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Motivation and applications

Knapsack problem

Values a1 =4, ap =6, a3 =7, costs c; =4, co =5, c3 = 11, budget
b = 10:

3
max E CiXj
i=1

3
s.t. ZQ;X,' S 10,
i=1
x; € {0,1}.

Consider = instead of <, 0 < x; < 1 and rounding instead of x; € {0, 1},
heuristic (ratio ¢;/a;) ...
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Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

o Portfolio optimization — integer number of assets, fixed transaction
costs

@ Scheduling — integer (binary) decision variables to assign a job to a
machine

@ Vehicle Routing Problems (VRP) — binary decision variables which
identify a successor of a node on the route

° ..
In general — modelling of logical relations, e.g.

@ at least two constraints from three are fulfilled,

o if we buy this asset than the fixed transaction costs increase,
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Motivation and applications

Facility Location Problem

i warehouses (facilities, branches), j customers,
x;j — sent (delivered, served) quantity,

yi — a warehouse is built,

f; — fixed costs of building the warehouse,

°

(]

°

@ ¢j — unit supplying costs,
°

@ K; — warehouse capacity,
°

Dj — demand.

min Z Z cixij + Z fiyi

XijYi
UHIIJI

s.t. ZXU < Kiyi, i=1,...,n,

j=1
n
ZXU:DJ7 j:l,...,m
i=1
Xij 2 0, yi € {071}
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Scheduling to Minimize the Makespan

@ / machines, j jobs,
@ y — machine makespan,
@ Xx; — assignment variable,

@ t; — time necessary to process job j on machine /.
min y

Xij, Y

m
sty xj=1,j=1,...,n,
i=1

n
Zt,-jx,-jgy, i=1,...,m,
Jj=1

Xjj € {0,1}, y > 0.
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Lot Sizing Problem

Uncapacitated single item LSP

Xx¢ — production at period t,

¥t — on/off decision at period t,

s¢ — inventory at the end of period t (sp > 0 fixed),
D; — (predicted) expected demand at period t,

f; — setup costs at period t,

o
o
o
o
@ p: — unit production costs at period t,
o
@ h; — inventory costs at period t,

o

M — a large constant.

-
melr?sz ;(ptxt + ftyt + htst)
S.t.5t71+Xt_Dt:sta t:]-y'"aTa (2)
Xt S Myt7

Xty St 2 0, 043 S {0, 1}

ASS. Wagner-Whitin costs pry1 < pt + h:.
ST T



Lot Sizing Problem

Capacitated single item LSP

@ x; — production at period t,
@ y; — on/off decision at period t,
@ s; — inventory at the end of period t (so > 0 fixed),
@ D, — (predicted) expected demand at period t.
@ p: — unit production costs at period t,
@ f; — setup costs at period t,
@ h; — inventory costs at period t,
@ (C; — production capacity at period t.
T
Xm,irf‘st ;(Ptxt + foyr + hest)
st.sec1+x— D=5, t=1,..., T, (3)
xe < Gy,

Xty St 2 0, 043 S {0, 1}

ASS. Wagner-Whitin costs pry1 < pt + h:.
SOT03TE 8 A



Motivation and applications

Unit Commitment Problem

i=1,...,n units (power plants), t =1,..., T periods,
yir — on/off decision for unit i at period t,

xit — production level for unit i at period t,

D, — (predicted) expected demand at period t,

p™", p"™ — minimal/maximal production capacity of unit /,

cit — variable production costs,

fi — (fixed) start-up costs.

n T
miyn Z Z(Citxit + fit}/it)
Xit s Yit =1 t—1
s.t. intzDh t:17"'7T7 (4)
i=1
oy < xie < Py,
xie > 0, yir € {0,1}.
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Integer linear programming

T

minc’ x (5)
Ax > b, (6)
x € Zf. (7)

Assumption: all coefficients are integer (rational before multiplying by a
proper constant).

Set of feasible solution and its relaxation

S = {xeZl: Ax > b}, (8)
P = {xeR]: Ax > b} (9)

Obviously S C P. Not so trivial that S C conv(S) C P.
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ILP — irrational data

Skoda (2010):

max V2x — y

s.t. \ﬁx—ygo,
x>1,
x,y € N.

(10)

The objective value is bounded (from above), but there is no optimal
solution.

For any feasible solution with the objective value z = v/2x* — [v/2x*] we
can construct a solution with a higher objective value...

Martin Branda (KPMS MFF UK) 2017-03-13 12 /31



ILP — irrational data

Let z = v/2x* — [v/2x*| be the optimal solution. Since —1 < z < 0, we
can find k € N such that kz < —1 and (k — 1)z > —1. By setting
e=—-1—kzwegetthat -1 <z< —e=1+4kz<0. Then

V2kx* — [\@kx*—|
=kz+k {\ﬁx*—‘ — {\ﬁkx*—‘

=—-1—-€e+k {\ﬁx*—‘ — {\@kx*-‘ (11)
- k[\fzx*] - H\/Ekx*] —1—4
= —€>Z.

