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Lagrangian duality in nonlinear programming

Nonlinear Programming Problem (NLP)

Primal problem (P):

(P)= )r(nel)rg f(x) s.t. gj(x)
hi(x) = 0, i=1,...

IA
=)
-
I
-

Lagrangian function, u € R7, v € R':

L(x,u,v) = f(x —i—ZngJ +Z ihi(x).
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Lagrangian duality in nonlinear programming

Dual problem

Dual function:

O(u,v) = Xlg< L(x, u,v). (1)
Dual problem (D):
(D) = US;JOPVH(u, v). (2)
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Lagrangian duality in nonlinear programming

Weak Duality Theorem

Let x be feasible for problem (P) and (u,v) be feasible for problem (D).
Then

O(u,v) < f(x).

Proof.

Ou.v) = inf L(y. 0,v) < Lix,uv) < £(0),

where the last inequality follows from feasibility of x and (u, v), when
ujgj(x) < 0 and vjhi(x) = 0.
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Lagrangian duality in nonlinear programming

Weak Duality Theorem — Consequences

1. We obtain
(P) = (D).

2. If for some primal feasible X and dual feasible (@, V) holds

then X is optimal solution of (P) and (@, V) is optimal solution of (D).

3. If (P) = —oo (unbounded primal problem), then 6(u, v) = —oo for all
(u,v) eRT x R/,
4. If (D) = oo, then (P) is infeasible.
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Lagrangian duality in nonlinear programming

Strong Duality Theorem

Theorem
Let

@ X be a nonempty convex set
o f,gj be convex
@ h; be affine

@ Slater condition be satisfied, i.e. there is X € X such that
gj(X) < 0,Vj and hi(x) =0,Vi, and
0 € int{(h1(x),..., h(x)): x € X} := h(X).
Then (P) = (D).
Moreover, if (P) is finite, then sup in (D) is achieved at (4,Vv) € RT x R
Ifinf in (P) is achieved at X, then 3 T;g;(X) = 0.
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Lagrangian duality in nonlinear programming

A counterexample

Convexity alone is not sufficient. Consider
(P)=min e~
X?y
s.t. x2/y <0,
y >0 (ory>e).

The optimal value is (P) = 1. The dual function is equal to

0 u>0,

O(u) = inf e*XvLuxz/y:{_OO y0

x€R,y>0

The dual problem is

(D) = max 6(u)
with optimal value (D) = 0. Slater condition is not satisfied since x =0
for any feasible (x,y), i.e. x?/y = 0.
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Lagrangian duality in nonlinear programming

SDT proof

Bazaraa et al. (2006), Lemma 6.2.3:

Lemma
Let X CR" be a convex set, f,g; : R" — R be convex, h; : R" — R be
affine. If System 1 has no solution, then System 2 has a solution (ug, u, v).
The converse holds true if ug > 0.

System 1: f(x) <0, gj(x) <0, hi(x) =0 for some x € X.

System 2: uof (x) + 37 u;gi(x) + Zle vihi(x) > 0 for all x € X,
(u07 U) >0, (UO) u, V) 7& 0.

Martin Branda (KPMS MFF UK) 2021-04-27 9/36



Lagrangian duality in nonlinear programming

SDT proof

Let v be a (finite) optimal value of (P) and consider the following system:
f(x) =7 <0, g(x)<0,j=1,....m, hi(x)=0,i=1,...,/, x€ X.

