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Motivation and applications

Knapsack problem

Values a1 = 4, a2 = 6, a3 = 7, costs c1 = 4, c2 = 5, c3 = 11, budget
b = 10:

max
3∑

i=1

cixi

s.t.

3∑
i=1

aixi ≤ 10,

xi ∈ {0, 1}.

Consider = instead of ≤, 0 ≤ xi ≤ 1 and rounding instead of xi ∈ {0, 1},
heuristic (ratio ci/ai ) ...
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Motivation and applications

Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

Portfolio optimization – integer number of assets, fixed transaction
costs

Scheduling – integer (binary) decision variables to assign a job to a
machine

Vehicle Routing Problems (VRP) – binary decision variables which
identify a successor of a node on the route

...

In general – modelling of logical relations, e.g.

at least two constraints from three are fulfilled,

if we buy this asset than the fixed transaction costs increase,

...
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Motivation and applications

Facility Location Problem

i warehouses (facilities, branches), j customers,

xij – sent (delivered, served) quantity,

yi – a warehouse is built,

cij – unit supplying costs,

fi – fixed costs of building the warehouse,

Ki – warehouse capacity,

Dj – demand.

min
xij ,yi

n∑
i=1

m∑
j=1

cijxij +
∑
i

fiyi

s.t.
m∑
j=1

xij ≤ Kiyi , i = 1, . . . , n,

n∑
i=1

xij = Dj , j = 1, . . . ,m,

xij ≥ 0, yi ∈ {0, 1}.
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Motivation and applications

Scheduling to Minimize the Makespan

i machines, j jobs,

y – machine makespan,

xij – assignment variable,

tij – time necessary to process job j on machine i .

min
xij ,y

y

s.t.

m∑
i=1

xij = 1, j = 1, . . . , n,

n∑
j=1

tijxij ≤ y , i = 1, . . . ,m,

xij ∈ {0, 1}, y ≥ 0.

(1)
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Motivation and applications

Lot Sizing Problem
Uncapacitated single item LSP

xt – production at period t,

yt – on/off decision at period t,

st – inventory at the end of period t (s0 ≥ 0 fixed),

Dt – (predicted) expected demand at period t,

pt – unit production costs at period t,

ft – setup costs at period t,

ht – inventory costs at period t,

M – a large constant.

min
xt ,yt ,st

T∑
t=1

(ptxt + ftyt + htst)

s.t. st−1 + xt − Dt = st , t = 1, . . . ,T ,

xt ≤ Myt ,

xt , st ≥ 0, yt ∈ {0, 1}.

(2)

ASS. Wagner-Whitin costs pt+1 ≤ pt + ht .
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Motivation and applications

Lot Sizing Problem
Capacitated single item LSP

xt – production at period t,

yt – on/off decision at period t,

st – inventory at the end of period t (s0 ≥ 0 fixed),

Dt – (predicted) expected demand at period t.

pt – unit production costs at period t,

ft – setup costs at period t,

ht – inventory costs at period t,

Ct – production capacity at period t.

min
xt ,yt ,st

T∑
t=1

(ptxt + ftyt + htst)

s.t. st−1 + xt − Dt = st , t = 1, . . . ,T ,

xt ≤ Ctyt ,

xt , st ≥ 0, yt ∈ {0, 1}.

(3)

ASS. Wagner-Whitin costs pt+1 ≤ pt + ht .
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Motivation and applications

Unit Commitment Problem

i = 1, . . . , n units (power plants), t = 1, . . . ,T periods,

yit – on/off decision for unit i at period t,

xit – production level for unit i at period t,

Dt – (predicted) expected demand at period t,

pmin
i , pmax

i – minimal/maximal production capacity of unit i ,

cit – variable production costs,

fit – (fixed) start-up costs.

min
xit ,yit

n∑
i=1

T∑
t=1

(citxit + fityit)

s.t.

n∑
i=1

xit ≥ Dt , t = 1, . . . ,T ,

pmin
i yit ≤ xit ≤ pmax

i yit ,

xit ≥ 0, yit ∈ {0, 1}.

(4)
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Formulation and properties

Integer linear programming

min cT x (5)

Ax ≥ b, (6)

x ∈ Zn
+. (7)

Assumption: all coefficients are integer (rational before multiplying by a
proper constant).

Set of feasible solution and its relaxation

S = {x ∈ Zn
+ : Ax ≥ b}, (8)

P = {x ∈ Rn
+ : Ax ≥ b} (9)

Obviously S ⊆ P. Not so trivial that S ⊆ conv(S) ⊆ P.
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Formulation and properties

ILP – irrational data

Škoda (2010):

max
√

2x − y

s.t.
√

2x − y ≤ 0,

x ≥ 1,

x , y ∈ N.

(10)

The objective value is bounded (from above), but there is no optimal
solution.

For any feasible solution with the objective value z =
√

2x∗ −
⌈√

2x∗
⌉

we
can construct a solution with a higher objective value...
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Formulation and properties

ILP – irrational data

Let z =
√

2x∗ −
⌈√

2x∗
⌉

be the optimal solution. Since −1 < z < 0, we
can find k ∈ N such that kz < −1 and (k − 1)z > −1. By setting
ε = −1− kz we get that −1 < z < −ε = 1 + kz < 0. Then

√
2kx∗ −

⌈√
2kx∗

⌉
= kz + k

⌈√
2x∗
⌉
−
⌈√

2kx∗
⌉

= −1− ε+ k
⌈√

2x∗
⌉
−
⌈√

2kx∗
⌉

= k
⌈√

2x∗
⌉
− 1− ε−

⌈⌈√
2kx∗

⌉
− 1− ε

⌉
= −ε > z .