(k [vV2x*] — 1 is integral)
Thus, we have obtained a solution with a higher objective value which is a
contradiction.
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Formulation and properties

Example

Consider set S given by

X1 +2xp > 5,
1+ x < 28,
—4x1 +14x, < 35,
X1, X0 € Zy.
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Formulation and properties

Set of feasible solutions, its relaxation and convex envelope

Skoda (2010)
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Formulation and properties

Integer linear programming problem

Problem
minc'x: x € S. (12)
is equivalent to
minc’x: x € conv(S). (13)

conv(S) is very difficult to construct — many constraints (" strong cuts")
are necessary (there are some important exceptions).

LP-relaxation:

minc' x: x € P. (14)
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Formulation and properties

Mixed-integer linear programming

Often both integer and continuous decision variables appear:

minc'x+dTy
st. Ax+By >b
x€Z, y eRY.

(WE DO NOT CONSIDER IN INTRODUCTION)
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Basic algorithms

We consider:
@ Cutting Plane Method
e Branch-and-Bound

There are methods which combine the previous alg., e.g.
Branch-and-Cut (add cuts to reduce the problem for B&B).
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Cutting plane method

Cutting plane method — Gomory cuts

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.

o If the solution is integral — END, we have found an optimal solution,
o otherwise continue with the next step.

2. Add a Gomory cut (...) and solve the resulting problem using DUAL
SIMPLEX alg.
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Cutting plane method

Example

min 4x; + 5x2 (15)
x1+4xx > 5, (16)
3x1+2x0 > 7, (17)
x1,x € ZI. (18)

Dual simplex for LP-relaxation ...
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Cutting plane method

After two iterations of the dual SIMPLEX algorithm ...

4151 0 0
X1 | Xo X3 X4

5/x| 8/10 | 0|1 [-3/10] 1/10
4| x| 18/10 | 1 | 0 | 2/10 | -4/10
112/10 [ 0 | 0 | -7/10 | -11/10
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Cutting plane method

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral
solution x; in the form:

i+ > wixp = d;, (19)
JEN

where N denotes the set of non-basic variables; d; is non-integral. We
denote

wi = [w] +fj, (20)
e 0<ff<l.
JEN
or rather — EJ-GN fixi+s=—fi, s >0.
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Cutting plane method

Gomory cuts

General properties of cuts (including Gomory ones):

@ Property 1: Current (non-integral) solution becomes infeasible (it is
cut).

@ Property 2: No feasible integral solution becomes infeasible (it is not
cut).
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Gomory cuts — property 1

We express the constraints in the form

i+ (lwy) +fy)x = |di) +f (23)
JEN
xi+ ) lwlx—ldi] = fi=) fiyx. (24)
JEN jEN

Current solution xj‘ =0 proj € N a x = d; is non-integral, i.e.
0 < x¥—|di] <1, thus

0<xi—|di]=F-) fix (25)
JEN
and
JeN
which is a contradiction with the Gomory cut.
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Gomory cuts — property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as
X+ |wilx—di] = fi=> fix, (27)
JEN JEN
Left-hand side (LS) is integral, thus right-hand side (RS) is integral.

Moreover, f; <1 a ZJ-GN fix; > 0, thus RS is strictly lower than 1 and at

the same time it is integral, thus lower or equal to 0, i.e. we obtain
Gomory cut

= fipg <0, (28)

JEN

Thus each integral solution fulfills it.
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Cutting plane methods — steps

Skoda (2010)
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Dantzig cuts

d x>l (29)

JeN

(Remind that non-basic variables are equal to zero.)
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Cutting plane method

After two iterations of the dual SIMPLEX algorithm ...

4 |5 0 0
X1 | X2 X3 X4
5| x| 8/10 0|1]-3/10| 1/10
4| x; | 18/10 110 2/10 | -4/10
112/10 || 0 | O | -7/10 | -11/10
For example, x; is not integral:
x1+2/10x3 —4/10x, = 18/10,
x1+(0+2/10)x3 + (—1+6/10)xs = 1+ 8/10.
Gomory cut:
2/10x3 4+ 6/10x4 > 8/10.
2017-03.13
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Cutting plane method

New simplex table

4 |5 0 0 0
X1 | X2 X3 X4 X5
5|1 x| 8/10 0|1]-3/10 | 1/10 | O
4|x | 18/10 || 1| 0| 2/10 | -4/10 | ©
O|xs| -8/10 || 0 |0 |-2/10| -6/10 | 1
112/10 | 0 | 0 | -7/10 | -11/10 | ©
Dual simplex alg. ... Gomory cut:
4/6x3 +1/6x5 > 2/3.
Dual simplex alg. ... optimal solution (2,1,1,1,0,0).
2017-03-13
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Cutting plane method
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