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Totally unimodular matrices

Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU) iff every square submatrix of A has
determinant +1, -1, or 0.

The linear program has an integral optimal solution for all integer r.h.s. b
if and only if Ais TU.
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Totally unimodular matrices

Totally unimodular matrices

A set of sufficient conditions:
® a; € {-1,0,1} for all i,

@ Each column contains at most two nonzero coefficients, i.e.

m
Y1 lajl €2,
@ There exists a partitioning M; N M, = () of the rows 1,..., m such
that each column j containing two nonzero coefficients satisfies

E a,-j: E a,-j.

ieMy ie My

If Ais TU, then AT and (A|l) are TU.
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Totally unimodular matrices

Minimum cost network flow problem

G = (V, A) — graph with vertices V and (oriented) arcs A
hjj — arc capacity
cjj — flow cost
b; — demand, ASS. 3, b = 0
V(i) ={k: (i,k) € A} - successors of i
V= (i) ={k: (k,i) € A} — predecessors of i

min g CiiXij
o ij Xij

® ©6 6 66 o o

(ij)EA
S oxu— Y, xi=bi, i€V,
keVH(i) keV= (i)

0<x; < hy, (i.j) €A
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Totally unimodular matrices

Wolsey (1998), Ex. 3.1 (M1 = {1,...,m}, M = ()

Fig. 3.1 Digraph for minimum cost network flow

equations:
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Totally unimodular matrices

Special cases

@ The shortest path problem

@ The transportation problem
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Traveling salesman problem

Traveling salesman problem

@ n town and in one of them there is a traveling salesman.
@ Traveling salesman must visit all towns and return back.

@ For each pair of towns he/she knows the traveling costs and he is
looking for the cheapest route.

= Finding a Hamilton cycle in a graph with edge prices.

Martin Branda (KPMS MFF UK) 04-04-2016 8 /28



Traveling salesman problem

Assignment problem

minZZc,-jX,-j (1)

i=1 j=1

n
Y xj o= L j=1,....n, (2)
i=1

n
Y xy o= 1,i=1,....n (3)
j=1

xj € {0,1}. (4)

We minimize the traveling costs, we arrive to j from exactly one i, we
leave i to exactly one j.
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Traveling salesman problem

Example — 5 towns — cycle and subcycles (subroute)

(7 V¢

Kafka (2013)
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Traveling salesman problem

Subroute elimination conditions |

xjj =0, ¢jj = 00
Xij + xji <1
Xij + Xji + xii < 2

e 6 66 o o

Dies 2jesXi <ISI=1,SC{l,...,n},2< 5| <n—1
Approximately 2" inequalities, it is possible to reduce to |S| < [n/2].
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Traveling salesman problem

Subroute elimination conditions Il

u,-—uJ-Jrnx,-jgn—l,i,j:2,...,n

Eliminate subroutes: There is at least one route which does not go
through vertex 1, denote this route by C and the number of edges by
|E(C)|. If we sum these inequalities over all edges {/,j}, which are in C,
i.e. the corresponding variables xj; = 1, we obtain

nlE(C)| < (n—1)|E(C)], (5)

which is a contradiction.
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Traveling salesman problem

Subroute elimination conditions IlI

ui—uj+nx;<n-—11,j=2,...,n

Hamilton cycle is feasible: let the vertices be ordered as vi =1, vy, ...,
vh. We set u; = 1, if vy = i, i.e. uj represent the order. For each edge of
the cycle {i,/} it holds u; — u; = —1, i.e.

u,-—uJ-—i—nx,-j:—l—l—ngn—l. (6)

For edges, which are not in the cycle, the inequality holds too:
ui—ui<n—1ax;=0.

Martin Branda (KPMS MFF UK) 04-04-2016 13 /28



Traveling salesman problem

Traveling Salesman Problem with Time Windows

M — large constant

n n
min E E Cij Xij
Xij»tj

i=1 j=

1

n

> xi
i=1

n

> xi
=1

t+Ti—t
<t
Xj
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t; — time when customer i is visited

m IN IN

Tjj — time necessary to reach j from i

li, uj — lower and upper bound (time window) for visiting customer i

04-04-2016
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(8)

(9)

(10)
(11)
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Capacitated Vehicle Routing Problem

Parameters
@ n — number of customers
@ 0 — depo (starting and finishing point of each vehicle)
K — number of vehicles (homogeneous)
d; > 0 — customer demand, for depo dp = 0
@ > 0 — vehicle capacity ( KQ > > 7, d))

@ cjj — transportation costs from i to j (usually ¢; = 0)

Decision variables
@ x;j —equal to 1, if j follows after i on the route, 0 otherwise

@ uj — upper bound on transported amount after visiting customer j
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Capacitated Vehicle Routing Problem

n n
min E g Cij Xjj
Xij > Uj

i=0 j=0

up —
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n
> xi
i=0
n
> xi
j=0
n
2 Xio
i=1
n
PR
j=1

uj +d;
di < uj

Xij

m N IA

1, j=1,...,n,
1,i=1,...,n,
K,
K,

Q(l_xlj) i7j:17"'7n7
Q,i=1,...,n,
{o,1}.
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Capacitated Vehicle Routing Problem

(12) minimization of transportation costs
(13) exactly one vehicle arrives to customer j
(14) exactly one vehicle leaves customer i
(15) exactly K vehicles return to depot 0
(16) exactly K vehicles leave depot 0

(17)

balance conditions of transported amount (subroute elimination
conditions)

(18) bounds on the vehicle capacity

(All vehicles are employed.)
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Basic heuristics for VRP

Insertion heuristic:

@ Start with empty routes.

