# An introduction to Benders decomposition

#### Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

COMPUTATIONAL ASPECTS OF OPTIMIZATION



Benders decomposition can be used to solve:

- linear programming
- mixed-integer (non)linear programming
- two-stage stochastic programming (L-shaped algorithm)
- multistage stochastic programming (Nested Benders decomposition)

# Benders decomposition for two-stage linear programming problems

$$\min c^T x + q^T y \tag{1}$$

$$s.t. Ax = b, (2)$$

$$Tx + Wy = h, (3)$$

$$x \geq 0, \tag{4}$$

$$y \geq 0. (5)$$

**ASS.**  $\mathcal{B}_1 := \{x : Ax = b, x \ge 0\}$  is bounded and the problem has an optimal solution.

We define the **recourse function** (second-stage function)

$$f(x) = \min\{q^T y : Wy = h - Tx, y \ge 0\}$$
 (6)

If for some x is  $\{y: Wy = h - Tx, y \ge 0\} = \emptyset$ , then we set  $f(x) = \infty$ . The recourse function is piecewise linear, convex, and bounded below ...

### Proof (outline):

• bounded below and piecewise linear: There are finitely many optimal basis B chosen from W such that

$$f(x) = q_B^T B^{-1}(h - Tx),$$

where feasibility  $B^{-1}(h-Tx) \geq 0$  is fulfilled for  $x \in \mathcal{B}_1$ . Optimality condition  $q_B^T B^{-1} W - q \le 0$  does not depend on x.

#### Proof (outline):

• **convex**: let  $x_1, x_2 \in \mathcal{B}_1$  and  $y_1, y_2$  be such that  $f(x_1) = q^T y_1$  and  $f(x_2) = q^T y_2$ . For arbitrary  $\lambda \in (0,1)$  and  $x = \lambda x_1 + (1-\lambda)x_2$  we have

$$\lambda y_1 + (1 - \lambda)y_2 \in \{y : Wy = h - Tx, y \ge 0\},\$$

i.e. the convex combination of y's is feasible. Thus we have

$$f(x) = \min\{q^T y : Wy = h - Tx, y \ge 0\}$$

$$\leq q^T (\lambda y_1 + (1 - \lambda)y_2) = \lambda f(x_1) + (1 - \lambda)f(x_2).$$
 (8)



# A simple example

min 
$$2x + 2y_1 + 3y_2$$
  
s.t.  $x + y_1 + 2y_2 = 3$ ,  
 $3x + 2y_1 - y_2 = 4$ ,  
 $x, y_1, y_2 \ge 0$ . (9)

We have an equivalent NLP problem

$$\min c^T x + f(x) \tag{10}$$

$$s.t. Ax = b, (11)$$

$$x \geq 0. \tag{12}$$

We solve the master problem (first-stage problem)

$$\min c^T x + \theta \tag{13}$$

$$s.t. Ax = b, (14)$$

$$f(x) \leq \theta, \tag{15}$$

$$x \geq 0. \tag{16}$$

We would like to approximate f(x) (from below) ...

## Algorithm – the feasibility cut

Solve

$$f(\hat{x}) = \min\{q^T y : Wy = h - T\hat{x}, y \ge 0\}$$
 (17)

$$= \max\{(h - T\hat{x})^T u : W^T u \le q\}.$$
 (18)

If the dual problem is unbounded (primal is infeasible), then there exists a growth direction  $\tilde{u}$  such that  $W^T\tilde{u} \leq 0$  and  $(h-T\hat{x})^T\tilde{u}>0$ . For any feasible x there exists some  $y\geq 0$  such that Wy=h-Tx. If we multiply it by  $\tilde{u}$ 

$$\tilde{u}^T(h-T\hat{x})=\tilde{u}^TWy\leq 0,$$

which has to hold for any feasible x, but is violated by  $\hat{x}$ . Thus by

$$\tilde{u}^T(h-Tx)\leq 0$$

the infeasible  $\hat{x}$  is cut off.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □◆○○○

## Algorithm – the optimality cut

There is an optimal solution  $\hat{u}$  of the dual problem such that

$$f(\hat{x}) = (h - T\hat{x})^T \hat{u}.$$

For arbitrary x we have

$$f(x) = \sup_{u} \{ (h - Tx)^{T} u : W^{T} u \le q \},$$

$$\ge (h - Tx)^{T} \hat{u}.$$
(19)

From inequality  $f(x) \le \theta$  we have the optimality cut

$$\hat{u}^T(h-Tx)\leq \theta.$$

If this cut is fulfilled for actual  $(\hat{x}, \hat{\theta})$ , then STOP,  $\hat{x}$  is an optimal solution.

