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Benders decomposition for two-stage linear programming
problems

min ¢ x + qu

s.t. Ax = b,
Tx + Wy = h, (1)
x >0,
y >0.

ASS. By :={x: Ax = b,x > 0} is bounded and the problem has an
optimal solution.
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Algorithm

Benders decomposition

Benders decomposition can be used to solve:
@ linear programming
@ mixed-integer (non)linear programming
@ two-stage stochastic programming (L-shaped algorithm)

e multistage stochastic programming (Nested Benders decomposition)
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Benders decomposition

We define the recourse function (second-stage value function, slave
problem)

f(x) = min{qg"y: Wy=h—Tx, y >0} (2)

If for some x is {y : Wy =h— Tx, y >0} =0, then we set f(x) = .
The recourse function is piecewise linear, convex, and bounded below ...
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Algorithm

Benders decomposition

Proof (outline):

o bounded below and piecewise linear (affine): There are finitely

many optimal basis B chosen from W such that

f(x) = g5 B~} (h— Tx),

where feasibility B~1(h — Tx) > 0 is fulfilled for x € B;. Optimality

condition q‘;[B’1 W — g < 0 does not depend on x.
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Algorithm

Benders decomposition
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We have an equivalent NLP problem

min ¢ x 4 f(x)
s.t. Ax = b,
x > 0.

We solve the master problem (first-stage problem)

min ¢’ x + 0

s.t. Ax = b,
f(x) <0,
x > 0.

We would like to approximate f(x) (from below) ...
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Algorithm

Benders decomposition

Proof (outline):

@ convex: let x;,x; € By and y1, y» be such that f(x;) = q"y; and
f(x2) = g7 ya. For arbitrary A € (0,1) and x = Axg + (1 — A)xo we
have

M+l =Ay2e{y: Wy=h-Tx, y>0},

i.e. the convex combination of y's is feasible. Thus we have

f(x) = min{qu : Wy =h—Tx, y >0} (3)
< g0+ (1= Ny2) = Ma) + (1= Nf(e).  (4)
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Algorithm — the feasibility cut

Solve

f(8) = min{qgTy: Wy=h—-TX, y >0} (7
= max{(h—TX)Tu: WTu<gq} (8)

If the dual problem is unbounded (primal is infeasible), then there
exists a growth direction @i such that W7 i < 0and (h— T%)7d > 0. For
any feasible x there exists some y > 0 such that Wy = h — Tx. If we
multiply it by &
i"(h—TR) =" Wy <0,
which has to hold for any feasible x, but is violated by X. Thus by
i’ (h—Tx) <0

the infeasible X is cut off.
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Algorithm — the optimality cut Algorithm — master problem

There is an optimal solution { of the dual problem such that

fR)=(h-TR"0 We solve the master problem with cuts
For arbitrary x we have min c'x +6
s.t. Ax = b,
f(x) = sup{(h—Tx)Tu: WTu<gq}, (9) A=
u i (h—Tx)<0, I=1,...,L, (11)
T A
> (h=Tx)"a, (10) Gl (h—Tx)<0, k=1,...,K,
because i is feasible for arbitrary x. From inequality f(x) < 6 we have the x=>0.

optimality cut
a"(h—Tx)<9.

If this cut is fulfilled for actual ()?,OA) then STOP, X is an optimal solution.

o315 10/3 wrosis 1/
Algorithm Convergence of the algorithm

There are finitely many extreme directions that can generate the feasibility
cuts and finitely many (dual) feasible basis which can produce the
optimality cuts.

0. INIC: Set § = —o0, L=0, K =0.

1. Solve the master problem to obtain ()?é) Let (x*,6%) b.e .a.n optimal solution of the reformul-ated original pt.'obler.n.
2. For &, solve the dual of the second-stage (recourse) problem to L The fea§|l.>|.llty set of the master problem (6) is always contameq "
obtain the feasibility set of the master problem with cuts (11) (no feasible
o a direction of unbounded decrease (feasibility cut), L =L+ 1, solut|on% are CUt)'_ oA . . . .
o or an optimal solution (optimality cut), K = K + 1. 2. 'I;1he optimal SOtl):ltIOn (x,g) obtained by the algorithm is feasible for
3. STOP, if the current solution (%, 9) fulfills the optimality cuts. the master problem (6), because
Otherwise GO TO Step 1. 6> (h-TR)Ta=F(R).

