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Nonlinear Programming Problem (NLP)

- : Primal problem (P):
Lagrangian duality J rimal problem (P)

(P)=minf(x)s.t. gi(x) < 0, j=1,...,m,
xeX
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Lagrangian duality in nonlinear programming Lagrangian duality in nonlinear programming

Dual problem Weak Duality Theorem

Let x be feasible for problem (P) and (u,v) be feasible for problem (D).
Then
O(u,v) = X|21):< L(x, u,v). (1) O(u, v) < f(x).

Dual function:

Dual problem (D): Proof.

D) = sup 0(u,v). 2
(D) u>0,v (1:v) @ O(u,v) =inf L(y,u,v) < L(x,u,v) < f(x),
y
where the last inequality follows from feasibility of x and (u, v), when

u;gj(x) < 0 and vihi(x) = 0.
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Lagrangian duality in nonlinear programming

Weak Duality Theorem — Consequences

1. We obtain
(P) = (D).

2. If for some primal feasible X and dual feasible (7, V) holds
f(x) = 6(4,v),

then X is optimal solution of (P) and (@, V) is optimal solution of (D).
3. If (P) = —oo (unbounded primal problem), then 6(u, v) = —oo for all
(u,v) e RT x R
4. If (D) = oo, then (P) is infeasible.
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Lagrangian duality in nonlinear programming

A counterexample

Convexity alone is not sufficient. Consider
p* =min e
X,y
s.t. x2/y <0,
y >0 (ory>e).

The optimal value is p* = 1. The dual function is equal to

0 u>0,

— —x 2/, —
O(u) = |nf0e + ux /y_{foo Y

X,y >

The dual problem is
d* = max0(u)

u>0

with optimal value d* = 0. Slater condition is not satisfied since x = 0 for
any feasible (x,y), i.e. x?/y =0.
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Strong Duality Theorem

Theorem
Let

@ X be a nonempty convex set
o f,gj be convex
@ h; be affine
@ Slater condition be satisfied, i.e. there is X € X such that
gj(X) <0,Vj and hj(%) = 0,Vi, and
0 € int{(h1(x),..., h(x)): x € X} := h(X).
Then (P) = (D).
Moreover, if (P) is finite, then sup in (D) is achieved at (7, V) € RT x R/.
Ifinf in (P) is achieved at X, then 3 ", U;g;(X) = 0.
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Lagrangian duality in nonlinear programming

SDT proof

Bazaraa et al. (2006), Lemma 6.2.3:

Let X C R" be a convex set, f,gj : R” — R be convex, h; : R" — R be
affine. If System 1 has no solution, then System 2 has a solution (ug, u, v).
The converse holds true if ug > 0.

System 1: f(x) <0, gj(x) <0, hi(x) =0 for some x € X.

System 2: uof (x) + > u;gi(x) + S, vihi(x) >0 for all x € X,
(uo,u) >0, (ug,u,v) #0.
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Lagrangian duality in nonlinear programming

SDT proof

Let v be a (finite) optimal value of (P) and consider the following system:
f(x) =7 <0, gi(x)<0,j=1,....m, hi(x)=0,i=1,...,], xe X.

By the definition of v the system has no solution. Hence, there exists
(uo, u, v) # 0 with (ug, u) > 0 such that

m
uo(F(x) =) + > ujgi(x) + Y _ vihi(x) > 0, ¥x € X.
j=1 i=1
20210027 10/36

Lagrangian duality in nonlinear programming

SDT proof

Lagrangian duality in nonlinear programming

SDT proof

Hence up > 0. Thus, if we set i; = u;j/ug and ¥; = v;/up, we get

m /
F(x)+ > dgi(x) + Y vihi(x) > v, ¥x € X.
j=1 i=1

This shows that
i, v) = inf L(x,d,7) > 7.
0(a, v) inf (x,d,7) >~

X

Together with the Weak Duality Theorem we obtain that

v =0(d,v) = sup 0(u,v).
u>0,v
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Suppose that ug = 0. By assumption there is an X € X such that

