Knapsack problem

Values a1 = 4, ap =6, a3 =7, costs ¢c; =4, co =5, c3 = 11, budget
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x; € {0,1}.
COMPUTATIONAL ASPECTS OF OPTIMIZATION
Consider = instead of <, 0 < x; < 1 and rounding instead of x; € {0,1},
heuristic (ratio ¢;/a;) ...
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Motivation and applications Motivation and applications

Why is integrality so important? Facility Location Problem
@ J warehouses (facilities, branches), j customers,
Real (mixed-)integer programming problems (not always linear) @ x; - sent (delivered, served) quantity,
o Portfolio optimization — integer number of assets, fixed transaction @ y; — a warehouse is built,
costs @ cj — unit supplying costs,
@ Scheduling — integer (binary) decision variables to assign a job to a @ fi — fixed costs of building the warehouse,
machine @ K; — warehouse capacity,
@ D; — demand.

@ Vehicle Routing Problems (VRP) — binary decision variables which
identify a successor of a node on the route

0
° . min D axi+ Y fyi

i=1 j=1 i
In general — modelling of logical relations, e.g. i
s.t. xj < Kiyi, i=1,...,n,
j=1
n
=0, j=1,...,m,
i=1
xj >0, yi € {0,1}.
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@ at least two constraints from three are fulfilled,
o if we buy this asset than the fixed transaction costs increase,



Motivation and applications

Scheduling to Minimize the Makespan

@ / machines, j jobs,
@ y — machine makespan,
@ Xx; — assignment variable,

@ tj; — time necessary to process job j on machine i.

min y
Xij,y

m
s.t. Z:x,j:l,j:17...,n7
i=1

n
Zt,-jx,-jgy, i=1,...,m,
Jj=1

xj € {0,1}, y > 0.

(1)
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Lot Sizing Problem
Capacitated single item LSP
@ x; — production at period t,
@ y; — on/off decision at period t,
@ s; — inventory at the end of period t (sp > 0 fixed),
@ D; — (predicted) expected demand at period t.
@ p: — unit production costs at period t,
@ f; — setup costs at period t,
@ h — inventory costs at period t,
@ C; — production capacity at period t.
T
min > (pexe + foye + hese)
Xt ) Yt,St —1
st.se1+x—Di=s, t=1,...,T, (3)
xt < Ceye,
xt,5t >0, y € {0,1}.
ASS. Wagner-Whitin costs pey1 < pr + he.
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Motivation and applications

Lot Sizing Problem

Uncapacitated single item LSP

@ x; — production at period t,
@ y; — on/off decision at period t,
@ s — inventory at the end of period t (so > O fixed),
@ D, — (predicted) expected demand at period t,
@ p: — unit production costs at period t,
@ f; — setup costs at period t,
@ h; — inventory costs at period t,
@ M — a large constant.
.
min. ;(Pm + foye + hese)
st.Si—1+xe—Dy=s, t=1,...,T, (2)
xt < Myx,
xe,st > 0, ye € {0,1}.
ASS. Wagner-Whitin costs pey1 < pr + he.
moosis 7%
Unit Commitment Problem
@ i=1,...,n units (power plants), t =1,..., T periods,
@ y; — on/off decision for unit i at period t,
@ x; — production level for unit i at period t,
@ D; — (predicted) expected demand at period t,
@ pM™" p™> — minimal /maximal production capacity of unit i,
@ cjr — variable production costs,
@ f; — (fixed) start-up costs.
N T
>T,Iy|1 12:1: ;(cnxn + fieyit)
n
s.t. ZX/,ZD,:, t=1,..., T, (4)
i=1
p’{""”y/.! < xit < P:max}’ity
xie >0, yi € {0,1}.
woosis 9%



Motivation and applications

Sparse / regression

@ Y; — dependent variable i = 1,...,n,
@ Xjj — explanatory (independent) variables j =1,...,m,
@ f; — coefficients.

rr&in Xn: Y, — Xm:X,,BJ
iz j=1

s.t. at most kK < m coefficients are nonzero.

