Lagrangian duality

Martin Branda

Charles University
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Content

- 1 Lagrangian duality in nonlinear programming
- 2 Lagrangian duality in linear and quadratic programming
- 3 Lagrangian duality in integer programming
- 4 Generalized Benders Decomposition
- Support Vector Machines

Nonlinear Programming Problem (NLP)

Primal problem (P):

$$(P) = \min_{x \in X} f(x) \text{ s.t. } g_j(x) \leq 0, \ j = 1, \dots, m,$$

 $h_i(x) = 0, \ i = 1, \dots, l.$

Lagrangian function, $u \in \mathbb{R}^m_+$, $v \in \mathbb{R}^I$:

$$L(x, u, v) = f(x) + \sum_{j=1}^{m} u_{j}g_{j}(x) + \sum_{i=1}^{l} v_{i}h_{i}(x).$$

Dual problem

Dual function:

$$\theta(u,v) = \inf_{x \in X} L(x,u,v). \tag{1}$$

Dual problem (D):

$$(D) = \sup_{u \ge 0, v} \theta(u, v). \tag{2}$$

Weak Duality Theorem

Theorem

Let x be feasible for problem (P) and (u, v) be feasible for problem (D). Then

$$\theta(u,v) \leq f(x)$$
.

Proof.

$$\theta(u,v) = \inf_{v \in X} L(y,u,v) \le L(x,u,v) \le f(x),$$

where the last inequality follows from feasibility of x and (u, v), when $u_i g_i(x) \le 0$ and $v_i h_i(x) = 0$.

Weak Duality Theorem - Consequences

1. We obtain

$$(P) \geq (D)$$
.

2. If for some primal feasible \overline{x} and dual feasible $(\overline{u}, \overline{v})$ holds

$$f(\overline{x}) = \theta(\overline{u}, \overline{v}),$$

then \overline{x} is optimal solution of (P) and $(\overline{u}, \overline{v})$ is optimal solution of (D).

- 3. If $(P) = -\infty$ (unbounded primal problem), then $\theta(u, v) = -\infty$ for all $(u, v) \in \mathbb{R}_+^m \times \mathbb{R}^l$.
- 4. If $(D) = \infty$, then (P) is infeasible.

Strong Duality Theorem

$\mathsf{Theorem}$

Let

- X be a nonempty convex set
- f, g_i be convex
- h; be affine
- Slater condition be satisfied, i.e. there is $\hat{x} \in X$ such that $g_j(\hat{x}) < 0, \forall j$ and $h_i(\hat{x}) = 0, \forall i$, and $0 \in \inf\{(h_1(x), \dots, h_l(x)) : x \in X\} := h(X)$.

Then
$$(P) = (D)$$
.

Moreover, if (P) is finite, then sup in (D) is achieved at $(\overline{u}, \overline{v}) \in \mathbb{R}^m_+ \times \mathbb{R}^l$. If inf in (P) is achieved at \overline{x} , then $\sum_{i=1}^m \overline{u}_i g_i(\overline{x}) = 0$.

A counterexample

Convexity alone is not sufficient. Consider

$$(P) = \min_{x,y} e^{-x}$$
s.t. $x^2/y \le 0$,
 $y > 0 \text{ (or } y \ge \varepsilon$).

The optimal value is (P) = 1. The dual function is equal to

$$\theta(u) = \inf_{x \in \mathbb{R}, y > 0} e^{-x} + ux^2/y = \begin{cases} 0 & u \ge 0, \\ -\infty & u < 0. \end{cases}$$

The dual problem is

$$(D) = \max_{u \ge 0} \theta(u)$$

with optimal value (D) = 0. Slater condition is not satisfied since x = 0 for any feasible (x, y), i.e. $x^2/y = 0$.

Bazaraa et al. (2006), Lemma 6.2.3:

Lemma

Let $X \subseteq \mathbb{R}^n$ be a convex set, $f, g_j : \mathbb{R}^n \to \mathbb{R}$ be convex, $h_i : \mathbb{R}^n \to \mathbb{R}$ be affine. If System 1 has no solution, then System 2 has a solution (u_0, u, v) . The converse holds true if $u_0 > 0$.

System 1:
$$f(x) < 0$$
, $g_j(x) \le 0$, $h_i(x) = 0$ for some $x \in X$.

System 2:
$$u_0 f(x) + \sum_{j=1}^m u_j g_j(x) + \sum_{i=1}^l v_i h_i(x) \ge 0$$
 for all $x \in X$, $(u_0, u) \ge 0$, $(u_0, u, v) \ne 0$.

