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Linear programming

Linear programming

Standard form LP

min cT x

s.t. Ax = b,

x ≥ 0.

A ∈ Rm×n, h(A) = h(A|b) = m.

M = {x ∈ Rn : Ax = b, x ≥ 0}.
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Linear programming

Linear programming

Decomposition of M:

Convex polyhedron P – uniquely determined by its vertices (convex
hull)

Convex polyhedral cone K – generated by extreme directions
(positive hull)

Direct method (evaluate all vertices and extreme directions, compute the
values of the objective function . . .)
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Linear programming

Linear programming trichotomy

One of these cases is valid:

1. M = ∅
2. M 6= ∅: the problem is unbounded

3. M 6= ∅: the problem has an optimal solution (at least one of the
solutions is vertex)
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Primal simplex algorithm

Simplex algorithm – basis

Basis B = regular square submatrix of A, i.e.

A = (B|N).

We also consider B = {i1, . . . , im}.
We split the objective coefficients and the decision vector accordingly:

cT = (cTB , c
T
N ),

xT (B) = (xTB (B), xTN (B)),

where
B · xB(B) = b, xN(B) ≡ 0.

Feasible basis, optimal basis.
Basic solution(s).
ASS. non-degenerate problem (basic solutions have m positive
elements) → finiteness of the simplex alg.
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Primal simplex algorithm

Simplex algorithm – simplex table

xT

cT

cB xB B−1b B−1A

cTB B
−1b cTB B

−1A− cT
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Primal simplex algorithm

Simplex algorithm – simplex table

Feasibility condition:
B−1b ≥ 0.

Optimality condition:

cTB B
−1A− cT ≤ 0.
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Primal simplex algorithm

Simplex algorithm – a step

If the optimality condition is not fulfilled:

Denote the criterion row by

δT = cTB B
−1A− cT .

Find δi > 0 and denote the corresponding column by

ρ = B−1A·,i .

Minimize the ratios

û = arg min
{
xu(B)

ρu
: ρu > 0, u ∈ B

}
.

Substitute xû by xi in the basic variables, i.e. B̂ = B \ {û} ∪ {i}.
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Primal simplex algorithm

Simplex algorithm – a step

Denote by B̂ the new basis. Define a direction

∆u = −ρu, u ∈ B,
∆i = 1,

∆j = 0, j /∈ B ∪ {i}.

If ∆ ≤ 0, then the problem is unbounded (cT x(B̂)→ −∞). Otherwise, we
can move from the current basic solution to another one

x(B̂) = x(B) + t∆,

where 0 ≤ t ≤ xû(B)
ρû

. We should prove that the new solution is a feasible

basic solution (B̂ is regular, x(B̂) ≥ 0, B̂x(B̂) = b) and that the objective
value decreases . . .
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Primal simplex algorithm

Simplex algorithm – pivot rules

. . . rules for selecting the entering variable if there are several possibilities:

Largest coefficient in the objective function

Largest decrease of the objective function

Steepest edge – choose an improving variable whose entering into
the basis moves the current basic feasible solution in a direction
closest to the direction of the vector c

max
cT (xnew − xold)

‖xnew − xold‖
.

Computationally the most successful.

Blands’s rule – choose the improving variable with the smallest
index, and if there are several possibilities for the leaving variable, also
take the one with the smallest index (prevents cycling)

Matoušek and Gärtner (2007).
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Duality in linear programming

Transportation problem

i = 1, . . . , n – suppliers

j = 1, . . . ,m – customers

xij – decision variable: amount transported from i to j

cij – costs for transported unit

ai – capacity

bj – demand

ASS.
∑n
i=1 ai ≥

∑m
j=1 bj .

(Sometimes ai , bj ∈ N.)
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Duality in linear programming

Transportation problem

Primal problem

min
n∑
i=1

m∑
j=1

cijxij

s.t.
m∑
j=1

xij ≤ ai , i = 1, . . . , n,

n∑
i=1

xij ≥ bj , j = 1, . . . ,m,

xij ≥ 0.
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Duality in linear programming

Transportation problem

Dual problem

max
n∑
i=1

aiui +
m∑
j=1

bjvj

s.t. ui + vj ≤ cij ,
ui ≤ 0,

vj ≥ 0.