(5)

MILP reformulation

stouf —um =Y — ZX)X@'-,
= (6)
— Mz < B < Mz,

m
>z <k uf,u >0, z€{0,1}.
j=1
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Motivation and applications

Chance constrained problems — single random constraint

Let £ have a finite discrete distribution with realizations £*,...,¢% and
probabilities ps > 0, 25:1 ps = 1:

miny,, f(x)
s.t.
Zf:l psys = l—¢, @)
g(x,&) < M(1-ys),s=1,...,S
ys € {0,1}, s=1,...,S,
x € X,

where M > maxs=1, s Sup,cx 8(x,&s)-

Example: Value at Risk (VaR).

woosis 123

Motivation and applications

Chance constrained problems — single random constraint

Let f,g(+, &) : R” — R be real functions, X CR" , ¢ be a real random
vector, € € (0,1) small:

minyex f(x)
s.t. Pg(x,§) <0)>1—e.

INTERPRETATION: for a given x € X, the probability of £ for which the
random constraint is fulfilled must be at least 1 — &:

P(g(x,§) <0) = P({¢: g(x,§) <0}).

aneosis 11 /3%

Formulation and properties

Integer linear programming

minc’ x (8)
Ax > b, (9)
x € 7. (10)

Assumption: all coefficients are integer (rational before multiplying by a
proper constant).

Set of feasible solution and its relaxation

S = {xeZl: Ax> b}, (11)
P {x eR]: Ax > b} (12)

Obviously S C P. Not so trivial that S C conv(S) C P.
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Formulation and properties

ILP — irrational data

Skoda (2010):

max V2x — y

st V2x —y <0,
x>1,
x,y € N.

(13)

The objective value is bounded (from above), but there is no optimal
solution.

For any feasible solution with the objective value z = v/2x* — [v/2x*] we
can construct a solution with a higher objective value...
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Formulation and properties

Example

Consider set S given by

Tx1+2x > 5,
Tx1+x < 28,
—4x; + 14x; < 35,
X1,X0 € ZLi.
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ILP — irrational data

Let z = /2x* — [ﬁx*] be the optimal solution. Since —1 < z < 0, we
can find k € N such that kz < —1 and (k — 1)z > —1. By setting
€= —1—kzwe getthat -1 <z< —e=1+kz <0. Then

V2kx* — [ﬁkx*“
=kz+k [\@Xﬂ - [ﬁkx*“

= 1—ectk [ﬁx*w - (\@kxﬂ (14)
=k {\[2{;‘ —1—€— [k ’V\/EX*—‘ 7176-‘
=—€>Z.

(k [v2x*] — 1 is integral)
Thus, we have obtained a solution with a higher objective value which is a
contradiction.
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Formulation and properties

Set of feasible solutions, its relaxation and convex envelope

Skoda (2010)

wio0s1s 18/ 3%



Formulation and properties

Integer linear programming problem

Problem
minc'x: x€S. (15)
is equivalent to

T

minc’ x: x € conv(S). (16)

conv(S) is very difficult to construct — many constraints ("strong cuts")
are necessary (there are some important exceptions).

LP-relaxation:

minc'x: x e P. (17)
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Formulation and properties

Basic algorithms

We consider:
o Cutting Plane Method
e Branch-and-Bound

There are methods which combine the previous alg., e.g.
Branch-and-Cut (add cuts to reduce the problem for B&B).

woosis  21/%

Formulation and properties

Mixed-integer linear programming

Often both integer and continuous decision variables appear:

minc'x+dy
st. Ax+By > b
x€ell, ye Ri.

(WE DO NOT CONSIDER IN INTRODUCTION)

ne0sis 20/ 3%

Cutting plane method

Cutting plane method — Gomory cuts

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.

o If the solution is integral — END, we have found an optimal solution,
o otherwise continue with the next step.

