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Benders decomposition

Benders decomposition can be used to solve:
@ linear programming
e mixed-integer (non)linear programming
@ two-stage stochastic programming (L-shaped algorithm)

e multistage stochastic programming (Nested Benders decomposition)
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Benders decomposition for two-stage linear programming
problems

minc'x + q'y (1)
s.t. Ax b, (2)
Tx+ Wy = h, (3)
x > 0, (4)

y =20 (5)

ASS. By :={x: Ax = b,x > 0} is bounded and the problem has an
optimal solution.
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Benders decomposition

We define the recourse function (second-stage function)
f(x) = min{g"y: Wy=h—Tx, y >0} (6)

If for some x is {y : Wy = h— Tx, y >0} =0, then we set f(x) = oo.
The recourse function is piecewise linear, convex, and bounded below ...

Martin Branda (KPMS MFF UK) 15-03-2016 5/25



Benders decomposition

Proof (outline):

@ bounded below and piecewise linear: There are finitely many
optimal basis B chosen from W such that

f(x) = qf B~ (h— Tx),

where feasibility B~*(h — Tx) > 0 is fulfilled for x € B;. Optimality
condition qEB_:lW — g < 0 does not depend on x.
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Benders decomposition

Proof (outline):

e convex: let x1,x; € By and y1, y» be such that f(x;) = g’ y; and
f(x2) = q" y». For arbitrary A € (0,1) and x = Axg + (1 — \)xo we
have

M+ (1=A)y2e{y: Wy=h-Tx, y >0},

i.e. the convex combination of y's is feasible. Thus we have

f(x) = min{g"y: Wy =h—Tx, y >0} (7)
< g+ (1= A)y2) = M) + (1= V(). (8)
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A simple example

min 2x + 2y1 + 3y»

s.t. x+y1 4+ 2y =3,
3x+2y1 —y2 =4,
X, y1,y2 > 0.
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Benders decomposition

We have an equivalent NLP problem

T

minc' x
s.t. Ax
X

We solve the master problem (first-stage problem)

minc’ x

s.t. Ax
f(x)

X

We would like to approximate f(x) (from below) ...
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-
Algorithm — the feasibility cut

Solve

f(x) = min{g"y: Wy=h—-T%, y>0} (17)
= max{(h—T%)"u: WTu<q}. (18)

If the dual problem is unbounded (primal is infeasible), then there
exists a growth direction & such that W' <0 and (h— T%)T@& > 0. For
any feasible x there exists some y > 0 such that Wy = h — Tx. If we
multiply it by &

" (h—T&)=0u"Wy <0,

which has to hold for any feasible x, but is violated by X. Thus by
iT(h—Tx) <0

the infeasible X is cut off.
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-
Algorithm — the optimality cut

There is an optimal solution & of the dual problem such that
f(x)=(h—T&)T0.
For arbitrary x we have
f(x) = sup{(h—Tx)"u: WTu<gq}, (19)
> (h—Tx)To. (20)
From inequality f(x) < 6 we have the optimality cut
0T (h—Tx) <.

If this cut is fulfilled for actual (%, 8), then STOP, % is an optimal solution.
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Algorithm — master problem

We solve the master problem with cuts

T

minc'x + 60 (21)
st. Ax = b, (22)

o (h—Tx) < 0, /=1,...,L (23)
ol (h—Tx) < 6, k=1,...,K, (24)
x >0 (25)
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-
Algorithm

0. INIC: Set § = —c.
1. Solve the master problem to obtain X, 0.

2. For X, solve the dual of the second-stage (recourse) problem to obtain
a direction (feasibility cut) or an optimal solution (optimality cut).

3. STOP, if the current solution X fulfills the optimality cut. Otherwise
GO TO Step 1.

(Generalization with lower and upper bounds.)
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Convergence of the algorithm

Convergence of the algorithm: see Kall and Mayer (2005), Proposition
2.19.
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Example

min 2x + 2y1 + 3y»

s.t. x+y1 4+ 2y =3,
3x+2y1 —y2 =4,
X, y1, y2 2 0.

(26)
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Example

Recourse function

f(x) = min 2y; + 3y»
st.y1 + 2y =3 —x,
Y1+ 2y2 (27)
2)’1—)/2:4—3X,

y1, y2 = 0.
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Iteration 1

Set # = —oo and solve master problem

min 2x s.t. x > 0. (28)

Optimal solution X = 0.
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Iteration 1

Solve the dual problem for X = 0:
max (3 — x)u1 + (4 — 3x)up

s.b. U +2uy < 2, (29)
2u1 — up < 3.

Optimal solution is & = (8/5,1/5) with optimal value 28/5, thus no
feasibility cut is necessary. We can construct an optimality cut

(3—x)8/5+ (4 — 3x)1/5 = 28/5 — 11/5x < 6.
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Iteration 2

Add the optimality cut and solve
min 2x
x,0
s.t. 28/5 —11/5x < 6, (30)
x > 0.

Optimal solution (%,8) = (2.5455,0) with optimal value 5.0909.
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Iteration 2

Solve the dual problem for X = 2.5455:
max (3 — x)u1 + (4 — 3x)up

s.b. U +2uy < 2, (31)
2u1 — up < 3.

Optimal solution is & = (1.5,0) with optimal value 0.6818, thus no
feasibility cut is necessary. We can construct an optimality cut

(3—x)1.5+ (4 —3x)0 = 4.5 — 1.5x < 0.

Martin Branda (KPMS MFF UK) 15-03-2016 20 /25



R
Iteration 3

Add the optimality cut and solve

T,ien 2x

s.t. 28/5 —11/5x < 6, (32)
45—-15x <40,
x > 0.
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Two-stage stochastic programming problem

Probabilities 0 < ps <1, > ps =1,

S
minc’x+ ) " psql ys
s=1
s.t.
Ax b,
WY1 +T1X = h17
Wy» +Tox = hy,
Wys +Tsx = hs,
x>0, ys > 0.

One master and S “second-stage” problems.
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Minimization of Conditional Value at Risk

If the distribution of R; is discrete with realizations ris and probabilities
ps = 1/S, then we can use linear programming formulation

rgnn E+ ——= ( Z ZXIrIS &+,

where R; =1/S Zle lis.
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N
Conditional Value at Risk

Master problem
rgun f—i— G Z fs(x,§),

s.t. ZX,’F,- > n, Zx,- =1, x; >0,
=1 =1

Second-stage problems

fs(x,£) = min y,
y

n
s.t.y > *inris =&,

i=1
y > 0.

Solve the dual problem quickly ..
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