Let γ be a (finite) optimal value of (P) and consider the following system:

$$f(x) - \gamma < 0, \ g_i(x) \le 0, j = 1, \dots, m, \ h_i(x) = 0, i = 1, \dots, l, \ x \in X.$$

By the definition of γ the system has no solution. Hence, there exists $(u_0, u, v) \neq 0$ with $(u_0, u) \geq 0$ such that

$$u_0(f(x) - \gamma) + \sum_{i=1}^m u_i g_i(x) + \sum_{i=1}^l v_i h_i(x) \ge 0, \ \forall x \in X.$$

Suppose that $u_0=0$. By assumption there is an $\hat{x}\in X$ such that $g_j(\hat{x})<0, \forall j$ and $h_i(\hat{x})=0, \forall i$. Substituting into the inequality we obtain $\sum_{j=1}^m u_j g_j(\hat{x})\geq 0$. Since $g_j(\hat{x})<0, \forall j$, we have $u_j=0, \forall j$, and $u_0=0$. This implies that $\sum_{i=1}^l v_i h_i(x)\geq 0$ for all $x\in X$. Since $0\in h(X)$, we can pick a $x\in X$ such that $h_i(x)=-\lambda v_i$, where $\lambda>0$ (small). Therefore

$$\sum_{i=1}^{l} v_i h_i(x) = -\lambda \sum_{i=1}^{l} v_i^2 \ge 0,$$

which implies that $v_i = 0, \forall i$. But this is a contradiction with $(u_0, u, v) \neq 0$. Hence $u_0 > 0$...

Hence $u_0 > 0$. Thus, if we set $\tilde{u}_j = u_j/u_0$ and $\tilde{v}_i = v_i/u_0$, we get

$$f(x) + \sum_{j=1}^{m} \tilde{u}_j g_j(x) + \sum_{i=1}^{l} \tilde{v}_i h_i(x) \ge \gamma, \ \forall x \in X.$$

This shows that

$$\theta(\tilde{u}, \tilde{v}) = \inf_{x \in X} L(x, \tilde{u}, \tilde{v}) \ge \gamma.$$

Together with the Weak Duality Theorem we obtain that

$$\gamma = \theta(\tilde{u}, \tilde{v}) = \sup_{u \ge 0, v} \theta(u, v).$$

Content

- 1 Lagrangian duality in nonlinear programming
- 2 Lagrangian duality in linear and quadratic programming
- 3 Lagrangian duality in integer programming
- 4 Generalized Benders Decomposition
- Support Vector Machines

Example: Linear programming

min
$$c^T x$$

s.t. $Ax = b$,
 $x \ge 0$.

Example: Linear programming

For $u \ge 0$

$$L(x, u, v) = c^{T}x - u^{T}x + v^{T}(Ax - b)$$

= $c^{T}x - u^{T}x + v^{T}Ax - v^{T}b$
= $(c^{T} - u^{T} + v^{T}A)x - v^{T}b$.

Then the dual function

$$\theta(u, v) = \inf_{x} L(x, u, v) = -v^{T} b, \text{ if } c^{T} - u^{T} + v^{T} A = 0, = -\infty, \text{ if } c^{T} - u^{T} + v^{T} A \neq 0.$$

Then the Lagrange dual problem is

$$\max - b^T v$$

s.t. $c - u + A^T v = 0$.

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ か へ ○ ・

Example: Linear programming

If we substitute $\tilde{v} = -v$ and realize that u can be seen as a vector of slack variables, we obtain

$$\max b^{T} \tilde{v}$$

s.t. $A^{T} \tilde{v} \leq c$,

which is the standard LP dual.

Example: Ordinary least squares with equality constraints

$$\min ||Ax - b||_2^2$$

s.t. $Fx = g$.

Content

- Lagrangian duality in nonlinear programming
- 2 Lagrangian duality in linear and quadratic programming
- 3 Lagrangian duality in integer programming
- 4 Generalized Benders Decomposition
- Support Vector Machines

Langrangian lower bound is never worse than LP relaxation

Hooker (2009): Consider integer programming problem with complicated constraints $Ax \le a$ and noncomplicated constraints $Bx \le b$:

$$\min_{x} c^{T} x$$
s.t. $Ax \le a$,
$$Bx \le b$$
,
$$x \in \mathbb{Z}_{+}^{n}$$
.

Langrangian lower bound is never worse than LP relaxation

Dual function obtained by relaxing the complicated constraints $Ax \le a$:

$$\theta(u) = \min_{x} c^{T}x + u^{T}(Ax - a)$$
s.t. $Bx \le b$,
$$x \in \mathbb{Z}_{+}^{n}$$
.

