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Knapsack problem

Values a1 = 4, a2 = 6, a3 = 9, costs c1 = 4, c2 = 6, c3 = 11, budget
b = 10:

max
3∑
i=1

cixi

s.t.
3∑
i=1

aixi ≤ 10,

xi ∈ {0, 1}.

Consider = instead of ≤, or 0 ≤ xi ≤ 1 instead of xi ∈ {0, 1} . . .
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Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

Portfolio optimization – integer number of assets, fixed transaction
costs

Scheduling – integer (binary) decision variables to assign a job to a
machine

Vehicle Routing Problems (VRP) – binary decision variables which
identify a successor of a node on the route

. . .

In general – modelling of logical relations, e.g.

at least two constraints from three are fulfilled,

if we buy this asset than the fixed transaction costs increase,

. . .
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Formulation and properties

Integer linear programming

min cT x (1)

Ax ≥ b, (2)

x ∈ Zn+. (3)

Assumption: all coefficients are integer (rational before multiplying by a
proper constant).

Set of feasible solution and its relaxation

S = {x ∈ Zn+ : Ax ≥ b}, (4)

P = {x ∈ Rn+ : Ax ≥ b} (5)

Obviously S ⊆ P. Not so trivial that S ⊆ conv(S) ⊆ P.
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Formulation and properties

Example

Consider set S given by

x1 − 2x2 ≥ −4, (6)

−5x1 − x2 ≥ −20, (7)

2x1 + 2x2 ≥ 7, (8)

x1, x2 ∈ Z+. (9)
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Formulation and properties

Set of feasible solutions, its relaxation and convex envelope

Škoda (2010)
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Formulation and properties

Integer linear programming problem

Problem

min cT x : x ∈ S . (10)

is equivalent to

min cT x : x ∈ conv(S). (11)

conv(S) is very difficult to construct – many constraints (”strong cuts”)
are necessary (there are some exceptions).

LP-relaxation:

min cT x : x ∈ P. (12)
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Formulation and properties

Mixed-integer linear programming

Often both integer and continuous decision variable appear:

min cT x + dT y

s.t. Ax + By ≥ b

x ∈ Zn+, y ∈ Rn
′

+ .

(WE DO NOT CONSIDER IN INTRODUCTION)
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Formulation and properties

Basic algorithms

We consider:

Cutting Plane Method

Branch-and-Bound

There are methods combining previous alg., e.g. Branch-and-Cut.
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Cutting plane method

Cutting plane method – Gomory cuts

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.

If the solution is integral – END, we have found an optimal solution,
otherwise continue with the next step.

2. Add a Gomory cut (. . .) and solve the resulting problem using DUAL
SIMPLEX alg.
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Cutting plane method

Example

min 4x1 + 5x2 (13)

x1 + 4x2 ≥ 5, (14)

3x1 + 2x2 ≥ 7, (15)

x1, x2 ∈ Zn+. (16)

Dual simplex for LP-relaxation . . .
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Cutting plane method

After two iterations of the dual SIMPLEX algorithm . . .

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10
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Cutting plane method

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral
solution xi in the form:

xi +
∑
j∈N
wijxj = di , (17)

where N denotes the set of non-basic variables; di is non-integral. We
denote

wij = bwijc+ fij , (18)

di = bdic+ fi , (19)

i.e. 0 ≤ fij , fi < 1. ∑
j∈N
fijxj ≥ fi , (20)

or rather −
∑
j∈N fijxj + s = −fi , s ≥ 0.
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Cutting plane method

Gomory cuts

General properties of cuts (including Gomory ones):

Property 1: Current (non-integral) solution becomes infeasible (it is
cut).

