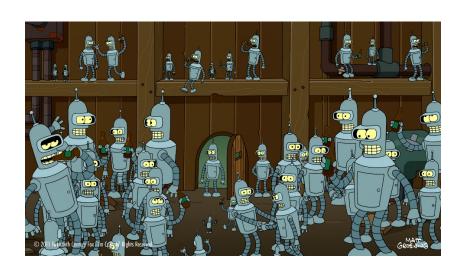
An introduction to Benders decomposition

Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

COMPUTATIONAL ASPECTS OF OPTIMIZATION



Benders decomposition can be used to solve:

- linear programming
- mixed-integer (non)linear programming
- two-stage stochastic programming (L-shaped algorithm)
- multistage stochastic programming (Nested Benders decomposition)

Benders decomposition for two-stage linear programming problems

$$\min c^T x + q^T y \tag{1}$$

$$s.t. Ax = b, (2)$$

$$Tx + Wy = h, (3)$$

$$x \geq 0, \tag{4}$$

$$y \geq 0. (5)$$

ASS. $\mathcal{B}_1 := \{x : Ax = b, x \ge 0\}$ is bounded and the problem has an optimal solution.

We define the **recourse function** (second-stage function)

$$f(x) = \min\{q^T y : Wy = h - Tx, y \ge 0\}$$
 (6)

If for some x is $\{y: Wy = h - Tx, y \ge 0\} = \emptyset$, then we set $f(x) = \infty$. The recourse function is piecewise linear, convex, and bounded below ...

Proof (outline):

• bounded below and piecewise linear: There are finitely many optimal basis B chosen from W such that

$$f(x) = q_B^T B^{-1}(h - Tx),$$

where feasibility $B^{-1}(h-Tx) \geq 0$ is fulfilled for $x \in \mathcal{B}_1$. Optimality condition $q_B^T B^{-1} W - q \le 0$ does not depend on x.

Proof (outline):

• **convex**: let $x_1, x_2 \in \mathcal{B}_1$ and y_1, y_2 be such that $f(x_1) = q^T y_1$ and $f(x_2) = q^T y_2$. For arbitrary $\lambda \in (0,1)$ and $x = \lambda x_1 + (1-\lambda)x_2$ we have

$$\lambda y_1 + (1 - \lambda)y_2 \in \{y : Wy = h - Tx, y \ge 0\},\$$

i.e. the convex combination of y's is feasible. Thus we have

$$f(x) = \min\{q^T y : Wy = h - Tx, y \ge 0\}$$

$$\leq q^T (\lambda y_1 + (1 - \lambda)y_2) = \lambda f(x_1) + (1 - \lambda)f(x_2).$$
 (8)

A simple example

min
$$2x + 2y_1 + 3y_2$$

s.t. $x + y_1 + 2y_2 = 3$,
 $3x + 2y_1 - y_2 = 4$,
 $x, y_1, y_2 \ge 0$. (9)

We have an equivalent NLP problem

$$\min c^T x + f(x) \tag{10}$$

$$s.t. Ax = b, (11)$$

$$x \geq 0. \tag{12}$$

We solve the master problem (first-stage problem)

$$\min c^T x + \theta \tag{13}$$

$$s.t. Ax = b, (14)$$

$$f(x) \leq \theta, \tag{15}$$

$$x \geq 0. \tag{16}$$

We would like to approximate f(x) (from below) ...

Algorithm – the feasibility cut

Solve

$$f(\hat{x}) = \min\{q^T y : Wy = h - T\hat{x}, y \ge 0\}$$
 (17)

$$= \max\{(h - T\hat{x})^T u : W^T u \le q\}.$$
 (18)

If the dual problem is unbounded (primal is infeasible), then there exists a growth direction \tilde{u} such that $W^T\tilde{u} \leq 0$ and $(h-T\hat{x})^T\tilde{u}>0$. For any feasible x there exists some $y\geq 0$ such that Wy=h-Tx. If we multiply it by \tilde{u}

$$\tilde{u}^T(h-T\hat{x})=\tilde{u}^TWy\leq 0,$$

which has to hold for any feasible x, but is violated by \hat{x} . Thus by

$$\tilde{u}^T(h-Tx)\leq 0$$

the infeasible \hat{x} is cut off.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □◆○○○

Algorithm – the optimality cut

There is an optimal solution \hat{u} of the dual problem such that

$$f(\hat{x}) = (h - T\hat{x})^T \hat{u}.$$

For arbitrary x we have

$$f(x) = \sup_{u} \{ (h - Tx)^{T} u : W^{T} u \le q \},$$

$$\ge (h - Tx)^{T} \hat{u}.$$
(19)

From inequality $f(x) \le \theta$ we have the optimality cut

$$\hat{u}^T(h-Tx)\leq \theta.$$

If this cut is fulfilled for actual $(\hat{x}, \hat{\theta})$, then STOP, \hat{x} is an optimal solution.

