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Totally unimodular matrices

Introduction to integer programming Ill:
Network Flow, Interval Scheduling, and Vehicle Routing Problems

Definition

A matrix A is totally unimodular (TU) iff every square submatrix of A has
Martin Branda determinant +1, -1, or 0.
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Totally unimodular matrices and network flows
Totally unimodular matrices Minimum cost network flow problem
@ G =(V,A) — graph with vertices V and (oriented) arcs A

A set of sufficient conditions: @ hj — arc capacity

e aj € {-1,0,1} forall /,j @ ¢ — flow cost

@ Each column contains at most two nonzero coefficients, i.e. @ b —demand, ASS. 3, bi =0

> lagl <2, ® V(i) ={k: (i,k) € A} — successors of i
@ There exists a partitioning My N M, = () of the rows 1,..., m such © V(i) ={k: (ki) € A} - predecessors of i

that each column j containing two nonzero coefficients satisfies

Z min E CijXij
aj = g aj;. Xj A
y y Y (ij)eA
ieMy ieMs
s.t. E Xik — E Xxi = bj, 1€V,

If Ais TU, then AT and (A|l) are TU. keV+(i) kev=(i)
OSX,'J' < h,'j, (i,j) € A.
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Wolsey (1998), Ex. 3.1 (My = {1,..., m}, My = () Special cases

Shortest path problem

Critical (longest time) path problem in project scheduling (PERT =
Program Evaluation and Review Technique)

Fig. 3.1 Digraph for minimum cost network flow Fixed int | heduli
IXed Iinterval scheaduling

equations: Transportation problem
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Totally unimodular matrices and network flows Totally unimodular matrices and network flows
Shortest path problem Fixed interval scheduling
Find a minimum cost s — t path given nonnegative arc costs ¢j;, set
@ bi=1ifi=s,
@ bi=-1ifi=t,
@ b; = 0 otherwise.
Then the problem can be formulated as . . . . . . .
Basic Fixed interval scheduling (FIS) problem: given J jobs with
min Z CijXij prescribed starting s; and finishing f; times, find a minimal number of
(i)eA identical machines that can process all jobs such that no processing
s.t. Z Xik — Z xi =1, i =s, intervals intersect.
keV*(i) kev—(i)
Z Xik — Z xi =0, i€ V\{s,t},
keV*(i) kevV—(i)
Z Xik — Z X =—1, i =t,
keV+(i) keV=(i)

0<x; <1, (i) €A

Xj = 1 identifies the shortest path.
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Fixed interval scheduling FIS — network flow reformulation
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FIS — network flow reformulation Traveling salesman problem

Network structure:
O 2J+ 2 vertices V: {0,s1, f1,...5),f;,2J + 1}; vertices 0, 2J + 1

correspond to the source and sink, o Consider n towns and in one of them there is a traveling salesman.
@ oriented edges E: {0,s;}, {s;,f;}, j € T, {fi,s;} if f <sj, @ Traveling salesman must visit all towns and return back.

{f,2+1}, jeJ, (2J+1,0) o For each pair of towns the traveling costs are known and the traveling
© demands: dy = day;1=0,d; =1, dg=1,j€J, salesman is looking for the cheapest route.
@ return edge (2J +1,0): capacity w410 =M, coyq10 =1, = Finding a Hamilton cycle in a graph with edge prices.

@ edge capacities vy, = 1, and costs ¢,, =0, (u,v) € E\ (2J + 1,0).
Solve the min-cost network flow problem.
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Traveling salesman problem

Assignment problem

n n
min E E CijXij
i=1 j=1

n

> i
i=1

n

> xi
j=1

Xij

We minimize the traveling costs, we arrive to j from exactly one i, we

leave i to exactly one j.
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{0,1}.
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xij =0, ¢jj = 00
xjj + x;i <1
Xij + Xjk + xki < 2

® Y ics jgsx,jg\5|71,Sg{l,...,n},Zg\S\gnfl

Approximately 2" inequalities, it is possible to reduce to |S| < [n/2].
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Traveling salesman problem

Example — 5 towns — cycle and subcycles (subroute)

N // 3
v SN )
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Other valid inequalities:

ui—uj+nx; <n—1,0,j=2,...,n

Eliminate subroutes: There is at least one route which does not go
through vertex 1, denote this route by C and the number of edges by

|E(C)]|. If we sum all these inequalities over all edges {/,;}, which are in

C, i.e. the corresponding variables x;; = 1, we obtain
n|E(C) < (n—1)|E(C)],

which is a contradiction.
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Subroute elimination conditions Il

ui—uj+nx; <n—1,0,j=2,...,n.

Hamilton cycle is feasible: let the vertices be ordered as vi =1, vy, ...

vp. We set u; =1, if vy =i, i.e. u; represent the order. For each edge of

the cycle {/,j} it holds u; — u; = —1, i.e.
ui—uj+nxj=—-1+n<n-1

For edges, which are not in the cycle, the inequality holds too:
ui—ui<n—1ax;=0.

20170103

TSP — computational complexity

(6)
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NP (Nondeterministic Polynomial) is the class of decision problems with
the property that: for any instance for which the answer is YES, there is a

polynomial proof of the YES.