Thus, from 1. and 2. we obtain
X 0> T8+ 0> cTx" + 0",

Kall and Mayer (2005), Proposition 2.19
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Algorithm

Benders optimality cuts

Rl e e

Kall and Mayer (2005)
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Example

Recourse function

f(x) = min 2y; + 3y»
5.t y1 + 2y =3 — X,
S.t. Y1+ 2)2 X, (13)
2y1 —y2 =4 - 3x,

y1, y2 > 0.
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Example

min 2x + 2y1 + 3y»
st. x4+ y1+ 2y, =3,

(12)
3x+2y1—y2 =4,
X, Y1, Y2 2 0.
2021-:03-15  16/39
Iteration 1
Set § = —oo and solve master problem
min 2x s.t. x > 0. (14)
X
Optimal solution X = 0.
2021-:03-15  18/39



Iteration 1 Iteration 2

Solve the dual problem for X = 0:

max (3 — x)u1 + (4 — 3x)uz Add the optimality cut and solve
u

s.t. up 4+ 2up < 2, (15) n:.ign 2x + 6
2up —up < 3. s.t. 28/5 — 11/5x < 0, (16)
Optimal solution is & = (8/5,1/5) with optimal value 28/5, thus no x 0.

feasibility cut is necessary. We can construct an optimality cut . ) oA . )
Optimal solution (X,6) = (2.5455, 0) with optimal value 5.0909.

(3—x)8/5 + (4 — 3x)1/5 = 28/5 — 11/5x < .
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[ETY Example

Iteration 2 Iteration 3

Solve the dual problem for X = 2.5455:

Add the optimality cut and sol
max (3 — x)u1 + (4 — 3x)un e optimality cut and solve
u

s.t. up +2up < 2, (17) n;l’ign 2x + 0
2up — up < 3. s.t. 28/5 — 11/5x < 6, (18)
45— 15x <4,

Optimal solution is & = (1.5,0) with optimal value 0.6818, thus no
feasibility cut is necessary. We can construct an optimality cut x>0,

(3—x)15+(4—3x)0=45—-15x<4.
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[ M L-shaped algorithm

Minimization of Conditional Value at Risk
Two-stage stochastic programming problem

Minimization of Conditional Value at Risk

Probabilities 0 < ps < 1, > . ps =1,

If the distribution of R; is discrete with realizations r;s and probabilities

s ps = 1/S, then we can use linear programming formulation
min chJersquys 1 s n

s=1 min &+ ——= > [ xifis — &y,
s.t. Ax = b, &xi I-a)s= =

n
Wy, +Thx = M (19) i 5
’ s.t. xiRi > r,
Wy» +Tox = hy, ; e

. n

Wys +Tsx = bhs, D> xi=1, x>0,
i=1

x>0, y,>0,s=1,...,5 ’

here R; = 1/S3°2 . ri, [+ = max{-,0}.
One master and S “second-stage” problems — apply the dual approach to wher /5 Xomris: [ x{-, 0}
each of them.
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Extensions and applications Minimization of Conditional Value at Risk

Nested Benders decomposition
Conditional Value at Risk

Multistage Stochastic Linear Programming

Master problem

S
min £ + # Z fs(x,€), MSLiP=Multistage Stochastic Linear Programming - "nested Benders
&xi (1-a)s s=1 decomposition with added algorithmic features”.
n n . . . . .

— . @ Support of an arbitrary number of time periods and finite discrete

8-t X;X’R‘ = 1o, ;X‘ =1 %20, distributions with Markovian structure.
1= 1=
Scenario TREE = a set of nodes K = {1,..., KT} with stages
Second-stage problems

Kt ={Ki-1+1,...,K;} and probabilities py,...,p7 >0, 3" k., Pn =1,

fs(x,€) = min y, @ a, the ancestor of the node n,
y

@ D(n) the set of descentants of the node n,

n
sty > — z:x,-r,-s —¢, @ t(n) the time stage of the node n.
i=1

y > 0.

Solve the dual problems quickly ..
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Nested Benders decomposition Nested Benders decomposition
Scenario tree Nested formulation of the discrete MSLP

For starting node (n = 1)

F1

mivn {clTxl + 191 s.t. Axy = b, V1 > Ql(X]_)}7
x1,01

Qi(xa) = Z p*mFm(Xl)'

meD(1) Pn
For nested stages n=2,...,Kr_1
Fn(xa,) = min {c,;rx,, + 9, s.t. Wpxn = hy — TpXa,,
X!H n

In > Qu(xn)},
3 P ().

meD(n) n

Qn(xn)

F le a(12) = 5, D(6) = {14,15,16}, t(4) = 3.
or example 2(12) =5, D(6) = {14,15,16}, t(4) For final stage n = K71 +1,..., Kt