- 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 • 夕 ♀

Algorithm – master problem

We solve the master problem with cuts

$$\min c^T x + \theta \tag{21}$$

$$s.t. Ax = b, (22)$$

$$\tilde{u}_l^T(h-Tx) \leq 0, \ l=1,\ldots,L$$
 (23)

$$\tilde{u}_k^T(h-Tx) \leq \theta, \ k=1,\ldots,K,$$
 (24)

$$x \geq 0. \tag{25}$$

Algorithm

- 0. INIC: Set $\theta = -\infty$.
- 1. Solve the master problem to obtain \hat{x} , $\hat{\theta}$.
- 2. For \hat{x} , solve the dual of the second-stage (recourse) problem to obtain a direction (feasibility cut) or an optimal solution (optimality cut).
- 3. STOP, if the current solution \hat{x} fulfills the optimality cut. Otherwise GO TO Step 1.

(Generalization with lower and upper bounds.)

Convergence of the algorithm

Convergence of the algorithm: see Kall and Mayer (2005), Proposition 2.19.

Example

min
$$2x + 2y_1 + 3y_2$$

s.t. $x + y_1 + 2y_2 = 3$,
 $3x + 2y_1 - y_2 = 4$,
 $x, y_1, y_2 \ge 0$. (26)

Example

Recourse function

$$f(x) = \min 2y_1 + 3y_2$$
s.t. $y_1 + 2y_2 = 3 - x$,
$$2y_1 - y_2 = 4 - 3x$$
,
$$y_1, y_2 \ge 0$$
.
(27)

Set $\theta = -\infty$ and solve master problem

$$\min_{x} 2x \text{ s.t. } x \ge 0. \tag{28}$$

Optimal solution $\hat{x} = 0$.

Solve the dual problem for $\hat{x} = 0$:

$$\max_{u} (3-x)u_1 + (4-3x)u_2$$
s.t. $u_1 + 2u_2 \le 2$,
$$2u_1 - u_2 \le 3$$
. (29)

Optimal solution is $\hat{u}=(8/5,1/5)$ with optimal value 28/5, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)8/5 + (4-3x)1/5 = 28/5 - 11/5x \le \theta.$$

Add the optimality cut and solve

$$\min_{x,\theta} 2x$$
s.t. $28/5 - 11/5x \le \theta$, (30)
$$x \ge 0.$$

Optimal solution $(\hat{x}, \hat{\theta}) = (2.5455, 0)$ with optimal value 5.0909.

Solve the dual problem for $\hat{x} = 2.5455$:

$$\max_{u} (3-x)u_1 + (4-3x)u_2$$
s.t. $u_1 + 2u_2 \le 2$,
$$2u_1 - u_2 \le 3$$
. (31)

Optimal solution is $\hat{u}=(1.5,0)$ with optimal value 0.6818, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)1.5+(4-3x)0=4.5-1.5x\leq\theta.$$

Add the optimality cut and solve

$$\min_{\substack{x,\theta \\ s.t. \ 28/5 - 11/5x \le \theta, \\ 4.5 - 1.5x \le \theta, \\ x > 0.}} 2x$$
(32)

. . .

Two-stage stochastic programming problem

Probabilities $0 < p_s < 1$, $\sum_s p_s = 1$,

$$min c^{T}x + \sum_{s=1}^{S} p_{s}q_{s}^{T}y_{s}$$

$$s.t.$$

$$Ax = b,$$

$$+T_{1}x = h_{1},$$

$$+T_{2}x = h_{2},$$

$$\vdots \vdots \vdots$$

$$Wy_{S} +T_{S}x = h_{S},$$

$$x \ge 0, y_{S} \ge 0.$$

One master and S "second-stage" problems.

Minimization of Conditional Value at Risk

If the distribution of R_i is discrete with realizations r_{is} and probabilities $p_s = 1/S$, then we can use **linear programming** formulation

$$\min_{\xi, x_i} \xi + \frac{1}{(1 - \alpha)S} \sum_{s=1}^{S} [-\sum_{i=1}^{n} x_i r_{is} - \xi]_+,$$
s.t.
$$\sum_{i=1}^{n} x_i \overline{R}_i \ge r_0,$$

$$\sum_{i=1}^{n} x_i = 1, \ x_i \ge 0,$$

where $\overline{R}_i = 1/S \sum_{s=1}^{S} r_{is}$.

Conditional Value at Risk

Master problem

$$\min_{\xi, x_i} \xi + \frac{1}{(1 - \alpha)S} \sum_{s=1}^{S} f_s(x, \xi),$$
s.t.
$$\sum_{i=1}^{n} x_i \overline{R}_i \ge r_0, \ \sum_{i=1}^{n} x_i = 1, \ x_i \ge 0,$$

Second-stage problems

$$f_s(x,\xi) = \min_{y} y,$$
s.t. $y \ge -\sum_{i=1}^{n} x_i r_{is} - \xi,$
 $y \ge 0.$

Solve the dual problem quickly ...

Literature

- L. Adam: Nelinearity v úlohách stochastického programování: aplikace na řízení portfolia. Diplomová práce MFF UK, 2011. (IN CZECH)
- P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, 2005.