2. Add a Gomory cut (...) and solve the resulting problem using DUAL
SIMPLEX alg.
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Cutting plane method Cutting plane method

Example

X2 X2
6 ) 6 I ¢ — — - - (- - X
5 5 S K — - -X-- X
min4x; + 5% (18) 4 e
x+do > 5, (19) N A
3x14+2x% > 7, (20) 3
xi,x € Z. (21) 2 A
. . 1 X
Dual simplex for LP-relaxation ... )
8 3
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Cutting plane method Cutting plane method

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral
solution x; in the form:

After two iterations of the dual SIMPLEX algorithm ... xi + Z wix; = d;, (22)
45| o0 0 JeN
x1 | xo X3 Xa where N denotes the set of non-basic variables; d; is non-integral. We
5| x| 8/10 0|1]-3/10| 1/10 denote
4 x| 18/10 || 1 | 0 | 2/10 | -4/10
112/10[[ 0 | 0 | -7/10 | -11/10 wj = [wy] +fy, (23)

ie 0<ffi<l.
> fixi >, (25)
jeN

or rather —ZjeN fix;+s=—fi, s>0.
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Cutting plane method Cutting plane method

Gomory cuts Gomory cuts — property 1

We express the constraints in the form

i+ (Iwil +fy)x = |di] + 1, (26)
JjeN
General properties of cuts (including Gomory ones): Xj + Z lwij] xj — [di] = fi— Z fix;. (27)
jeN jeN
o Property 1: Current (non-integral) solution becomes infeasible (it is /e /e
cut). Current solution x* = 0 for j € N and x" = d; is non-integral, i.e.
o Property 2: No feasible integral solution becomes infeasible (it is not 0 <xf— |di] <1, thus
cut). 0<x—|di] =1i— Z fix; (28)
JEN
and
> fix < f (29)
JEN

which is a contradiction with the Gomory cut.
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Gomory cuts — property 2 Cutting plane methods — steps

Consider an arbitrary integral feasible solution and rewrite the constraint as

xi+y wilx—ldi] = fi=) fix, (30)

JjEN JEN

Left-hand side (LS) is integral, thus right-hand side (RS) is integral.
Moreover, f; <1 a Z-GN fiix; > 0, thus RS is strictly lower than 1 and at

J
the same time it is integral, thus lower or equal to 0, i.e. we obtain
Gomory cut
fi— fix <0. (31)
JjeN

Thus each integral solution fulfills it.
Skoda (2010)
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Cutting plane method

Dantzig cuts

> x>l (32)

JEN

(Remind that non-basic variables are equal to zero.)
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Cutting plane method
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Cutting plane method

After two iterations of the dual SIMPLEX algorithm ...

4|5 0 0
X1 | X2 X3 X4
xy | 8/10 0|1 ]-3/10| 1/10
x; | 18/10 1|0 |2/10 | -4/10
112/10 || 0 | 0 | -7/10 | -11/10
For example, x; is not integral:
x1+2/10x3 —4/10xs = 18/10,
x1+(0+2/10)x3 + (—1+6/10)xs = 1+ 8/10.
Gomory cut:
2/10x3 4+ 6/10x4 > 8/10.
woosis 3%
New simplex table
4|5 0 0 0
X1 | X2 X3 X4 X5
5| x| 8/10 0|1]-3/10| 1/10 | O
4| x| 18/10 10| 2/10 | -4/10 | O
0|xs | -8/10 0|0 |-2/10| -6/10 | 1
112/10 || 0 | O | -7/10 | -11/10 | ©
Dual simplex alg. ... Gomory cut:
4/6x3 + 1/6x5 > 2/3.
Dual simplex alg. ... optimal solution (2,1,1,1,0,0).
woosis 353



Cutting plane method
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