Fa(xa,) = min {c] %y s.t. Waty = hy — Tpxa, }-
Xn
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Nested two-stage problem Relaxed Master problem

(M)(n) Master program = n-th nested two-stage problem: (RM)(n) Relaxed Master program, n=1,..., Kr:
Fn(Xa,,) = minxnﬂ,, C,TXn + U, Fn(Xa") = mian.,ﬁn C,;an + 95
’ s.t. s.t.
Whxn = hp— TnXa,,, Whx, = hp— TnXa,,y
9n > Qn(xpn), convex constraint, 5 F, ngn > Zu feaSIbllity cuts
m > . imali 1
Qn(xn) = ZmE’D(n) %Fm(x,,). Xn+ 19, > dp, optimality cuts
F1 = Fi(xa,), where we set x;, =0, Wy = A and hy = b. F1 = Fi(xa,), where we set x5 =0, Wi = A and h; = b.

Weset 9, =0 for n= Kr_1 +1,...,KT. (RM)(n), n= Ky_1+1,..., Ky, compensatory bounds ¥, and cuts are

not involved.
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et B s i et B s
Dual problem Algorithm MSLiP

(RD)(n) Dual problem to the relaxed master problem (RM)(n),
n=2...,Kr:
T T T ©
max 7y (hp = ToXa,) + ap fo + By dn 0 Set 9@ —0foralln=1,...,Kr_1,

Tn,Cn,BnsAnsHn

s.t. @ Solve
T Wa+ o] Fo+BIDy = cn, © g
178, = 1, x; ' = arg rr)](;n {cl X1 S.t. Axg = b}.
an, B, > 0,
Th unrestricted.

We set ap, B, =0for n=Kr_1+1,...,Kr
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Nested Benders decompositon Nested Benders decompositon
Algorithm MSLiP Algorithm MSLiP

1)
)
o Solve the dual problem (RD)(m) to the (RM)(m), ¥m € D(n). o If ¥, < Qn(xs) — optimality cut of the feasible set of (MR)(n)

We get
o dual optimal solution (7}, aj,, Br,), Ym € D(n), (D).
o or feasible extreme direction (7 ..o/ . 3 ) in which the dual
m(j)> ~m(j)’ Fm(j) i
problem to the subproblem m(j) € D(n) is unbounded, i.e. Z PmTm Tm Xn +9n >
. , meD(n)
Ty (Bm@iy = Winxa) + v frn > 0. ' ' '
m(/)( 2 ) m() > Z Pm [7rlmhm + o fm + B:ndm] .
— feasibility cut of the feasible set of (MR)(n): meD(n)
(dcn)i

ﬂ‘jmu) W, xn > ﬂJm(‘,) b’”(J) + O/ITI(J)fm .
—— —_—

s () o Else if ¥, > Qn(xn) then we have optimal solution x, of (MR)(n).
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B G
Fast-forward-fast-back (FFFB)

e FORWARD pass (t=1,...,T, n= Ky —1,...,K;) terminates by:
o infeasibility of the relaxed master program (RM)(n) — add feasibility
cut to (RM)(a,) & BACKTRACKING,
e obtaining optimal solutions X, for all n=1,..., K — BACKWARD
pass.
o BACKTRACKING (n — a,) terminates by:

o feasibility of the relaxed master program (RM)(a,) — FORWARD pass,
e reaching the root node with an infeasible (RM)(1) — MSLP is
infeasible.

o BACKWARD pass always goes through all nodes (adding optimality
cuts if necessary).

o No optimality cuts have been added — optimal solution,
o else - FORWARD pass.
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= Quadratic DECOMposizion, regularizing quadratic term in the objective
(two-stage).
(RMQ) Relaxed Master program

F = miny gm ¢7 X, + > mep Pmd™ + % Hx — x("*l)H2
s.t.
Ax = b,
x > f,
D"x +19™ > d™ Vme D.
20210315 38/39

Extensions and applications Nested Benders decomposition
MSLiP

The algorithm (FFFB) terminates in a finite number of iterations.

o If termination occurs after BACKWARD pass then the current
solution is optimal.

o Validity of

o feasibility cuts ~ feasible solutions of (M)(n) are not cut off.

o optimality cuts ~ objective function of (RM)(n) yields a lower bound
to the objective function (M)(n).

Cuts generated by the algorithm are valid.

" ,”_-'I(BACKWARD) <F < ,”_-'I(FORWARD),,
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Extensions and applications Nested Benders decomposition
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