Let $S = \{x \in \mathbb{Z}_+^n : Bx \leq b\}$, then the dual function can be rewritten as

$$\theta(u) = \min_{x} c^{T}x + u^{T}(Ax - a)$$

s.t. $x \in \text{conv}(S)$,

where $\operatorname{conv}(S)$ can be described by (a large number of) linear inequalities.

The optimal value of the dual problem

$$z_{LD} = \max_{u \ge 0} \theta(u)$$

is therefore equal to (it follows from LP duality)

$$z_{LD} = \min_{x} c^{T} x$$
s.t. $Ax \le a$,
$$x \in \text{conv}(S).$$

Let $P = \{x \in \mathbb{R}^n_+ : Bx \leq b\}$, i.e. $\operatorname{conv}(S) \subseteq P$, where the LP relaxation is

$$z_{LP} = \min_{x} c^{T} x$$
s.t. $Ax \le a$,
$$x \in P$$
,

i.e. $z_{IP} < z_{ID}$.

Content

- Lagrangian duality in nonlinear programming
- 2 Lagrangian duality in linear and quadratic programming
- 3 Lagrangian duality in integer programming
- 4 Generalized Benders Decomposition
- Support Vector Machines

Geoffrion (1972), Floudas (2009):

$$\min_{x,y} f(x,y)$$
s.t. $g_j(x,y) \le 0, \ j = 1, \dots, m,$

$$x \in X, y \in Y.$$

The problem can be rewritten as

$$\min_{y} \inf_{x} f(x,y)
\text{s.t. } g_{j}(x,y) \leq 0, \ j = 1, \dots, m,
x \in X, y \in Y.$$

Assumptions:

- $X \subseteq \mathbb{R}^n$ is a nonempty **compact convex** set, $Y \subseteq \mathbb{R}^s$, e.g. $Y = \{0, 1\}^s$.
- $f(\cdot, y), g_j(\cdot, y) : \mathbb{R}^n \times \mathbb{R}^s \to \mathbb{R}$ are **continuous convex** for each $y \in Y$.
- For each $y \in Y \cap V$, where

$$V = \{ y : g_j(x, y) \le 0, \forall_j \text{ for some } x \in X \},$$

the resulting problem is unbounded or is feasible and the Lagrange multipliers exist (under Slater CQ).

(Less stringent assumptions are available, see Floudas (2009).)

Master problem

min
$$v(y)$$

s.t. $y \in Y \cap V$,

where the primal (slave) problem is

$$v(y) = \inf_{x} f(x, y)$$
s.t. $g_{j}(x, y) \leq 0, j = 1, \dots, m,$

$$x \in X.$$

We assume that v(y) can be computed easily ...

Feasibility Lagrange function: if the primal problem is infeasible for a given $y \in Y$, then consider

$$\overline{L}(x,y,u) = \sum_{j=1}^{m} u_j g_j(x,y),$$

where $u \in \Lambda = \{u \in \mathbb{R}_+^m : \sum_{j=1}^m u_j = 1\}$. We obtain $y \in V$ if and only if

$$\sup_{u\in\Lambda}\inf_{x\in X}\overline{L}(x,y,u)\leq 0.$$

... based on Lagrangian duality for the problem

$$\min_{x} \sum_{i=1}^{n} 0x_{i}$$
s.t. $g_{j}(x, y) \leq 0, \ j = 1, \dots, m,$

$$x \in X.$$

Optimality Lagrange function: if the primal problem is feasible for a fixed $y \in Y$, then (under Slater CQ) we can use the Lagrange function

$$L(x, y, u) = f(x, y) + \sum_{j=1}^{m} u_j g_j(x, y),$$

and the strong duality, i.e. for each $y \in Y \cap V$ we have

$$v(y) = \inf_{x \in X} f(x, y) \text{ s.t. } g_j(x, y) \le 0, \ j = 1, \dots, m,$$

= (SD) =
= $\sup_{u>0} \inf_{x \in X} L(x, y, u).$

Combining the feasibility and optimality Lagrange functions, we obtain an equivalent problem

$$\min_{y,\mu} \mu$$
s.t. $\mu \ge \sup_{u \ge 0} \inf_{x \in X} L(x, y, u),$

$$0 \ge \sup_{u \in \Lambda} \inf_{x \in X} \overline{L}(x, y, u),$$

$$y \in Y,$$

or

$$\min_{y,\mu} \mu$$
s.t. $\mu \ge \inf_{x \in X} L(x, y, u), \forall u \ge 0,$

$$0 \ge \inf_{x \in X} \overline{L}(x, y, u), \forall u \in \Lambda,$$

$$y \in Y.$$

Content

- 1 Lagrangian duality in nonlinear programming
- Lagrangian duality in linear and quadratic programming
- 3 Lagrangian duality in integer programming
- 4 Generalized Benders Decomposition
- **5** Support Vector Machines