Interpretation: −ui (shadow) price for buying a unit of goods at i , vj
(shadow) price for selling at j .
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Duality in linear programming

Transportation problem

Competition between the transportation company (which minimizes the
transportation costs) and an “agent” (who maximizes the earnings):

n∑
i=1

aiui +
m∑
j=1

bjvj ≤
n∑
i=1

m∑
j=1

cijxij
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Duality in linear programming

Linear programming duality

Primal problem

(P) min cT x

s.t. Ax ≥ b,
x ≥ 0.

and corresponding dual problem

(D) max bT y

s.t. AT y ≤ c ,
y ≥ 0.
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Duality in linear programming

Linear programming duality

Denote

M = {x ∈ Rn : Ax ≥ b, x ≥ 0},
N = {y ∈ Rm : AT y ≤ c , y ≥ 0},

Weak duality theorem:

bT y ≤ cT x , ∀x ∈ M, ∀y ∈ N.

Equality holds if and only if (iff) complementarity slackness conditions are
fulfilled:

yT (Ax − b) = 0,

xT (AT y − c) = 0.
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Duality in linear programming

Linear programming duality

Apply KKT optimality conditions to primal LP . . .
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Duality in linear programming

Linear programming duality

Duality theorem: If M 6= ∅ and N 6= ∅, than the problems (P), (D)
have optimal solutions.

Strong duality theorem: The problem (P) has an optimal solution if
and only if the dual problem (D) has an optimal solution. If one
problem has an optimal solution, than the optimal values are equal.
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Dual simplex algorithm

Linear programming duality

Primal problem (standard form)

min cT x

s.t. Ax = b,

x ≥ 0.

and corresponding dual problem

max bT y

s.t. AT y ≤ c ,
y ∈ Rm.
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Dual simplex algorithm

Dual simplex algorithm

Dual simplex algorithm works with

dual feasible basis B and

basic dual solution y(B),

where

BT y(B) = cTB ,

NT y(B) ≤ cTN .

03-03-2016 24 / 32



Dual simplex algorithm

Dual simplex algorithm

Primal feasibility B−1b ≥ 0 is violated until reaching the optimal
solution.
Primal optimality condition is always fulfilled:

cTB B
−1A− cT ≤ 0.

Using A = (B|N), cT = (cTB , c
T
N ), we have

cTB B
−1B − cTB = 0,

cTB B
−1N − cTN ≤ 0,

Setting û = (B−1)T cB

BT û = cTB ,

NT û ≤ cTN .

Thus, û is a basic dual solution.
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Dual simplex algorithm

Dual simplex algorithm – a step

. . . uses the same simplex table.

Find index u ∈ B such that xu(B) < 0 and denote the corresponding
row by

τT = (B−1A)u,·.

Denote the criterion row by

δT = cTB B
−1A− cT ≤ 0.

Minimize the ratios

î = arg min
{
δi
τi

: τi < 0
}
.

Substitute xu by xî in the basic variables, i.e. B̂ = B \ {u} ∪ {̂i}. We
move to another basic dual solution.
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Dual simplex algorithm

Example – dual simplex algorithm

min 4x1 + 5x2
x1 + 4x2 ≥ 5,

3x1 + 2x2 ≥ 7,

x1, x2 ≥ 0.
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Dual simplex algorithm

Example – dual simplex algorithm

4 5 0 0
x1 x2 x3 x4

0 x3 -5 -1 -4 1 0
0 x4 -7 -3 -2 0 1

0 -4 -5 0 0
0 x3 -8/3 0 -10/3 1 -1/3
4 x1 7/3 1 2/3 0 -1/3

28/3 0 -7/3 0 -4/3
5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

The last solution is primal and dual feasible, thus optimal.
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Software tools for LP

Software tools for LP

Matlab

Mathematica

GAMS

MS Excel

. . .
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Software tools for LP
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Software tools for LP

Questions?

e-mail: branda@karlin.mff.cuni.cz
web: http://artax.karlin.mff.cuni.cz/˜ branm1am
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