(11)

(k
⌈√

2x∗
⌉
− 1 is integral)

Thus, we have obtained a solution with a higher objective value which is a
contradiction.
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Formulation and properties

Example

Consider set S given by

7x1 + 2x2 ≥ 5,

7x1 + x2 ≤ 28,

−4x1 + 14x2 ≤ 35,

x1, x2 ∈ Z+.
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Formulation and properties

Set of feasible solutions, its relaxation and convex envelope

Škoda (2010)
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Formulation and properties

Integer linear programming problem

Problem

min cT x : x ∈ S . (12)

is equivalent to

min cT x : x ∈ conv(S). (13)

conv(S) is very difficult to construct – many constraints (”strong cuts”)
are necessary (there are some important exceptions).

LP-relaxation:

min cT x : x ∈ P. (14)
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Formulation and properties

Mixed-integer linear programming

Often both integer and continuous decision variables appear:

min cT x + dT y

s.t. Ax + By ≥ b

x ∈ Zn
+, y ∈ Rn′

+ .

(WE DO NOT CONSIDER IN INTRODUCTION)
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Formulation and properties

Basic algorithms

We consider:

Cutting Plane Method

Branch-and-Bound

There are methods which combine the previous alg., e.g.
Branch-and-Cut (add cuts to reduce the problem for B&B).
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Cutting plane method

Cutting plane method – Gomory cuts

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.

If the solution is integral – END, we have found an optimal solution,
otherwise continue with the next step.

2. Add a Gomory cut (...) and solve the resulting problem using DUAL
SIMPLEX alg.
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Cutting plane method

Example

min 4x1 + 5x2 (15)

x1 + 4x2 ≥ 5, (16)

3x1 + 2x2 ≥ 7, (17)

x1, x2 ∈ Zn
+. (18)

Dual simplex for LP-relaxation ...
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Cutting plane method

After two iterations of the dual SIMPLEX algorithm ...

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10
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Cutting plane method

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral
solution xi in the form:

xi +
∑
j∈N

wijxj = di , (19)

where N denotes the set of non-basic variables; di is non-integral. We
denote

wij = bwijc+ fij , (20)

di = bdic+ fi , (21)

i.e. 0 ≤ fij , fi < 1. ∑
j∈N

fijxj ≥ fi , (22)

or rather −
∑

j∈N fijxj + s = −fi , s ≥ 0.
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Cutting plane method

Gomory cuts

General properties of cuts (including Gomory ones):

Property 1: Current (non-integral) solution becomes infeasible (it is
cut).

Property 2: No feasible integral solution becomes infeasible (it is not
cut).
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Cutting plane method

Gomory cuts – property 1

We express the constraints in the form

xi +
∑
j∈N

(bwijc+ fij)xj = bdic+ fi , (23)

xi +
∑
j∈N
bwijc xj − bdic = fi −

∑
j∈N

fijxj . (24)

Current solution x∗j = 0 pro j ∈ N a x∗i = di is non-integral, i.e.
0 < x∗i − bdic < 1, thus

0 < x∗i − bdic = fi −
∑
j∈N

fijx
∗
j (25)

and ∑
j∈N

fijx
∗
j < fi , (26)

which is a contradiction with the Gomory cut.
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Cutting plane method

Gomory cuts – property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as

xi +
∑
j∈N
bwijc xj − bdic = fi −

∑
j∈N

fijxj , (27)

Left-hand side (LS) is integral, thus right-hand side (RS) is integral.
Moreover, fi < 1 a

∑
j∈N fijxj ≥ 0, thus RS is strictly lower than 1 and at

the same time it is integral, thus lower or equal to 0, i.e. we obtain
Gomory cut

fi −
∑
j∈N

fijxj ≤ 0. (28)

Thus each integral solution fulfills it.
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Cutting plane method

Cutting plane methods – steps

Škoda (2010)

Martin Branda (KPMS MFF UK) 2017-03-13 27 / 31



Cutting plane method

Dantzig cuts

∑
j∈N

xj ≥ 1. (29)

(Remind that non-basic variables are equal to zero.)
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Cutting plane method

After two iterations of the dual SIMPLEX algorithm ...

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

For example, x1 is not integral:

x1 + 2/10x3 − 4/10x4 = 18/10,

x1 + (0 + 2/10)x3 + (−1 + 6/10)x4 = 1 + 8/10.

Gomory cut:

2/10x3 + 6/10x4 ≥ 8/10.
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Cutting plane method

New simplex table

4 5 0 0 0
x1 x2 x3 x4 x5

5 x2 8/10 0 1 -3/10 1/10 0
4 x1 18/10 1 0 2/10 -4/10 0
0 x5 -8/10 0 0 - 2/10 -6/10 1

112/10 0 0 -7/10 -11/10 0

Dual simplex alg. ... Gomory cut:

4/6x3 + 1/6x5 ≥ 2/3.

Dual simplex alg. ... optimal solution (2, 1, 1, 1, 0, 0).
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Cutting plane method
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