gi(X) <0,V and h;j(%) = 0,Vi. Substituting into the inequality we obtain
21 u;gj(%) > 0. Since gj(%) < 0,Vj, we have u; = 0,}, and ug = 0.
This implies that Z;:1 vihi(x) > 0 for all x € X. Since 0 € h(X), we can

pick a x € X such that hj(x) = —Av;, where A > 0 (small). Therefore

! i
D vihi(x) = =AY V>0,
i=1 i=1

which implies that v; = 0,V/. But this is a contradiction with
(uo, u, v) # 0. Hence ug > 0...
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Lagrangian duality in linear and quadratic programming

Example: Linear programming duality

min ¢’ x
s.t. Ax = b,
x > 0.
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Lagrangian duality in linear and quadratic programming ian duality in linear and quadratic programming

Example: Linear programming Example: Linear programming

For u>0

L(x,u,v) =c"x—u"x+vT(Ax - b)
=cTx—u"x+viAx—vTb
=" —u"+vTA)x—vTh. If we substitute v=-v and realize that u can be seen as a vector of slack

variables, we obtain

Then the dual function
O(u,v) =infL(x,u,v)
X

max bT v

st AT < c,
= —va7 ifcT—uT+viA= 0,
— oo, ifcT—uT +vTA£O. which is the standard LP dual.
Then the Lagrange dual problem is
max —b'v

st.c—u+ATv=0.
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Lagrangian duality in integer programming

Lagrangian duality in linear and quadratic programming

Example: Ordinary least squares with equality constraints Langrangian lower bound is never worse than LP relaxation

Hooker (2009): Consider integer programming problem with complicated
constraints Ax < a and noncomplicated constraints Bx < b:

T
min ||Ax — ng min ¢’ x
s.t. Fx =g. s.t. Ax < a,
Bx < b,
xeZl.
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Lagrangian duality in integer programming Lagrangian duality in integer programming

Langrangian lower bound is never worse than LP relaxation The optimal value of the dual problem

= 0
2Lp = max (uv)

Dual function obtained by relaxing the complicated constraints Ax < a:
is therefore equal to (it follows from LP duality)
9(u) = min c"x+ uT (Ax — a)
X R T
st. Bx < b7 ZIp = mxln c X
x e 7. s.t. Ax < a,
x € conv(S).
Let S = {x € Z, : Bx < b}, then the dual function can be rewritten as
Let P ={x € R} : Bx < b}, i.e. conv(S) C P, where the LP relaxation is
s T T
O(u) = min ¢' x4+ u' (Ax — a)
x T
zip =min c'x
s.t. x € conv(S), Ltp x

s.t. Ax < a,
where conv(S) can be described by (a large number of) linear inequalities. xeP
i.e. ZIp < ZID.
2021:04:27/11720//35 202150427 ) 217/35

Generalized Benders Decomposition Generalized Benders Decomposition

Generalized Benders Decomposition Generalized Benders Decomposition
Geoffrion (1972), Floudas (2009): Assumptions:
min £(x, ) e X C R"is a nonempty compact convex set, Y C R®, e.g.
oy Y ={0,1}*.
st gi(x,y) <0, j=1,...,m, o f(-,y),g(,y) : R" x R®* — R are continuous convex for each
xeX,yeY. yey.

@ Foreach y € YNV, where
The problem can be rewritten as Y

mininf £(x, y) V ={y:gi(,y) <0,V; for some x € X},
Yy X

the resulting problem is unbounded or is feasible and the Lagrange

s.t. gi(x,y) <0, j=1,....m, - .
gi(x.y) <0, j multipliers exist (under Slater CQ).

xeX,yeY. . . .
(Less stringent assumptions are available, see Floudas (2009).)
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Generalized Benders Decomposition

Generalized Benders Decomposition

Master problem

min v(y)
st.yeYnyV,

where the primal (slave) problem is

v(y) = inf f(x,y)

s't'gj(x7.y)§07j:17"'7m7
x € X.