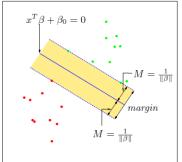
Hastie et al. (2009): Training data: N pairs (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) , $x_i \in \mathbb{R}^p$, $y_i \in \{-1, 1\}$ (classes). A linear classification rule with $\|\beta\| = 1$

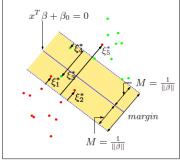
$$G(x) = \operatorname{sign}[x^T \beta + \beta_0].$$

Assume first that the data are separable. We would like to find the biggest margin between the training points for class 1 and -1:

$$\max_{\beta_0,\beta,M} M$$
s.t. $y_i(x_i^T \beta + \beta_0) \ge M, i = 1,..., N,$

$$\|\beta\| = 1.$$





Hastie et al. (2009)

By setting
$$M=1/\|\beta\|$$
:
$$\min_{\beta_0,\beta} \|\beta\|$$
 s.t. $y_i(x_i^T\beta+\beta_0)\geq 1,\ i=1,\ldots,N.$

If the classes overlap:

$$\min_{\beta_{0},\beta,\xi} \frac{1}{2} \|\beta\|^{2} + C \sum_{i=1}^{N} \xi_{i}$$
s.t. $y_{i}(x_{i}^{T}\beta + \beta_{0}) \geq 1 - \xi_{i}, i = 1, ..., N,$
 $\xi_{i} \geq 0,$

where we penalize the overall overlap.

Lagrange function

$$L(\beta_0, \beta, \xi, \alpha, \mu) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \mu_i \xi_i$$
$$- \sum_{i=1}^{N} \alpha_i (y_i (x_i^T \beta + \beta_0) - 1 + \xi_i), \ \alpha_i \ge 0, \mu_i \ge 0.$$

The dual function

$$\theta(\alpha,\mu) = \inf_{\beta_0,\beta,\xi} L(\beta_0,\beta,\xi,\alpha,\mu).$$

$$L(\beta_0, \beta, \xi, \alpha, \mu) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \mu_i \xi_i$$
$$- \sum_{i=1}^{N} \alpha_i (y_i (x_i^T \beta + \beta_0) - 1 + \xi_i), \ \alpha_i \ge 0, \mu_i \ge 0$$

Use the derivatives to obtain the dual function:

$$\frac{\partial L}{\partial \beta_0} = \sum_{i=1}^{N} \alpha_i y_i = 0,$$

$$\frac{\partial L}{\partial \beta} = \beta - \sum_{i=1}^{N} \alpha_i y_i x_i = 0,$$

$$\frac{\partial L}{\partial \epsilon_i} = C - \alpha_i - \mu_i = 0.$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

We can express the dual function

$$\theta(\alpha, \mu) = \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_{i} \alpha_{i'} y_{i} y_{i'} x_{i}^{T} x_{i'} + C \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_{i} \alpha_{i'} y_{i} y_{i'} x_{i}^{T} x_{i'}$$

$$-\beta_{0} \sum_{i=1}^{N} \alpha_{i} y_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \mu_{i} \xi_{i}$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_{i} \alpha_{i'} y_{i} y_{i'} x_{i}^{T} x_{i'} + \sum_{i=1}^{N} \alpha_{i},$$

subject to $0 \le \alpha_i \le C$, $\sum_{i=1}^N \alpha_i y_i = 0$.

Literature

- Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). Nonlinear programming: theory and algorithms, Wiley, Singapore, 3rd edition.
- Boyd, S., Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.
- Floudas, Ch.A. (2009). Generalized Benders Decomposition. In Encyclopedia of Optimization, Ch.A. Floudas, P.M. Pardalos eds., 1162–1175.
- Geoffrion, A.M. (1972). Generalized Benders decomposition. Journal of Optimization Theory Applications 10, 237–260.
- Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edition.
- Hooker, J.N. (2009). Integer Programming: Lagrangian Relaxation. In Encyclopedia of Optimization, Ch.A. Floudas, P.M. Pardalos eds., 1667–1673.