Martin Branda (KPMS MFF UK) 2017-04-03

21 /36

Subroute elimination conditions — example

Consider subroutes: 1-4-5, 2-3

Add inequalities

up — u3+5xp3 < 4,
uz — Uz +5x3p < 4,

or
x23 + x32 < 1.
w0 2%
Traveling Salesman Problem with Time Windows
@ t; — time when customer i is visited
@ Tj — time necessary to reach j from i
@ [;, uj — lower and upper bound (time window) for visiting customer i
@ M — a large constant
n
min Z Z CijXij )
it 7
n
D5 = Lj=Ll..n (®)
i=1
n
Sxi o= Li=1...,n, (9)
j=1
t+Ti—t < MA—x)ij=1,...,n (10)
<t < wi=1,..., n (11)
Xj € {0, 1}
aonts 2 /%



Capacitated Vehicle Routing Problem

Parameters

n — number of customers

0 — depo (starting and finishing point of each vehicle)
K — number of vehicles (homogeneous)

d; > 0 — customer demand, for depo dp =0

Q > 0 — vehicle capacity ( KQ > 2}7:1 dj)

cjj — transportation costs from i to j (usually ¢; = 0)

Decision variables

@ x; —equal to 1, if j follows after i on the route, 0 otherwise
@ u; — upper bound on transported amount after visiting customer j
wronos 2373

Capacitated Vehicle Routing Problem

(12)
(13)
(14)
(15)
(16)
(17)

(18)
(Al

minimization of transportation costs
exactly one vehicle arrives to customer j
exactly one vehicle leaves customer |
exactly K vehicles return to depot 0
exactly K vehicles leave depot 0

balance conditions of transported amount (serve also as subroute
elimination conditions)

bounds on the vehicle capacity

vehicles are employed.)
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Capacitated Vehicle Routing Problem

non
minZZcUx;j

A e

n

SNoxi = 1,j=1...,n
i=0

n

Soxi o= 1, i=1,...,n
j=0

n
EXio = K,
i=1

Zxoj = K7
Jj=1
ui—ui+d < QLl-—xy)ij=1,...,n,
d,‘fu; § Q,i:1,4..,n,
Xj € {0,1}.
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(15)

(16)

(17)
(18)
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Start with an empty set (solution) and choose the item with the best

immediate reward at each step.

Example: Traveling Salesman Problem with the (symmetric) distance

matrix

-9 2 8 12 11

- 7 19 10 32
- 29 18 6

- 24 3

- 19

Greedy steps: 1-3 (2), 3-6 (6), 6-4 (3), 4-5 (24), 5-2 (10), 2-1 (9), i.e.

the route length is 54.
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Local search heuristic Basic heuristics for VRP

Choose an initial solution x and search its neighborhood U(x). Repeat
until you are able to find a better solution, i.e. if y € U(x), f(y) < f(x), Insertion heuristic:

set x =y. @ Start with empty routes.

@ FOR all customers DO: Insert the customer to the place in a route

Example: Traveling Salesman Problem, define the neighborhood U(x) as . . .
where it causes the lowest increase of the traveled distance.

2-exchange, ie. if S={(i,j) € A: x; =1} is a feasible solution, then

Ux)={S": |SnS|=n-2}, Clustering;:
. SN N e @ Cluster the customers according to their geographic positions
in other words: replace edges (i,j), (,/") by (7,7), (,J')- ("angles”).
1 . .

Greedy steps: 1-3 (2), 3-6 (6), 6-4 (3), 4-5 (24), 5-2 (10), 2-1 (9), i.e. @ Solve the traveling salesman problem in each cluster.
the route length is 54.

Possible difficulties: time windows, vehicle capacities, ...
2-exchange: 1-3 (2), 3-4 (29), 4-6 (3), 6-5 (19), 5-2 (10), 2-1 (9), i.e.
the route length is 72.

! exactly, if the clusters are not large.

wiroses 2% wiroses 293
Tabu search for VRP Genetic algorithms

For iven number of iteration, run the followin : .
or a given number of iteration, run the following steps lterative procedure:

@ Find the best solution in a neighborhood of the current solution.
Such solution can be worse than the current one or even infeasible
(use a penalty function).

@ Population — finite set of individuals with genes

@ Generation

@ Forbid moving back for a random number of steps by actualizing the o Evaluation — fitness
tabu list. @ Parent selection

@ Remember the best solution. o Crossover produces one or two new solutions (offspring).

@ Mutation
The tabu search algorithm enables moving from local solutions (compared °
with a simple “hill climbing alg.").

Population selection
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Norway ... Rich Vehicle Routing Problems

o Goal — maximization of the ship filling rate (operational planning),
optimization of fleet composition, i.e. number and capacity of the
ships (strategic planning)

@ Rich Vehicle Routing Problem

o time windows

o heterogeneous fleet (vehicles with different capacities and speed)
o several depots with inter-depot trips

o several routes during the planning horizon

o non-Euclidean distances (fjords)

o Mixed-integer programming :-(, constructive heuristics for getting an
initial feasible solution and tabu search

@ M. Branda, K. Haugen, J. Novotny, A. Olstad, Downstream logistics optimization at
EWOS Norway. Research report.
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Rich Vehicle Routing Problems Literature

@ M. Branda, J. Novotny, A. Olstad: Fixed interval scheduling under uncertainty
Our approach - a tabu search algorithm for an extended robust coloring formulation.

X . Computers & Industrial Engineering 93, 45-54.
@ Mathematical formulation

. . 0. Kafka: Optimalni planovani rozvozu pomoci dopravnich prostfedki,
o GAMS implementation Diploma thesis MFF UK, 2013. (IN CZECH)

@ Heuristic (insertion heuristic, tabu search) implementation P. Toth, D. Vigo (2002). The vehicle routing problem, SIAM, Philadelphia.

Decision Support System (DSS) @ L.A. Wolsey (1998). Integer Programming. Wiley, New York.

L.A. Wolsey, G.L. Nemhauser (1999). Integer and combinatorial optimization.
Wiley, New York.
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