- 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 • 夕 ♀

### Algorithm – master problem

We solve the master problem with cuts

$$\min c^T x + \theta \tag{21}$$

$$s.t. Ax = b, (22)$$

$$\tilde{u}_l^T(h-Tx) \leq 0, \ l=1,\ldots,L$$
 (23)

$$\tilde{u}_k^T(h-Tx) \leq \theta, \ k=1,\ldots,K,$$
 (24)

$$x \geq 0. \tag{25}$$

# Algorithm

- 0. INIC: Set  $\theta = -\infty$ .
- 1. Solve the master problem to obtain  $\hat{x}$ ,  $\hat{\theta}$ .
- 2. For  $\hat{x}$ , solve the dual of the second-stage (recourse) problem to obtain a direction (feasibility cut) or an optimal solution (optimality cut).
- 3. STOP, if the current solution  $\hat{x}$  fulfills the optimality cut. Otherwise GO TO Step 1.

(Generalization with lower and upper bounds.)

### Convergence of the algorithm

Convergence of the algorithm: see Kall and Mayer (2005), Proposition 2.19.

# Example

min 
$$2x + 2y_1 + 3y_2$$
  
s.t.  $x + y_1 + 2y_2 = 3$ ,  
 $3x + 2y_1 - y_2 = 4$ ,  
 $x, y_1, y_2 \ge 0$ . (26)

# Example

#### Recourse function

$$f(x) = \min 2y_1 + 3y_2$$
s.t.  $y_1 + 2y_2 = 3 - x$ ,
$$2y_1 - y_2 = 4 - 3x$$
,
$$y_1, y_2 \ge 0$$
.
(27)

Set  $\theta = -\infty$  and solve master problem

$$\min_{x} 2x \text{ s.t. } x \ge 0. \tag{28}$$

Optimal solution  $\hat{x} = 0$ .



Solve the dual problem for  $\hat{x} = 0$ :

$$\max_{u} (3-x)u_1 + (4-3x)u_2$$
s.t.  $u_1 + 2u_2 \le 2$ ,
$$2u_1 - u_2 \le 3$$
. (29)

Optimal solution is  $\hat{u}=(8/5,1/5)$  with optimal value 28/5, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)8/5 + (4-3x)1/5 = 28/5 - 11/5x \le \theta.$$



Add the optimality cut and solve

$$\min_{x,\theta} 2x$$
s.t.  $28/5 - 11/5x \le \theta$ , (30)
$$x \ge 0.$$

Optimal solution  $(\hat{x}, \hat{\theta}) = (2.5455, 0)$  with optimal value 5.0909.



Solve the dual problem for  $\hat{x} = 2.5455$ :

$$\max_{u} (3-x)u_1 + (4-3x)u_2$$
s.t.  $u_1 + 2u_2 \le 2$ ,
$$2u_1 - u_2 \le 3$$
. (31)

Optimal solution is  $\hat{u}=(1.5,0)$  with optimal value 0.6818, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)1.5+(4-3x)0=4.5-1.5x\leq\theta.$$



#### Add the optimality cut and solve

$$\min_{\substack{x,\theta \\ s.t. \ 28/5 - 11/5x \le \theta, \\ 4.5 - 1.5x \le \theta, \\ x > 0.}} 2x$$
(32)

. . .

## Two-stage stochastic programming problem

Probabilities  $0 < p_s < 1$ ,  $\sum_s p_s = 1$ ,

$$min c^{T}x + \sum_{s=1}^{S} p_{s}q_{s}^{T}y_{s}$$

$$s.t.$$

$$Ax = b,$$

$$+T_{1}x = h_{1},$$

$$+T_{2}x = h_{2},$$

$$\vdots \vdots \vdots$$

$$Wy_{S} +T_{S}x = h_{S},$$

$$x \ge 0, y_{S} \ge 0.$$

One master and S "second-stage" problems.

#### Minimization of Conditional Value at Risk

If the distribution of  $R_i$  is discrete with realizations  $r_{is}$  and probabilities  $p_s = 1/S$ , then we can use **linear programming** formulation

$$\min_{\xi, x_i} \xi + \frac{1}{(1 - \alpha)S} \sum_{s=1}^{S} [-\sum_{i=1}^{n} x_i r_{is} - \xi]_+,$$
s.t. 
$$\sum_{i=1}^{n} x_i \overline{R}_i \ge r_0,$$

$$\sum_{i=1}^{n} x_i = 1, \ x_i \ge 0,$$

where  $\overline{R}_i = 1/S \sum_{s=1}^{S} r_{is}$ .

### Conditional Value at Risk

#### Master problem

$$\min_{\xi, x_i} \xi + \frac{1}{(1 - \alpha)S} \sum_{s=1}^{S} f_s(x, \xi),$$
s.t. 
$$\sum_{i=1}^{n} x_i \overline{R}_i \ge r_0, \ \sum_{i=1}^{n} x_i = 1, \ x_i \ge 0,$$

#### Second-stage problems

$$f_s(x,\xi) = \min_{y} y,$$
s.t.  $y \ge -\sum_{i=1}^{n} x_i r_{is} - \xi,$ 
 $y \ge 0.$ 

Solve the dual problem quickly ...



#### Literature

- L. Adam: Nelinearity v úlohách stochastického programování: aplikace na řízení portfolia. Diplomová práce MFF UK, 2011. (IN CZECH)
- P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, 2005.