@ FOR all customers DO: Insert the customer to the place in a route

where it causes the lowest increase of the traveled distance.

Clustering:
@ Cluster the customers according to their geographic positions
(“angles”).
@ Solve! the traveling salesman problem in each cluster.

Possible difficulties: time windows, vehicle capacities, ...

! .exactly, if the clusters are not large.
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Tabu search for VRP

For a given number of iteration, run the following steps:

o Find the best solution in a neighborhood of the current solution. Such
solution can be worse than the current one or even infeasible (use
penalty function).

@ Forbid moving back for a random number of steps by actualizing the
tabu list.

@ Remember the best solution.

The tabu search algorithm enables moving from local solutions (compared
with a simple "hill climbing alg.”).
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Real problem

3 LOK STORUEBIRAIDS VAR ok
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Rich Vehicle Routing Problems

e Goal — maximization of the ship filling rate (operational planning),
optimization of fleet composition, i.e. number and capacity of the
ships (strategic planning)

@ Rich Vehicle Routing Problem

e time windows

heterogeneous fleet (vehicles with different capacities and speed)
several depots with inter-depot trips

several routes during the planning horizon

non-Euclidean distances (fjords)

@ Mixed-integer programming :-(, constructive heuristics for getting an
initial feasible solution and tabu search

@ M. Branda, K. Haugen, J. Novotny, A. Olstad, Downstream logistics optimization at
EWOS Norway. Research report.
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Rich Vehicle Routing Problems

Our approach
@ Mathematical formulation
@ GAMS implementation
@ Heuristic (insertion, tabu search) implementation
@ Decision Support System (DSS)
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Other applications of MIP

Facility Location Problem

i warehouses (facilities), j customers
X; — sent quantity

yi — a warehouse is built

f; — fixed costs

o

o

o

@ cj — unit supplying costs
o

@ K; — warehouse capacity
o

D; — demand

min ZZC,JXU+ny:

Xi
Uy’rl/l

s.t. Zx,-j < Kiyi, i=1,...,n,

j=1
n

ZXUZDJ', j:l,...,m
i=1

Xij Z Oa yi € {071}
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Scheduling to Minimize the Makespan

@ i machines, j jobs,
@ y — machine makespan,
@ Xx; — assignment variable

@ t; — time necessary to process job j on machine i,

min y
Xij» Y

m
. =1 j=1,...,n,

n
Zx,-jt,-jgy, i=1,...,m.
j=1
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Lot Sizing Problem

Uncapacitated single item LSP

@ x; — production at period t
@ y; — on/off decision at period t
@ s; — inventory at the end of period t (sp > 0 fixed)
@ D, — (predicted) expected demand at period t
@ p: — unit production costs at period t
@ f; — setup cost at period t
@ h; — inventory cost at period t
@ M - large constant
-
min. ;(Pm + foye + hest)
st.se—1+x— D=5, t=1,..., T, (20)
xt < My,

Xt, St 2 0, 043 S {0, 1}

ASS. Wagner-Whitin costs pry1 < p: + h:.
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Lot Sizing Problem

Capacitated single item LSP

@ x; — production at period t
@ y; — on/off decision at period t
@ s; — inventory at the end of period t (sp > 0 fixed)
@ D, — (predicted) expected demand at period t
@ p: — unit production costs at period t
@ f; — setup cost at period t
@ h; — inventory cost at period t
@ C; — production capacity at period t
T
min. ;(Pm + foye + hest)
st.sec1+xt— D=5, t=1,..., T, (21)
xt < Gy,

Xt, St 2 0, 043 S {0, 1}

ASS. Wagner-Whitin costs pry1 < p: + h:.
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Other applications of MIP

Unit Commitment Problem

yir — on/off decision for unit i at period t
xit — production level for unit / at period t
D, — (predicted) expected demand at period t

p™", p"™ — minimal/maximal production capacity of unit i

cir — (fixed) start-up costs

fi — variable production costs

n T
min Z Z(Citxit + fitYit)

Xit»Yit =1 =1
n

s.t. ZX,‘t Z Dt, t = 1,...,T, (22)
i=1

lein}/it < Xjt < P,max}/it,
xit >0, yir € {0,1}.

Martin Branda (KPMS MFF UK) 04-04-2016 27 /28



Literature

@ O. Kafka: Optimalni planovani rozvozu pomoci dopravnich prostredku,
Diploma thesis MFF UK, 2013. (IN CZECH)

@ P. Toth, D. Vigo (2002). The vehicle routing problem, SIAM, Philadelphia.
@ L.A. Wolsey (1998). Integer Programming. Wiley, New York.

@ L.A. Wolsey, G.L. Nemhauser (1999). Integer and combinatorial optimization.
Wiley, New York.

Martin Branda (KPMS MFF UK) 04-04-2016 28 / 28



	Totally unimodular matrices
	Traveling salesman problem
	Real problem
	Other applications of MIP