Property 2: No feasible integral solution becomes infeasible (it is not
cut).
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Cutting plane method

Gomory cuts – property 1

We express the constraints in the form

xi +
∑
j∈N

(bwijc+ fij)xj = bdic+ fi , (21)

xi +
∑
j∈N
bwijc xj − bdic = fi −

∑
j∈N
fijxj . (22)

Current solution x∗j = 0 pro j ∈ N a x∗i = di is non-integral, i.e.
0 < x∗i − bdic < 1, thus

0 < x∗i − bdic = fi −
∑
j∈N
fijx∗j (23)

and ∑
j∈N
fijx∗j < fi , (24)

which is a contradiction with Gomory cut.
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Cutting plane method

Gomory cuts – property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as

xi +
∑
j∈N
bwijc xj − bdic = fi −

∑
j∈N
fijxj , (25)

Left-hand side (LS) is integral, thus right-hand side (RS) is integral.
Moreover, fi < 1 a

∑
j∈N fijxj ≥ 0, thus RS is strictly lower than 1 and at

the same time it is integral, thus lower or equal to 0, i.e. we obtain
Gomory cut

fi −
∑
j∈N
fijxj ≤ 0. (26)

Thus each integral solution fulfills it.
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Cutting plane method

Cutting plane methods – steps

Škoda (2010)
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Cutting plane method

Dantzig cuts

∑
j∈N
xj ≥ 1. (27)

(Remind that non-basic variables are equal to zero.)
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Cutting plane method

After two iterations of the dual SIMPLEX algorithm . . .

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

For example, x1 is not integral:

x1 + 2/10x3 − 4/10x4 = 18/10,

x1 + (0 + 2/10)x3 + (−1 + 6/10)x4 = 1 + 8/10.

Gomory cut:

2/10x3 + 6/10x4 ≥ 8/10.
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Cutting plane method

New simplex table

4 5 0 0 0
x1 x2 x3 x4 x5

5 x2 8/10 0 1 -3/10 1/10 0
4 x1 18/10 1 0 2/10 -4/10 0
0 x5 -8/10 0 0 - 2/10 -6/10 1

112/10 0 0 -7/10 -11/10 0

Dual simplex alg. . . .
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Branch-and-Bound

Branch-and-Bound

General principles:

Solve LP problem without integrality only.

Branch using additional constraints on integrality: xi ≤ bx∗i c,
xi ≥ bx∗i c+ 1.

Cut inperspective branches before solving (using bounds on the
optimal value).
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Branch-and-Bound

Branch-and-Bound

General principles:

Solve only LP problems with relaxed integrality.

Branching: if an optimal solution is not integral, e.g. x̂i , create and
save two new problems with constraints xi ≤ bx̂ic, xi ≥ dx̂ie.
Bounding (“different” cutting): save the objective value of the best
integral solution and cut all problems in the queue created from the
problems with higher optimal values1.

Exact algorithm . .

1Branching cannot improve it.
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Branch-and-Bound

Branch-and-Bound

P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.
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Branch-and-Bound

Branch-and-Bound

0. fmin =∞, xmin = ·, list of problems P = ∅
Solve LP-relaxed problem and obtain f ∗, x∗. If the solution is integral, STOP. If
the problem is infeasible or unbounded, STOP.

1. BRANCHING: There is xi basic non-integral variable such that k < xi < k + 1 for
some k ∈ N:

Add constraint xi ≤ k to previous problem and put it into list P.
Add constraint xi ≥ k + 1 to previous problem and put it into list P.

2. Take problem from P and solve it: f ∗, x∗.

3. If f ∗ < fmin and x∗ is non-integral, GO TO 1.
BOUNDING: If f ∗ < fmin a x∗ is integral, set fmin = f ∗ a xmin = x∗,
GO TO 4.
BOUNDING: If f ∗ ≥ fmin, GO TO 4.
Problem is infeasible, GO TO 4.

4. If P 6= ∅, GO TO 2.
If P = ∅ a fmin =∞, integral solution does not exist.
If P = ∅ a fmin <∞, optimal value and solution are fmin, xmin.

Martin Branda (KPMS MFF UK) 22-03-2016 24 / 38



Branch-and-Bound

Better . . .

2./3. Take problem from list P and solve it: f ∗, x∗. If for the optimal value
of the current problem holds f ∗ ≥ fmin, then the branching is not
necessary, since by solving the problems with added branching
constraints we can only increase the optimal value and obtain the
same fmin.
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Branch-and-Bound

Branch-and-Bound
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Branch-and-Bound

Branch-and-Bound

Algorithmic issues:

Problem selection from list P: FIFO/LIFO/problem with the
smallest f ∗.