We assume that v(y) can be computed easily ...
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Generalized Benders Decomposition
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Optimality Lagrange function: if the primal problem is feasible for a
fixed y € Y, then (under Slater CQ) we can use the Lagrange function

Lx,y,u) = f(x,y) + Z ujgi(x, ¥);

and the strong duality, i.e. for each y € Y NV we have

viy) = nf f(x,y) st gilx,y) <0, j=1,....m

— (D) =

=sup inf L(x,y,u).
u>0xeX
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Generalized Benders Decomposition

Generalized Benders Decomposition

Feasibility Lagrange function: if the primal problem is infeasible for a

given y € Y, then consider

L(x,y,u) = ZngJ(X y):

where u € A= {ucRY: 37, uj = 1}. We obtain y € V if and only if

sup inf L(x,y,u) <O0.
uenxeX

. based on Lagrangian duality for the problem

n
min E 0x;
X
i=1

s.t. gi(x,y) <0, j=1,....,m,

x € X.
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Generalized Benders Decomposition
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Combining the feasibility and optimality Lagrange functions, we obtain an

equivalent problem
min p
yoh

s.b. > sup mf L(x,y,u),
u>0x€

0 > sup inf L(x,y,u),
uenxeX

yey,
or

min f
Yol

Ao > inf Lix,y, >0,
st p 2 inf (x,y,u),Yu >0,

0> inf L 4 A,
_ngX (Xv}/vu)a uen,

yevy.
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Support Vector Machines Support Vector Machines

The support vector classifier The support vector classifier

Hastie et al. (2009): Training data: N pairs (x1,y1), (x2,¥2), ...
(xn,yn), xi € RP, y; € {—1,1} (classes).
A linear classification rule with ||3]| =1

T8+ 6 =0

G(x) = sign[x" 8 + fo].

Assume first that the data are separable. We would like to find the
biggest margin between the training points for class 1 and —1:

max M
Bo,B
t. yi(x’ >M, i=1 N
S~-Y:(Xiﬁ+/30)_ , =1, N,
I8l = 1. Hastie et al. (2009)
o 3073 wrmar 31/

Support Vector Machines Support Vector Machines

The support vector classifier The support vector classifier

By setting M =1/ Lagrange function

min || 3]]
Bo.B 1 5 N N
stoyi(x"B+B)>1, i=1,...,N. L(Bo, B, &, ) = S 181" + CY &= i€
i=1 i=1
If the classes overlap: N
N 7zai(yi(XiTﬂ+60)71+fi)v CM,’ZO,/A,’ZO.
o1 5 i=1
min ~[IBI7+C ) &
Bo.B¢ 2 ; I The dual function
st yi(xT B+ Po) =1 =&, i=1,...,N, .
O(a, ) = inf L(Bo,B,&, a, ).
o (0ng) = Jinf L(50.5.€.0.10)

where we penalize the overall overlap.
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Support Vector Machines Support Vector Machines

The support vector classifier The support vector classifier
1 N N .
L(Bo, B, €, a, p) = = ||5H2 n CZE" _ Z/‘fff We can express the dual function
=1 =1 LN N N NN
N T T
H(Q,H) I — Qi iy X; Xir + C 5 _ Qi YiYinX; Xir
= iy’ B+ Bo) =1+ &), @i > 0,4 >0 2;; R ;' ;; A
i=1 N N N N
Use the derivatives to obtain the dual function: —Bo Z Qiyi + Z Qi — Za’{" — Z”’f"
oL i i=1 i=1 i=1 i=1
= = iy = 0, 1 N N N
9o i=1 = 73 Z Z aiaryiyixi Xir + Z Qj,
oL XN: i=1i'=1 i=1
a7 = B—) aiyixi=0,
9B i1 subject to 0 < a; < C, Z,N:l aiyi = 0.
oL
- C—aj—p=0.
0&; P
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Support Vector Machines
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