By the definition of v the system has no solution. Hence, there exists
(uo, u, v) # 0 with (ug, u) > 0 such that

m /
up(f(x) — )+ Z uigj(x) + Z vihi(x) >0, Vx € X.
j=1 i=1
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Lagrangian duality in nonlinear programming

SDT proof

Suppose that ug = 0. By assumption there is an X € X such that

gj(x) < 0,Vj and h;(x) = 0,Vi. Substituting into the inequality we obtain
> it1 u;gi(%) > 0. Since gj(x) < 0,Vj, we have u; =0, V), and up = 0.
This implies that S7!_, vihi(x) > 0 for all x € X. Since 0 € h(X), we can
pick a x € X such that hj(x) = —Av;, where A > 0 (small). Therefore

/ /
Z vihi(x) = —)\Z v,-2 >0,
i=1 i=1

which implies that v; = 0,Vi. But this is a contradiction with
(uo, u,v) # 0. Hence up > 0...
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Lagrangian duality in nonlinear programming

SDT proof

Hence up > 0. Thus, if we set i; = uj/ug and V; = v;/up, we get

This shows that

0(d,v) = inf L(x,d,v) > 7.
xeX

Together with the Weak Duality Theorem we obtain that

v =0(d,7) = sup O(u,v).
u>0,v
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Lagrangian duality in linear and quadratic programming

Example: Linear programming

min ¢’ x
s.t. Ax = b,
x > 0.
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Lagrangian duality in linear and quadratic programming

Example: Linear programming

For u>10
L(x,u,v) =c"x—u"x+ v (Ax —b)
=c'x—u"x+viAx—vTh
=(c"—u"+vTAx—vTb.
Then the dual function
O(u,v) = ir)1<f L(x,u,v)
=—vib ifc’ —uT+vTA=0,
=00, if c" —uT +vTA#£0.
Then the Lagrange dual problem is
max —b'v

st.c—u+ATv=0.
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Lagrangian duality in linear and quadratic programming

Example: Linear programming

If we substitute v = —v and realize that v can be seen as a vector of slack
variables, we obtain

max b’ v

st. ATV < ¢,

which is the standard LP dual.
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Lagrangian duality in linear and quadratic programming

Example: Ordinary least squares with equality constraints

min ||Ax — b3

s.t. Fx = g.
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Lagrangian duality in integer programming

Langrangian lower bound is never worse than LP relaxation

Hooker (2009): Consider integer programming problem with complicated
constraints Ax < a and noncomplicated constraints Bx < b:

min ¢’ x
X

s.t. Ax < a,
Bx < b,
x € Zl.
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Lagrangian duality in integer programming

Langrangian lower bound is never worse than LP relaxation

Dual function obtained by relaxing the complicated constraints Ax < a:
O(u) = min c"x + u” (Ax — a)
X

s.t. Bx < b,
x e 7.

Let S = {x € Z : Bx < b}, then the dual function can be rewritten as
0(u) = min c"x + u” (Ax — a)
s.t. x € conv(S),

where conv(S) can be described by (a large number of) linear inequalities.
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Lagrangian duality in integer programming

The optimal value of the dual problem

= 0
ZID Tzélé( (U)

is therefore equal to (it follows from LP duality)
Z p = min cTx
X

s.t. Ax < a,
x € conv(S).

Let P = {x € R : Bx < b}, i.e. conv(S) C P, where the LP relaxation is
zip = min ¢’ x

s.t. Ax < a,
x € P,

i.e. Z|p < ZID.
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Generalized Benders Decomposition

Generalized Benders Decomposition

Geoffrion (1972), Floudas (2009):

min f(x,y)
X’y
s.t. gi(x,y) <0, j=1,....,m,

xeX,yeY.

The problem can be rewritten as

mininf f(x,y)
y X
s.t. gi(x,y) <0, j=1,....,m,
xeX,yeY.
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Generalized Benders Decomposition

Assumptions:

o X C R" is a nonempty compact convex set, Y C R®, e.g.

Y ={0,1}°.
o f(-,y),g(-,y) : R” x R® — R are continuous convex for each
yey.

@ For each y € YNV, where
V ={y:gi(x,y) <0,V; for some x € X},

the resulting problem is unbounded or is feasible and the Lagrange
multipliers exist (under Slater CQ).

(Less stringent assumptions are available, see Floudas (2009).)
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Generalized Benders Decomposition

Generalized Benders Decomposition

Master problem

min v(y)
st.yeyvYny,

where the primal (slave) problem is

v(y) = inf f(x,y)
st. gi(x,y) <0, j=1,...,m,
x € X.