Selection of the branching variable x∗i : the highest/smallest
violation of integrality OR the highest/smallest coefficient in the
objective function.
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Branch-and-Bound

Totally unimodular matrix

Totally unimodular matrix A: for arbitrary INTEGRAL right-hand side
vector b we obtain an integral solution, e.g. transportation problem.
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Duality

Algorithms – a remark

(Relative) difference between a lower and upper bound – construct the
upper bound (for minimization) using a feasible solution, lower bound ?
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Duality

Duality

Set S(b) = {x ∈ Zn+ : Ax = b} and define the value function

z(b) = min
x∈S(b)

cT x . (28)

A dual function F : Rm → R

F (b) ≤ z(b), ∀b ∈ Rm. (29)

A general form of dual problem

max
F
{F (b) : s.t. F (b) ≤ z(b), b ∈ Rm, F : Rm → R} . (30)

We call F a weak dual function if it is feasible, and strong dual if
moreover F (b) = z(b).
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Duality

Duality

A function F is subadditive over a domain Θ if

F (θ1 + θ2) ≤ F (θ1) + F (θ2)

for all θ1 + θ2, θ1, θ2 ∈ Θ.

The value function z is subadditive over {b : S(b) 6= ∅}, since the sum of
optimal x ’s is feasible for the problem with b1 + b2 r.h.s., i.e.
x̂1 + x̂2 ∈ S(b1 + b2).
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Duality

Duality

If F is subadditive, then condition F (Ax) ≤ cT x for x ∈ Zn+ is equivalent
to F (a·j) ≤ cj , j = 1, . . . ,m.

This is true since F (Aej) ≤ cT ej is the same as F (a·j) ≤ cj .

On the other hand, if F is subadditive and F (a·j) ≤ cj , j = 1, . . . ,m imply

F (Ax) ≤
m∑
j=1

F (a·j)xj ≤
m∑
j=1

cjxj = cT x .
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Duality

Duality

If we set

Γm = {F : Rm → R, F (0) = 0, F subadditive},

then we can write a subadditive dual independent of x :

max
F
{F (b) : s.t. F (a·j) ≤ cj , F ∈ Γm} . (31)

Weak and strong duality holds.

An easy feasible solution based on LP duality (= weak dual)

FLP(b) = max
y
bT y s.t. AT y ≤ c . (32)
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Duality

Duality

Complementary slackness condition: if x̂ is an optimal solution for IP,
and F̂ is an optimal subadditive dual solution, then

(F̂ (a...j)− cj)x̂j = 0, j = 1, . . . ,m.
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Software

Software
. . . even for nonlinear integer problems

Interfaces: GAMS, CPlex Studio, Gurobi, . . .

Solvers: CPlex (MILP, MIQP), Gurobi (MILP, MIQP), Baron,
Bonmin (MINLP), Dicopt (MINLP), Knitro (MINLP), Lindo, . . .

For difficult problems usually heuristic and meta-heuristic algorithms
(greedy h., genetic alg., tabu search, simulated annealing, . . . )
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Software

GAMS

Integer variables

Integer variables – nonnegative with predefined upper bound 100
(can be changed using x.up(i) = 1000;)!

Binary variables

Command SOLVE using

MILP

MIQCP

MINLP
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Software

GAMS – options

TOLERANCE for optimal value of the integer problems:

optcr – relative tolerance (default value 0.1 – usually too high)

optca – absolute tolerance (turned off)

reslim – maximal running time in seconds (default value 1000 –
usually too low)

nlp = conopt , lp = gurobi , mip = cplex – solver selection in code

For example
OPTIONS optcr=0.000001 reslim = 3600;
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Software

Literature

G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in
Handbooks in OR & MS, Vol. 1, G.L. Nemhauser et al. Eds.

P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.

Š. Škoda: Řešení lineárních úloh s celočíselnými omezeními v GAMSu. Bc. práce
MFF UK, 2010. (In Czech)

L.A. Wolsey (1998). Integer Programming. Wiley, New York.

L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization.
Wiley, New York.

Martin Branda (KPMS MFF UK) 22-03-2016 38 / 38


	Formulation and properties
	Cutting plane method
	Branch-and-Bound
	Duality
	Software

