(y) =0 for y <0 and ®(y) > 0 for y >0
and V(y) =0 for y =0 and ¥(y) > 0 for y # 0.
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Penalty method

Algorithm:
0. Sete >0, N' >0, 3>1. Fork=1,...(, Kmax) do:
1. Solve
min f(x) + PFy(x).

and obtain x¥

2. IF PFyi(x¥) < e, then STOP. ELSE set Nk*1 = Nk . 3 and continue
with STEP 1.

Exterior point method.
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Penalty method

Convergence of the method: Bazaraa et al. (2006), Theorem 9.2.2
(continuous f, gj, hj, xx € X N U compact).
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Penalty functions — Example

Consider

min x2 + x3

s.t. xg +x0 = 2.
with optimal solution X; = X» = 1. Penalty function problem
minx? + x5 + N(x1 + xo — 2)2.

Using optimality conditions

aN
! 2N +1°

N 2N
2
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Penalty method

Remarks

e Sequential Unconstrained Minimization (SUMT): optimal solution
x¥ is used as a starting point in the next iteration® to solve the
penalty problem with Ny, 1.

o Exact penalty: Instead of N — oo it is sufficient to converge
N — N < oo (numerically more stable).

®“warm starting”
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Augmented Lagrangian Method

Nocedal and Wright (2006), Section 17.3: f : R" - R, h; : R" - R
differentiable

mXin f(x)

st hi(x)=0, i=1,...,1.

(Extension including inequality constraints is possible.)

L(x,v) = f(x) — Z vihi(x).

i=1
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Augmented Lagrangian Method

Augmented Lagrangian function — combination of the Lagrangian
function with the quadratic penalty term

/ i
La(x M) = F(x) = D Nihi() + 537 (b
i=1 i=1

/
ViLla(x, A ) = Vif(x) = > NiVihi(x) + 1> hi(x)Vihi(x)
i=1 i

= Vif(x) = Y (Ai — phi(x)) Viehi(x).

i
i=1

We have that v; = \; — phi(x).
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Augmented Lagrangian Method

0. Set initial u! >0, 8 > 1 and A!. Select a tolerance ¢ > 0. For
k=1,...(, Kmax) do:

1. Solve unconstrained problem

mxin LA(Xa )‘k> :uk)

and obtain x*. If ||V, La(x*, ¥, u¥)|| < e, STOP. Otherwise
continue with STEP 2.

2. Update the Lagrange multipliers /\ffJrl = A — 1kh;(xK) and the
penalty parameter pf*1 = k. Go to STEP 1.
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Augmented Lagrangian Method

Convergence of the algorithm: Nocedal and Wright (2006), Theorem 17.5
(LICQ, SOSC).
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