We assume that v(y) can be computed easily ...

Martin Branda (KPMS MFF UK) 2021-04-27 25/36



Generalized Benders Decomposition

Generalized Benders Decomposition

Feasibility Lagrange function: if the primal problem is infeasible for a
given y € Y, then consider

L(x,y,u) = Zujgj X, ¥),

where v € A= {u € RT: 377, u; = 1}. We obtain y € V if and only if

sup inf L(x,y,u) <0.
ueﬁxex( y u) <

. based on Lagrangian duality for the problem

n
min g Ox;
X
i=1

s.t. gi(x,¥) <0, j=1,....,m,
x € X.
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Generalized Benders Decomposition

Generalized Benders Decomposition

Optimality Lagrange function: if the primal problem is feasible for a
fixed y € Y, then (under Slater CQ) we can use the Lagrange function

Lix,y,u) = f(x,y) + > uigi(x.y),
j=1

and the strong duality, i.e. for each y € Y NV we have

v(y) = |2§( f(x,y)st. gi(x,y) <0, j=1,...,m,

— (SD) =

= sup inf L(x,y,u).
u>0xEX
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Generalized Benders Decomposition

Generalized Benders Decomposition

Combining the feasibility and optimality Lagrange functions, we obtain an
equivalent problem

min L
Yolt
s.t. u > sup inf L(x,y, u),
u>0XE
0 > sup inf L(x,y,u),
_UGRXGX ( 4 )
yey,
or
min L
y7l’l/

s.t.opu > inf L(x,y,u),Yu >0,

0> |nf L(x,y,u),Yu €A,
xeX

yey.
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Support Vector Machines

The support vector classifier

Hastie et al. (2009): Training data: N pairs (x1,y1), (x2,¥2), - ..,
(xn, yn), xi € RP, y; € {—1,1} (classes).
A linear classification rule with ||| =1

G(x) = sign[x” 8+ fol.

Assume first that the data are separable. We would like to find the
biggest margin between the training points for class 1 and —1:

max M
Bo,B,M
stoyi(xTB+Bo) =M, i=1,...,N,
18] = 1.
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Support Vector Machines

The support vector classifier

xT_S +30=0

margin

Hastie et al. (2009)

Martin Branda (KPMS MFF UK)

2021-04-27

31/36



Support Vector Machines

The support vector classifier

By setting M =1/ ||5]|:
min
min 5]
s.t. y,-(x,-TB—i- Bo)>1,i=1,...,N.

If the classes overlap:

N
min — +C i
Bo,B.¢ ”5” ,.Z;g’

st.oyi(x"B+B)>1—¢, i=1,...,N,
fIZOa

where we penalize the overall overlap.
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Support Vector Machines

The support vector classifier

Lagrange function

1 N N
L(Bo. B.& o) = SUBI* + C D& = it
i=1 i=1

N

=Y ailyi(" B+ Bo) = L+&), @i >0, > 0.
i=1

The dual function

9(0&, M) = ,BInﬁfg L(ﬁo» Bv ga «, :U‘)

0512
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Support Vector Machines

The support vector classifier

1 N N
L(Bo. 5. & ) = SNIBI* + C D& =Y pits
i=1 i=1

N
=Y iy B+ Bo) = 1+&), aj >0, >0
i=1

Use the derivatives to obtain the dual function:

N
oL
LTS
9P i=1

N
oL
o7 = B—) aiyixi=0,
5 = P ; 7
oL
875,- = C—O[,'—M,‘—O.
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Support Vector Machines

The support vector classifier

We can express the dual function

O(a,p) = fZZaa,ry,y,/X Xjr +CZ§, ZZaa,ry,y,/x Xjr

i=1i'=1 i=1i'=1

—bo Z @y + Z o — Z ;i — Z pii
= —%Zzaa’%}’ﬂx Xjr +Za/7

i=1i'=1

subject to 0 < a; < C, Z,N:l a;yi = 0.
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Support Vector Machines
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